fuel effects on emissions from modern gasoline vehicles part 2 - aromatics, olefins and volatility effects

Prepared for the CONCAWE Fuels Quality and Emissions Management Group by its Special Task Force FE/STF-20:

R.J. Stradling (Chairman)

R. Bazzani

- S.D. Bjordal
- P.M. Martinez
- D.J. Rickeard
- P. Schmelzle
- P. Scorletti
- G. Wolff
- P.J. Zemroch

N.D. Thompson (Technical Coordinator)

Reproduction permitted with due acknowledgement

© CONCAWE Brussels February 2004

ABSTRACT

The influence of gasoline quality on exhaust emissions has been evaluated using four modern European gasoline cars with advanced engine technologies/after-treatment systems. Part 1 of this report described the short-term sensitivity of these four cars to gasoline sulphur content. This report describes the influence of other fuel effects: aromatics, olefins, volatility and final boiling point.

Emissions from the test vehicles were all very low, in compliance with the appropriate Euro-3 or Euro-4 emission limits. The measured effects of fuel changes on the regulated emissions: NOx, HC and CO, were small and often conflicting, with differing directional responses for different vehicles and emissions.

The three direct injection cars emitted higher levels of particulate mass (PM) than the advanced MPI car, although much lower than the Euro-4 diesel PM emission limit. Response to fuel effects was similar in the three direct injection cars. PM emissions from the advanced MPI car, which is more representative of the current fleet, were very low on all fuels tested and insensitive to fuel changes.

KEYWORDS

Exhaust emissions, gasoline, aromatics, olefins, volatility, FBP, vehicle technology, engine technology, Euro-3, Euro-4, direct injection

INTERNET

This report is available as an Adobe pdf file on the CONCAWE website (www.concawe.org).

NOTE

Considerable efforts have been made to assure the accuracy and reliability of the information contained in this publication. However, neither CONCAWE nor any company participating in CONCAWE can accept liability for any loss, damage or injury whatsoever resulting from the use of this information.

This report does not necessarily represent the views of any company participating in CONCAWE.

CONTENTS			Page	
SUMMARY			IV	
1.	INTR	ODUCTION/OBJECTIVES	1	
2.	TEST	FUELS	2	
3.	TEST	VEHICLES	4	
4.	TEST PROTOCOL AND DESIGN4.1.TEST DESIGN4.2.VEHICLE PREPARATION AND MONITORING4.3.VEHICLE TESTING		5 6 6	
5.	STATISTICAL ANALYSIS METHODOLOGY			
6.	RESU 6.1. 6.2. 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5.	ANALYSIS OF FUEL EFFECTS NOx emissions HC Emissions CO Emissions CO ₂ Emissions	9 11 13 14 15 16 17	
7.	CON	CLUSIONS	19	
8.	GLOS	SSARY	20	
9.	REFE	RENCES	21	
APPENDIX	1	STATISTICAL DATA ANALYSIS	23	
		EMISSIONS FOR EACH VEHICLE \times FUEL COMBINATION (ARITHMETIC MEANS)	27	
APPENDIX	3	EMISSION DATA PLOTS BY FUEL AND VEHICLE - ECE AND EUDC PHASES	31	
		STATISTICAL ANALYSIS OF FUEL EFFECTS (PSEUDO ANOVA)		

SUMMARY

The influence of gasoline quality on exhaust emissions has been evaluated using four modern European gasoline cars with advanced features designed to improve fuel economy and CO_2 emissions, including stoichiometric direct injection, lean direct injection and MPI with variable valve actuation. Part 1 of this report described the short-term sensitivity of these four cars to gasoline sulphur content. This report describes the influence of other fuel effects: aromatics, olefins, volatility and final boiling point (FBP).

Regulated emissions from the test vehicles were all very low, in compliance with the appropriate Euro-3 or Euro-4 emission limits. As expected, regulated emissions were particularly low when the after-treatment systems were fully operational in the EUDC part of the emissions test cycle. Reduction of CO_2 emissions is the greater challenge for future gasoline vehicles.

Fuel effects were evaluated over a wide range of aromatics content, olefins content, volatility and FBP, using a rigorous test protocol with multiple tests on each fuel/vehicle combination. The measured effects of these fuel changes on the regulated emissions: NOx, HC and CO, were small and often conflicting, with differing directional responses for different vehicles and emissions.

The three direct injection cars emitted higher levels of particulate mass (PM) than the advanced MPI car, although much lower than the Euro-4 diesel PM emission limit. Response to fuel effects was similar in the three direct injection cars: lower FBP and lower olefins gave lower PM emissions, while lower aromatics and volatility gave no overall benefits. PM emissions from the advanced MPI car, which is more representative of the current fleet, were very low on all fuels tested and insensitive to fuel changes.

1. INTRODUCTION/OBJECTIVES

Over the last two decades, gasoline vehicle technologies have evolved rapidly, with substantial improvements in emissions control. Exhaust catalysts were first required on European gasoline cars with the introduction of Euro-1 emissions limits in 1993. Today's vehicles have to meet the year 2000, Euro-3 limits, with continuing evolution to Euro-4 in 2005. European vehicle manufacturers are also working towards a voluntary agreement for a European passenger car fleet average CO_2 emissions of 140 g/km by 2008.

A range of advanced gasoline engine technologies and exhaust gas after-treatment technologies are being introduced to meet the more stringent emissions requirements together with CO_2 reduction. The introduction of sulphur-free fuels is also an important step, allowing regenerative devices such as NOx storage catalysts to be introduced.

New gasoline engine concepts, including lean direct injection, are entering the market and may respond differently to fuel properties than conventional MPI engines. Much of the European data used to establish the relationships between fuel effects, vehicle technologies and exhaust emissions is becoming rather dated, e.g. the EPEFE report [1] was based mainly on prototype Euro-2 vehicles. Given the evolution in vehicle and fuel technologies, there is a need to establish sound information on the influence of fuel quality on emissions from more advanced engines so that future debates on fuel quality are based on a firm foundation.

To update understanding, CONCAWE has performed this study to evaluate the impact of fuel quality on emissions from advanced gasoline vehicle technologies available in the market in 2002, covering three DI cars and one advanced MPI car. Two of these were certified to Euro-3 emissions limits and two to Euro-4. Part 1 of this study [2] evaluated the influence of gasoline sulphur content. In this Part 2, the effects of other fuel properties viz. volatility, FBP, aromatics and olefins were evaluated.

NOTE: A glossary of terms is provided in **Section 8**.

2. TEST FUELS

The test fuel matrix was designed to evaluate the effects of aromatics, olefins, volatility and FBP on exhaust emissions. In order to maximize the chance to identify fuel effects, a wide range in the fuel parameters of interest, was investigated. On average this covered olefins from 14 to 5% v/v, aromatics from 38 to 26% v/v, E70 from 38 to 22% v/v and FBP from 197 to 176°C. To reduce the number of emissions tests required, a statistically designed half-factorial matrix of eight fuels was blended, based on high (H) and low (L) values of the design variables, treating volatility as the combined effects of E70 and E100 (See **Table 1** and **Appendix 1** for further details).

Fuel	E70/E100	FBP	Aromatics	Olefins
F1	L	L	L	L
F2	Н	L	Н	L
F3	Н	L	L	Н
F4	L	L	Н	Н
F5	Н	Н	L	L
F6	L	Н	Н	L
F7	L	Н	L	Н
F8	Н	Н	Н	Н

Table 1Test Fuel Matrix Design

The sulphur content of all fuels was targeted in the 40-50 mg/kg range since at the time of testing, it was not practical to blend such a wide ranging fuel matrix at the 10 mg/kg sulphur level. In Part 1 of this report, it was shown that the effect of sulphur content on emissions from these vehicles was small, so the evaluation of other fuel effects is also considered valid at the 10 mg/kg sulphur level. Analysis of the test fuels was carried out in at least two laboratories. The mean analytical results for the fuels are shown in **Table 2**.

The correlation matrix for the average measured fuel properties is shown in **Table 3**. Although it is not feasible to produce a perfectly orthogonal fuel matrix, the correlation matrix demonstrates very good separation between the primary fuel variables. Correlation between vapour pressure, E70 and E100 was acceptable given the aim to investigate the overall impact of high/low volatility. Some correlations with other fuel properties could not be avoided, e.g. RON with aromatics, MON with E70, density with aromatics. The octane correlations were considered of secondary importance as the cars would not be expected to encounter knock under the test cycle driving conditions. The correlation of density and aromatics is a natural result of the fuel composition and would also be expected with market fuels.

Table 2Test Gasoline Properties

GASOLINE CODE			F1	F2	F3	F4	F5	F6	F7	F8
	UNITS	TEST METHOD								
Density @ 15 °C	ka/m ³	EN ISO 3675	736.9	756.7	739.4	760.4	740.0	761.7	738.9	750.8
Vapour Pressure (DVPE)	kPa	EN ISO 13016	63.1	69.7	67.1	54.0	64.4	56.0	49.3	68.5
DISTILLATION		EN ISO 3405			-		-			
IBP	°C		34	33	31	35	31	36	36	30
5 % v/v	°C		49	46	44	52	41	50	53	42
10 % v/v	°C		58	51	49	59	46	56	59	47
20 % v/v	°C		71	59	55	70	51	67	68	54
30 % v/v	°C		84	68	62	82	57	79	79	61
40 % v/v	°C		94	79	72	94	68	93	92	71
50 % v/v	°C		101	91	84	105	84	104	104	84
60 % v/v	°C		108	100	97	115	98	114	116	97
70 % v/v	°C		115	105	107	128	112	130	130	117
80 % v/v	°C		126	110	117	149	136	163	155	146
90 % v/v	°C		141	118	134	162	167	186	173	178
95 % v/v	°C		154	152	154	167	184	194	183	188
FBP	°C		174	180	174	177	195	202	195	196
Residue	% v/v		0.8	1.5	0.8	0.9	0.2	0.9	1.0	0.9
E 70 °C	% v/v		19.1	33.4	39.2	20.5	41.2	24.5	22.8	39.0
E 100 °C	% v/v		48.2	61.9	62.9	46.7	62.2	48.0	47.4	62.5
E 150 °C	% v/v		94.4	96.4	94.9	80.6	84.9	78.5	78.1	81.0
COMPOSITION										
Saturates	% v/v	FIA - D1319	69.5	59.2	59.6	46.0	66.5	56.2	62.9	49.9
Olefins	% v/v	FIA - D1319	5.5	3.0	12.7	14.1	4.9	5.3	13.0	14.2
Aromatics	% v/v	FIA - D1319	25.0	37.8	27.7	39.9	28.6	38.5	24.1	35.9
Benzene	% v/v	EN 12177:98	0.14	0.16	0.30	0.24	0.09	0.14	0.31	0.09
OCTANE										
RON		ISO 25164	95.6	95.9	97.2	98.0	95.2	97.5	95.2	97.9
MON		ISO 25163	86.6	84.9	84.8	85.3	85.0	86.0	85.1	84.8
Oxidation Stability	minutes	ISO 7536	>360	>360	>360	285	>360	>360	210	>360
Existent Gum, washed	mg/100ml	ISO 6246	<1	0.1	<1	0.8	<1	2	1.4	1
Sulfur content	mg/kg	EN ISO 14596:98	48	50	44	46	52	48	45	46
Lead content	mg/l	EN 237	<1	<1	<1	<1	<1	<1	<1	<1
Copper Corrosion 3h, 50°C		ISO 2160	1a							
Oxygenates	% m/m	EN 1601:1997	none							
LHV	MJ/kg	GC (calc)	43.62	42.97	43.60	42.95	43.36	43.03	43.69	43.25
Carbon	% m/m	ASTM D5291	86.3	87.5	86.9	87.3	86.6	87.6	86.2	87.0
Hydrogen	% m/m	ASTM D5291	13.7	12.5	13.1	12.7	13.4	12.4	13.8	13.0

High values of design parameters Low values of design parameters

Table	3
-------	---

Correlation Matrix for the fuel properties

	E70	E100	E150	FBP	AROMATICS	OLEFINS	RON	MON	DENSITY	RVP
E70	1.00	0.96	0.23	0.17	0.00	-0.01	0.03	-0.72	-0.18	0.72
E100	0.96	1.00	0.45	-0.03	0.02	-0.10	0.00	-0.68	-0.17	0.86
E150	0.23	0.45	1.00	-0.75	-0.23	-0.42	-0.28	0.05	-0.32	0.70
FBP	0.17	-0.03	-0.75	1.00	0.14	-0.05	0.00	-0.13	0.20	-0.28
AROMATICS	0.00	0.02	-0.23	0.14	1.00	-0.03	0.71	-0.12	0.97	0.09
OLEFINS	-0.01	-0.10	-0.42	-0.05	-0.03	1.00	0.50	-0.40	-0.06	-0.30
RON	0.03	0.00	-0.28	0.00	0.71	0.50	1.00	-0.09	0.65	0.05
MON	-0.72	-0.68	0.05	-0.13	-0.12	-0.40	-0.09	1.00	-0.01	-0.27
DENSITY	-0.18	-0.17	-0.32	0.20	0.97	-0.06	0.65	-0.01	1.00	-0.10
DVPE	0.72	0.86	0.70	-0.28	0.09	-0.30	0.05	-0.27	-0.10	1.00

3. TEST VEHICLES

Four advanced gasoline vehicles were selected for evaluation in this programme. The technologies selected were those at the time judged likely to become significant in the near term future European car population. Three examples of direct injection technologies (one stoichiometric and two lean-burn) and one advanced MPI system were chosen. Further information on the vehicles tested is given in **Table 4**.

 Table 4
 Characteristics of Test Vehicles

	Car A	Car B	Car C	Car D
Displacement (cm ³)	1998	1796	1997	1598
Max power (kW @ rpm)	103@5500	85@5500	107@6000	81@5800
Inertia class (kg)	1250	1360	1470	1360
No of cylinders	4	4	4	4
Valves per cylinder	4	4	4	4
Max torque (Nm @ rpm)	200@4250	175@3750	193@4100	155@4400
Compression ratio	10.0:1	10.5:1	11.4:1	12.0:1
Combustion / injection / control system	Stoichiometric DI	MPI Variable valve actuation	Lean DI	Lean DI
Catalyst system	TWC	TWC	TWC + NOx trap	TWC + NOx trap
Emissions Compliance	Euro-3	Euro-4	Euro-3	Euro-4

4. TEST PROTOCOL AND DESIGN

4.1. TEST DESIGN

The objective of the test protocol was to define a sound and repeatable way of measuring the short-term effect of fuels on regulated emissions. The test procedures and protocols were based on the well-established EPEFE methods, but were modified where appropriate to the needs of this programme. These procedures assured sound test data and allowed statistically valid interpretation, so that the effects of fuel changes in the test vehicles could be accurately assessed.

The test programme was designed and analysed using rigorous statistical methods similar to those used in the recent CONCAWE diesel engine emission study [3]. The programme plan included testing of each fuel over the standard NEDC emissions test on three separate occasions in each vehicle. Based on the variability observed in earlier programmes, it was anticipated that this degree of replication would render differences in fleet-average emissions of approximately 7% between the two levels of each design variable (E70, FBP, aromatics, olefins) statistically significant at 95% confidence. Differences roughly twice this size would be needed for significance in individual vehicles. The variability levels and least significant effects actually achieved are tabulated in **Tables A.1.2** and **A.1.3** in **Appendix 1**.

The 24 tests on each car were conducted in three blocks with one block consisting of one single test on each fuel. This minimised the risk of fuel effects becoming compromised by any drift in vehicle performance or other time-related effects. Repeat tests on a fuel were not conducted back-to-back to ensure that the results were truly independent. The eight fuels were tested in a different randomised order in each block and different randomisations were used for each vehicle. A typical test order was thus as follows:

	Fuel Order
Block 1	F2 F8 F5 F3 F1 F4 F7 F6
Block 2	F4 F3 F2 F7 F5 F8 F1 F6
Block 3	F7 F1 F5 F6 F3 F8 F2 F4

A fourth test was conducted whenever large variations were seen between the three tests on a particular fuel in a particular vehicle. The following thresholds were used (based on the variability levels seen in the EPEFE programme [1]):

Emission	CO	HC	NOx
Ratio of highest to lowest emission on the same fuel	1.40	1.45	1.49

When the differences exceeded these limits, additional tests were carried out at the completion of the test block. In the event, most fuels were tested four times in each vehicle. The complete data set was then examined for outliers and trends (**see Section 5**). For some vehicles, minor changes had to be made to the predetermined test order for logistical reasons.

4.2. VEHICLE PREPARATION AND MONITORING

All test vehicles were in good mechanical condition and had completed a minimum of 8000 km to ensure that their exhaust after-treatment systems were adequately aged and that engine combustion chamber deposits had stabilised. Each vehicle completed its mileage accumulation with 500 km on test fuel F8 and a common lubricant, prior to the start of the test programme, to ensure consistency between vehicles. The properties of test fuel F8 are given in **Table 2**.

Since the sulphur levels of the 8 test fuels were blended to be nominally constant at 40–50 mg/kg, it was decided that a sulphur purging protocol would only be implemented on the vehicles with NOx storage catalysts, as the deposition of sulphur in these catalyst technologies during test mileage would be cumulative. A sulphur purge was therefore carried out for cars C and D after every block of 8 emissions tests.

The principle of sulphur purging was to cause the vehicle to transiently run rich at a high catalyst temperature in order to remove accumulated sulphur. The sulphur purging procedure was tailored to each vehicle and followed manufacturers' guidelines where possible. In addition, NOx conversion efficiency was monitored within each testing block for signs of early catalyst deactivation due to the cumulative effect of sulphur.

4.3. VEHICLE TESTING

A specific fuel change protocol was followed to ensure consistency between tests and to ensure minimal crossover between test fuels. At fuel change, the fuel tank was drained, 10 litres of the new test fuel were added and the engine was idled for 5 minutes to allow the new test fuel to flush the fuel injection system thoroughly before the tank was drained again. A further 25 litres of the new test fuel was then added for the emissions test.

Prior to each NEDC emissions test, the test vehicle and fuel were conditioned by carrying out one ECE plus two consecutive EUDC test cycles but without emissions measurement. The vehicle was then soaked according to the NEDC test procedure ensuring that the soak period was restricted to 12 - 18 hours.

Vehicles were then tested according to the current legislated NEDC test procedure [4]. Exhaust gases were collected in two separate bags to measure emissions over the two different parts of the NEDC test. The first bag sampled over the ECE (cold start and city driving) and the second bag over the EUDC (warmed-up and higher speed driving) part of the NEDC test. The legislated exhaust emissions - CO, HC, NOx - plus CO_2 and PM were measured. In addition, continuous raw exhaust emissions were measured, at both engine-out and tailpipe, to allow the interpretation of both engine and catalyst performance.

5. STATISTICAL ANALYSIS METHODOLOGY

The test programme was constructed using the principles of statistical experimental design as described in **Section 4.1**. Each emission (CO, HC, NOx, CO₂, PM) was examined on a vehicle-by-vehicle basis. In the EPEFE gasoline project [1] and other previous emission studies [3,5,6,7], the variability in exhaust emissions measurements has typically been found to follow the lognormal distribution with the degree of scatter increasing as the emission level increases. Standard deviation vs. mean plots suggested that the present emissions data behaved similarly (see **Appendix 1**).

The data were examined for outliers by inspecting studentized residuals (residuals divided by their standard errors). Analysis of covariance techniques were then used to detect and adjust for systematic trends in the data. Whenever a consistent trend was found which was significant at $P < 1\%^1$, the means and standard errors were adjusted to eliminate any bias which might be caused by that trend. In practice however, the adjustments had relatively little effect on mean emissions owing to the robustness of the experimental design (**Appendix 2** gives both the uncorrected and corrected emissions data).

Some severe trends were observed in the emission measurements in car A. The tests in block 1 were rejected in their entirety due to the abnormally high CO and HC and abnormally low NOx emission measurements at the start of the test programme. Significant downwards trends were found in the remaining CO (NEDC and ECE) and PM (NEDC, ECE and EUDC) data in blocks 2-4 and consequently a linear trend correction was applied on the log(emissions) scale.

For car B, two complete tests were rejected from the analysis due to abnormally high HC measurements, relating to HC release from the catalyst, as described in **Figure 7 of Part 1** of this report [2]. Significant upwards trends were found in the remaining CO and NOx data (EUDC) and so linear trend corrections were applied on the original g/km scale.

For car C, one test was invalidated owing to a modal pipe split and another was rejected due to abnormally low CO and HC results. An outlying set of high PM (NEDC, ECE and EUDC) results was also rejected.

No results were rejected for car D. However substantial block-to-block variations were observed in the HC (NEDC and ECE), NOx (NEDC, ECE and EUDC) and PM (NEDC and EUDC) data. These variations were eliminated using blocked analysis of variance methods.

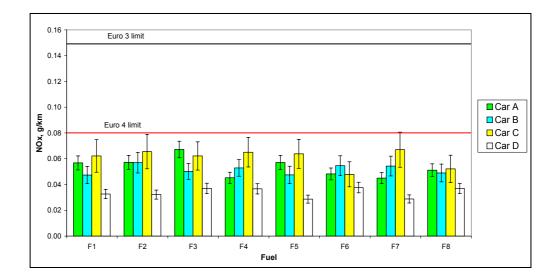
In the tables and graphs in this report, simple arithmetic means are used to summarise the emissions for each vehicle \times fuel combination. As the final fuel matrix was slightly non-orthogonal (see **Appendix 1**), multiple regression techniques were used to relate emissions to the four design variables (E70, FBP, aromatics, olefins) on a vehicle-by-vehicle basis. Adjustments were made to the analysis to take into account the log-normality in the data using a similar methodology to that employed in the EPEFE programme [1].

 $^{^{1}}$ P < 1% = the probability that such an event could be observed by chance when no real effect exists is less than 1%. In other words, we are 99% confident that the effect is real. Likewise P < 5% = 95% confidence and P < 0.1% = 99.9% confidence. NS = Not significant (< 95%).

Appendix 4 gives the average emissions predicted from multiple regression analyses for the higher and lower levels of each of the design variables. The numerical levels in this table are based on the final fuel properties. In each case, the predictions are averaged over the two levels of the other three variables. Thus, for example, the predicted emissions at E70 = 22% are calculated at FBP = 186.5°C, 32% aromatics and 9.5% olefins using the appropriate multiple regression model.

The error bars in Figures 1 to 4 in section 6 and Figures A.3.1 to A.3.8 in Appendix 3 are based on the:

mean value \pm 1.4 \times standard error of mean


These are constructed so that when two fuels are significantly different from one another at P < 5%, their error bars will not overlap. We can be 84% confident that the true mean for each fuel lies within the limits shown.

6. RESULTS AND DISCUSSION

6.1. EMISSIONS RESULTS BY FUEL AND VEHICLE

The mean emissions results for all cars over the ECE, EUDC and combined NEDC are given in **Appendix 2**. The first point of interest is the range of fuel effects on the regulated emissions, NOx, HC and CO, over the combined NEDC. Bar charts illustrating the mean emissions data for all four cars versus the emission limits (Euro-3 and Euro-4) are given in **Figures 1 to 3**. Comparable charts for the ECE and EUDC phases of the NEDC are given in **Appendix 3**.

For each mean value shown in the figures, a significant difference between fuels, at P<5% or stronger, would be indicated by non-overlapping error bars (see **Section 5**). Analysis of the individual fuel property effects is described in **Section 6.2**.

Figure 1 NEDC emissions data - NOx

The NOx emissions for all four vehicles were below the Euro-4 limit. No individual fuel gave consistently higher or lower NOx emissions across all four vehicles.

Car D gave consistently lower NOx emissions across all fuels. Its slightly smaller engine capacity compared to the other test vehicles may have been a factor, but this can also be explained by the good NOx emissions control displayed by this vehicle during the ECE phase of the cycle. The advanced MPI vehicle (car B) achieved the lowest NOx emissions in the EUDC phase.

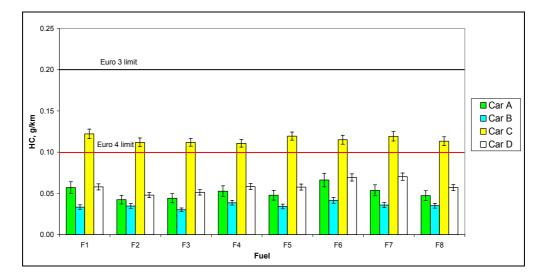
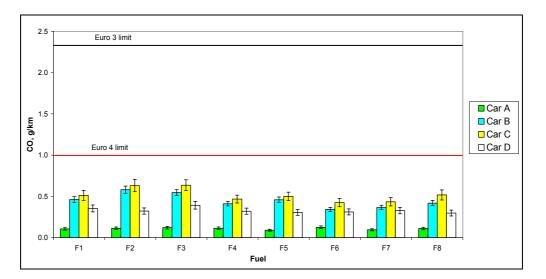
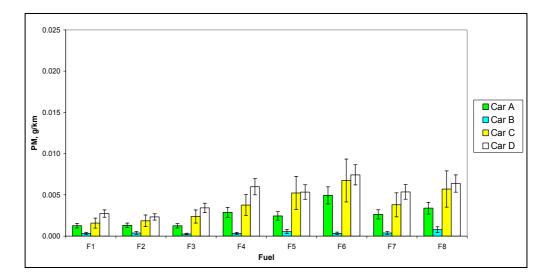



Figure 2 NEDC emissions data - HC

HC emissions for three of the four vehicles were well below the Euro-4 limit, with car C operating well below the Euro-3 limit against which it was certified. The other Euro-3 vehicle (car A) had very low HC emissions, in line with the two Euro-4 vehicles. No individual fuel gave consistently higher or lower HC emissions across all four vehicles.


For all 4 vehicles, and car C in particular, the emissions from the ECE phase dominated the NEDC HC emissions. Car C produced the highest HC emissions in the ECE phase. Both of the lean-burn DI vehicles (cars C and D) gave relatively high HC emissions during the EUDC phase compared to cars A and B.

CO emissions for all four vehicles were well below the Euro-4 limit. Some significant differences between fuels were apparent, which are evaluated in **Section 6.2**. Car A gave consistently lower CO emissions across all fuels.

For three of the four vehicles (cars B, C and D), the emissions from the ECE phase dominated the NEDC CO emissions. Car A gave extremely low emissions in the ECE phase. In the EUDC phase, there was less difference between the emissions from the four vehicles.

Figure 4 NEDC emissions data - PM

Particulate mass (PM) emissions were also measured using the standard diesel methodology but with a dedicated particulate tunnel. Despite low levels of particulate emissions, the repeatability of the PM measurements was sufficient to discriminate between technologies, given the multiple testing performed. The data are presented in **Figure 4** and show a clear ranking (high to low) of PM emissions according to vehicle technology, with:

lean burn DI > stoichiometric DI > advanced MPI

Even the lean burn DI vehicles gave PM emissions well below the Euro-4 light duty diesel limit of 0.025 g/km. Fuel properties showed an effect on PM emissions in the DI vehicles, which is discussed in **Section 6.2**.

The differences in PM emissions between the different combustion technologies were most evident in the ECE phase of the cycle. The ranking given above was still evident in the EUDC phase, although there was less discrimination between the lean-burn and stoichiometric DI vehicles.

6.2. ANALYSIS OF FUEL EFFECTS

The test fuel matrix was generated using a half-factorial design, as described in **Section 2 and Appendix 1**. This has the advantage that the effects of the four fuel variables volatility, FBP, aromatics and olefins can be evaluated in an efficient way, with an optimised number of tests. It also means, however, that the effects of the fuel variables cannot easily be seen by comparing individual fuels, and a statistical analysis is needed to identify these effects.

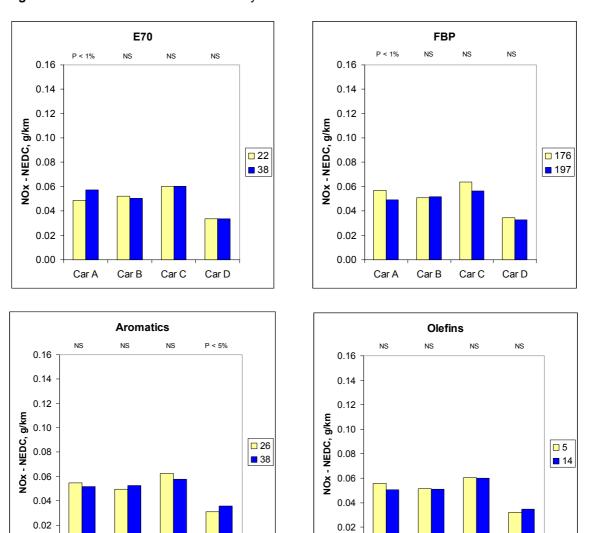
The half-factorial design is suitable, in principle, for an analysis of variance (ANOVA) approach. In practice, it was not possible to produce test fuels that exactly met all the targets of the design matrix. Nevertheless, good separation in the key

variables was achieved (see **Section 2**). Analysis of fuel effects was therefore carried out using a pseudo ANOVA procedure, where multiple regression is used to derive model equations from which the individual fuel effects can be estimated. The detailed results of this analysis are given in **Appendix 4**.

In evaluating the emissions test results, it should be noted that the range of each fuel parameter studied represents a major change in fuel properties. The actual mean values of the fuel properties evaluated are shown in **Table 5**.

Fuel property	High	Low
E70, % v/v	38	22
FBP, deg C	197	176
Aromatics, % v/v	38	26
Olefins, % v/v	14	5

Table 5Mean fuel property values studied


The results are shown graphically on the following pages, illustrating the fuel effects for each emission and car. Each plot shows the estimated emissions for the higher and lower values of the design variables (calculated at the average levels of the other three design variables as described in **Section 5**). Front/mid range volatility effects are represented by E70, however they could be equally described in terms of E100, since the two parameters were closely correlated in the fuel matrix. The statistical significance of differences between the high and low levels of the fuel parameters are given on the graphs (NS = Not Significant, P<5% = 95% confidence, P<1% = 99% confidence, P<0.1% = 99.9% confidence).

0.00

Car A

Car B

6.2.1. NOx emissions

Figure 5 NEDC emissions analysis – NOx

All four cars met the Euro-4 NOx emissions limit of 0.08g/km.

Car C

Car D

Three out of the four cars tested showed no impact of front/mid range volatility on NOx emissions. Only car A, the stoichiometric DI, showed a significant effect, with NOx increasing with higher volatility. Lowering FBP directionally increased NOx emissions in the 3 DI cars, although significant only in car A. There was no effect of FBP in the MPI car B.

0.00

Car A

Car B

Car C

Car D

Reducing aromatics yielded conflicting trends. The effects were not significant on NOx emissions in 3 cars. Car D, a lean DI, showed a small but significant decrease in NOx emissions with lower aromatics. Reducing olefins yielded no significant effect on NOx emissions in any car.

6.2.2. HC Emissions

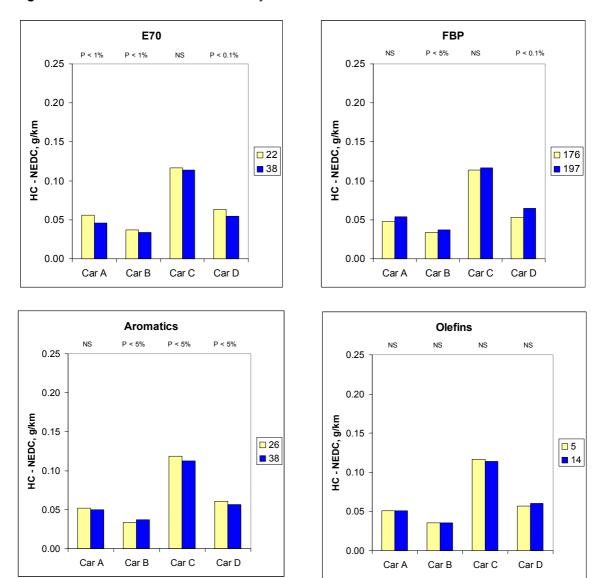
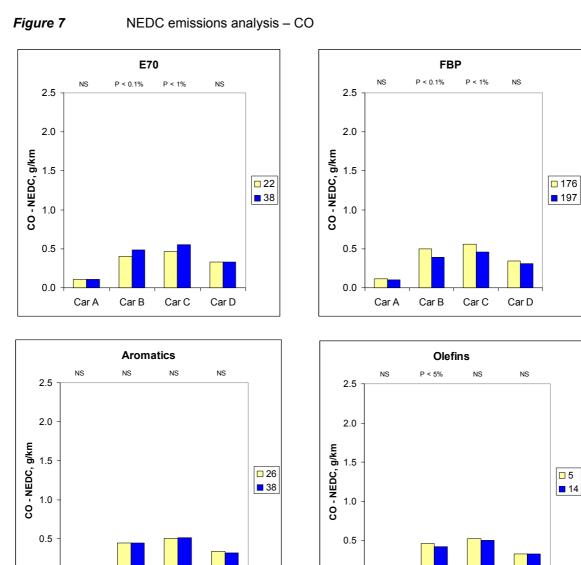


Figure 6 NEDC emissions analysis – HC

All of the cars met their HC emissions certification limits. Three of the cars met the Euro-4 limit for HC emissions of 0.10 g/km.

Decreasing front/mid range volatility (i.e. E70 decreasing from 38% to 22%) increased HC emissions in all four vehicles, and was significant in 3 cases. The overall average increase was 0.006 g/km (10%). Reducing FBP (from 197°C to 176°C) also reduced HC emissions in all four cars, and was significant in two cases. The overall average decrease was 0.006 g/km (9%).


Reducing aromatics (from 38% v/v to 26% v/v) increased HC emissions in all three DI cars, and was significant in two cases. The average increase in the DI cars was 0.004 g/km (5%). Car B, the advanced MPI car, showed a significant effect in the opposite direction. Reducing olefins had no significant effect on HC emissions in any of the four vehicles.

6.2.3. CO Emissions

0.0

Car A

Car B

All the test vehicles met the Euro-4 CO limit of 1.0 g/km.

Car D

Car C

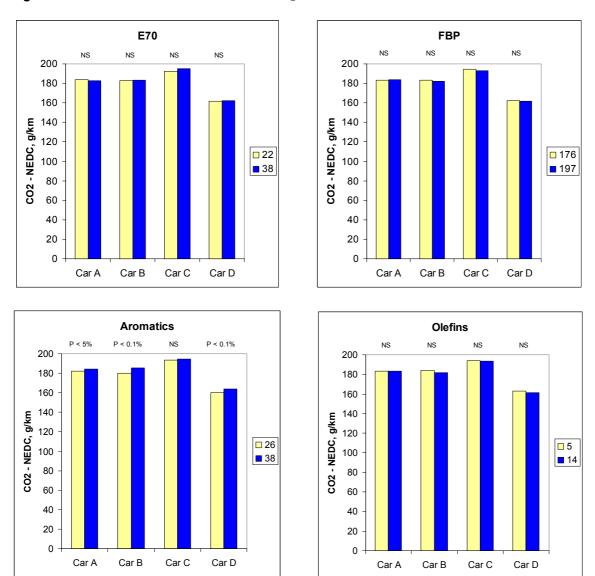
Decreasing front/mid range volatility gave a significant reduction in CO emissions in the lean DI car C and in the advanced MPI vehicle. It had no effect in the other two vehicles. Reducing FBP (from 197°C to 176°C) directionally increased CO emissions in all four vehicles but the effect was significant only in cars B and C. The overall average increase was 0.064 g/km (20%) and mainly arose from the ECE part of the test.

0.0

Car A

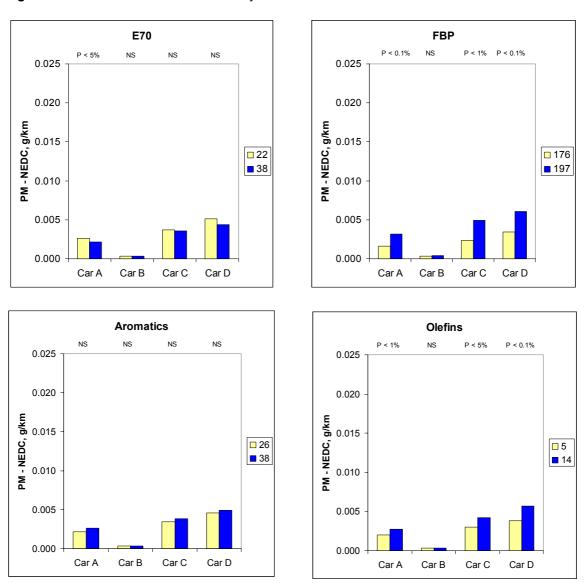
Car B

Car C


Car D

Changing aromatics content had no effect on CO emissions in any of the cars. Olefin effects on CO emissions were small. Only the advanced MPI vehicle showed a significant effect, with CO emissions increasing with lower olefins content.

6.2.4. CO₂ Emissions


Figure 8

NEDC emissions data – CO₂

 $\rm CO_2$ emissions have been considered here although not currently a regulated emission. The only fuel property to have an influence on $\rm CO_2$ emissions was aromatics. Reducing aromatics content reduced vehicle $\rm CO_2$ emissions, as expected from the carbon content of the fuels. However, the overall $\rm CO_2$ balance would need to be considered on a well-to-wheels basis.

6.2.5. PM Emissions

Figure 9 NEDC emissions analysis – PM

Although PM emissions are not currently regulated for spark ignition engines, it is known that DI gasoline vehicles can produce more emissions of particulates than MPI cars. However, emissions from all four test vehicles were substantially below the Euro-4 diesel car PM limit of 0.025 g/km.

For the advanced MPI vehicle, PM emissions were very low and there were no effects of changes in fuel properties over the NEDC. A small reduction was seen over the ECE cycle as FBP was reduced.

The stoichiometric and lean DI vehicles tested both produced higher PM emissions than the MPI car, although still well below the Euro-4 diesel limit. Emissions were reduced for fuels with lower FBP and lower olefins. Directional but not significant reductions were also seen with lower aromatics. Higher front/mid range volatility directionally reduced PM emissions in the three DI cars, significant only in car A.

The impact of changing fuel properties on PM emissions was similar over the ECE and EUDC parts of the NEDC, although the majority of the PM emissions occurred in the ECE, indicating the importance of the cold-start / warm-up phase.

As illustrated by the advanced MPI vehicle, PM emissions are very low when the fuel/air mixture is premixed. The fuel injection and mixing process in the DI cars will also be an important parameter in controlling PM emissions. DI gasoline vehicle technology is still at an early stage and PM emission control can be expected to improve as this new technology evolves.

7. CONCLUSIONS

- The four advanced technology, Euro-3 and Euro-4, vehicles tested all achieved their respective emissions certification limits and in most cases regulated emissions of CO, HC and NOx, were lower than the Euro-4 limits.
- A reduction in fuel volatility, representing the combined effects of vapour pressure, E70 (38% v/v to 22% v/v) and E100, had no consistent effect on NOx emissions, increased HC across all vehicle technologies (10%), but decreased CO emissions in two cars.
- A reduction in FBP from 197°C to 176°C increased NOx emissions in one car but had no significant effect in the others. HC emissions were directionally reduced (9%) and CO emissions directionally increased (20%), with significant effects in both cases in two cars.
- A reduction in aromatics content from 38% v/v to 26% v/v showed conflicting effects, increasing NOx emissions in two cars, decreasing in the others, but the effects were significant only in one vehicle. Reducing aromatics increased HC emissions in the two lean DI cars but showed the opposite effect in the MPI car.
- A reduction in olefins content from 14% v/v to 5% v/v gave no significant improvement in NOx, HC or CO emissions in any of the cars.
- The lean burn direct injection cars produced higher particulate mass (PM) emissions than the stoichiometric direct injection car which, in turn, produced higher PM emissions than the advanced MPI car. However, even the highest emitting lean direct injection car produced PM emissions which were much lower than the Euro 4 diesel PM emission limit.
- The stoichiometric and lean DI vehicles showed a similar response in PM emissions to changes in fuel quality. Lowering FBP and lowering olefins content gave a reduction in PM emissions whereas lowering aromatics and volatility showed no significant benefits. PM emissions from the advanced MPI car, which is more representative of the current fleet, were very low on all fuels tested and insensitive to fuel changes.

8. GLOSSARY

AFR	Air Fuel Ratio
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
DI	Direct Injection
DVPE	Dry Vapour Pressure Equivalent
E70	% v/v of gasoline evaporated at 70°C
E100	% v/v of gasoline evaporated at 100°C
E150	% v/v of gasoline evaporated at 150°C
ECE	Urban driving part of the NEDC
EPEFE	European Programme on Emissions, Fuels and Engine Technologies
EUDC	Extra Urban part of the NEDC
FC	Fuel consumption
FBP	Final Boiling Point
HC	Hydrocarbons
LHV	Lower Heating Value
MPI	Multi-point injection
NEDC	New European Drive Cycle (=ECE + EUDC)
NOx	Nitrogen Oxides
РМ	Particulate Mass
RPM	Revolutions per minute
SD	Standard Deviation
TP	Tailpipe
TWC	Three-way catalyst

9. **REFERENCES**

- 1. EPEFE (1995) European programme on emissions, fuels and engine technologies. EPEFE Report on behalf of ACEA and EUROPIA
- 2. CONCAWE (2003) Fuel effects on emissions from modern gasoline vehicles part 1 sulphur effects. Report No. 5/03. Brussels: CONCAWE
- 3. CONCAWE (2002) Evaluation of diesel fuel cetane and aromatics effects on emissions from euro-3 engines. Report No. 4/02. Brussels: CONCAWE
- 4. EU (1998) Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 relating to measures to be taken against air pollution by emissions from motor vehicles and amending Council Directive 70/220/EEC. Official Journal of the European Communities No. L350, 28.12.1998
- 5. Hochhauser, A.M. et al (1991) The effects of aromatics, MTBE, olefins and T90 on mass exhaust emissions from current and older vehicles the auto/oil air quality improvement research program. SAE Paper No. 912322. Warrendale PA: Society of Automotive Engineers
- 6. Painter, L.J. and Rutherford, J.A. (1992) Statistical design and analysis methods for the auto/oil air quality research program. SAE Paper No. 920319. Warrendale PA: Society of Automotive Engineers
- CONCAWE (1994) The influence of heavy gasoline components on the exhaust emissions of European vehicles. Part I - regulated emissions. Report No. 94/59. Brussels: CONCAWE

APPENDIX 1 STATISTICAL DATA ANALYSIS

This appendix provides additional information on the statistical design and data analyses discussed in **Sections 2, 5 and 6**.

Fuel matrix

The target properties in the fuel matrix were generated using a half-replicate of a $2 \times 2 \times 2 \times 2$ factorial design testing lower and upper levels of E70, FBP, aromatics and olefins as shown in **Table A.1.1**:

Fuel	E70	FBP	Aromatics	Olefins
F1	L	L	L	L
F2	Н	L	Н	L
F3	Н	L	L	Н
F4	L	L	Н	Н
F5	Н	Н	L	L
F6	L	Н	Н	L
F7	L	Н	L	Н
F8	Н	Н	Н	Н

Table A.1.1	Fuel matrix – Experimental design
-------------	-----------------------------------

E100 and RVP were varied in tandem with E70 and so the effects of these three factors cannot be disentangled in the subsequent data analysis. Variations in other factors such as sulphur content, E150, RON and MON were kept as small as possible.

The data generated by such a design would normally be analysed using analysis of variance techniques. The effect of each factor is determined by comparing the mean emission value for the 4 fuels at the higher level of that factor with the mean for the 4 lower level fuels. Thus the effect of FBP on CO would be measured by comparing the mean CO value over fuels F5-F8 with the mean over fuels F1-F4.

Unfortunately it is very difficult to blend fuel sets that meet target properties exactly. Properties are difficult to manipulate independently as some are compositional (aromatics, olefins), others are physical (E70, E100, E150, FBP) and yet others are performance related (RON, MON).

Multiple regression techniques can be used to perform analyses based on actual fuel properties rather than targets with models of the form

emission = a + b \times E70 + c \times FBP + d \times aromatics + e \times olefins

being fitted to the data.

The half-replicate design allowed four factors to be tested with 8 fuels rather than three but places some limitations on the subsequent statistical analysis. As a consequence, it is not practicable to fit more complex models with cross-product (e.g. $f \times E70 \times aromatics$) or quadratic (e.g. $g \times FBP^2$) terms.

Variability in test measurements

The standard deviations in **Table A.1.2** quantify the levels of variability observed within sets of repeat results on the same fuel in the same vehicle in parts 1 (sulphur matrix) and 2 (main matrix) of the present programme. Variability levels observed in the earlier EPEFE programme [1] are also included for comparison.

 Table A.1.2
 Variability within sets of repeat results conducted on the same fuel in the same vehicle (NEDC)

	CO (g/km)	HC (g/km)	NOx	(g/km)	CO ₂ (9	g/km)	PM (g	g/km)
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
EPEFE ²										
Typical vehicle	1.417	10.1%	0.173	11.2%	0.172	12.0%				
Sulphur matrix (part 1)										
Vehicle A	0.089	18.6%	0.046	7.7%	0.083	25.9%	178.0	1.1%	0.0015	18.7%
Vehicle B	0.523	12.1%	0.033	11.5%	0.046	14.7%	177.9	1.5%	0.0004	33.2%
Vehicle C	0.543	8.3%	0.113	6.6%	0.075	14.5%	184.1	2.1%	0.0028	35.7%
Vehicle D	0.389	7.7%	0.053	8.8%	0.030	16.3%	162.5	1.6%	0.0026	16.0%
Main matrix (part 2)										
Vehicle A	0.109	17.4%	0.051	14.8%	0.053	11.7%	183.4	1.5%	0.0025	26.9%
Vehicle B	0.448	9.3%	0.035	10.7%	0.052	17.7%	183.0	1.3%	0.0004	59.7%
Vehicle C	0.515	13.8%	0.115	5.9%	0.061	24.0%	194.3	3.7%	0.0039	44.7%
Vehicle D	0.329	17.6%	0.059	9.2%	0.034	16.1%	162.2	1.3%	0.0049	22.8%

Variations in Part 2 of the present programme are similar to those seen in the sulphur study in Part 1. The variations in HC results in Part 2 are comparable with EPEFE in relative terms, despite the much lower levels of emissions. Variations in NOx and CO results, however, while lower in absolute terms than EPEFE are higher in relative terms. Variations in PM emissions were small on an absolute scale but large on a percentage basis.

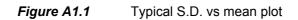
Table A.1.3 quantifies how large a measured fuel effect (i.e. E70, FBP, aromatics or olefins) needs to be in order to be declared statistically significant at $P < 5\%^3$ (where the measured fuel effect is the average difference in emissions between the 4 fuels coded "L" and the 4 fuels coded "H" in the corresponding column in **Table A.1.1**).

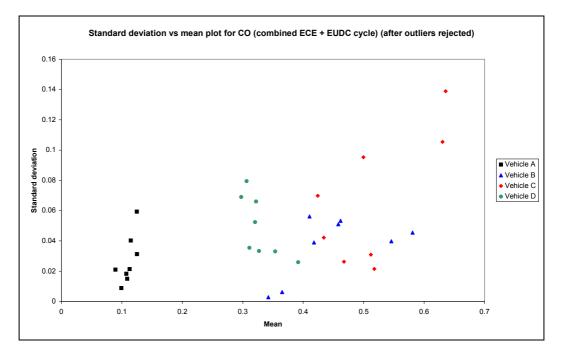
² The EPEFE SDs quantify the variability observed between independent (i.e. not back-to-back) single tests on the same fuel in the same vehicle in the EPEFE programme [1].

 $^{^{3}}$ P < 5% = the probability that such an event could be observed by chance when no real effect exists is less than 5%. In other words, we are 95% confident that the effect is real.

		CO	HC	NOx	CO ₂	РМ
		(g/km)	(g/km)	(g/km)	(g/km)	(g/km)
Prior estimate	Vehicle A, B, C or D	13.2%	14.7%	15.8%		
Actual	Vehicle A	23.7%	19.9%	15.4%	1.8%	39.0%
	Vehicle B	12.1%	14.0%	24.2%	1.6%	107.7%
	Vehicle C	18.5%	7.4%	34.2%	4.7%	72.8%
	Vehicle D	24.0%	11.9%	21.8%	1.6%	32.2%
Prior estimate	4-vehicle fleet	6.0%	6.7%	7.2%		
Actual	4-vehicle fleet	9.0%	6.3%	10.9%	1.3%	26.9%

Table A.1.3 Minimum measured fuel effects needed for statistical significance.


This table gives the least significant difference (LSD) in emissions (on a percentage basis) at P < 5% (two-sided) between the higher and lower levels of each design variable (E70, FBP, aromatics, olefins) in a simple analysis of variance if three independent tests are conducted on each fuel in each vehicle. The LSDs for the 4-vehicle fleet relate to fuel effects averaged over the 4 chosen vehicles A to D and are not applicable to estimates of fuel effects over a more general vehicle population.


The "prior estimates" in **Table A.1.3** are the forecasts made at the experimental design stage assuming that variability levels would be similar to those seen in EPEFE (in percentage terms). In the event, CO and NOx effects needed to be larger than expected in relative terms. Nevertheless, the programme had sufficient replication for significant effects to be detected, even for PM.

Standard deviation vs. mean plots

The distributions of sets of repeat measurements of automotive emissions or atmospheric concentrations are typically asymmetric or "skewed" and bear little resemblance to the standard bell-shaped normal or "Gaussian" distribution. In the EPEFE gasoline project [1] and other previous emission studies [3,5,6,7], the variability in emissions measurements has been found to follow the lognormal distribution with the degree of scatter increasing as the emission level increases.

Figure A1.1 is a typical standard deviation vs. mean graph plotting the S.D. of the three or four CO measurements for each of the 32 vehicle \times fuel combinations in the present study against the mean. Looking at each vehicle in turn, the data supports the general hypothesis that the S.D. increases with the mean. Therefore it is assumed that the measurements in the present study do follow the lognormal distribution. The lognormal is the most plausible model for emissions data mechanistically.

Arithmetic means and regression analysis

In this report, arithmetic means are used to summarise the average emissions using each fuel in each vehicle, in line with EPEFE [2]. Geometric means are sometimes used in emissions studies as they give excellent comparisons between fuels on a percentage basis. However, they have the disadvantage of underestimating total emissions to the atmosphere.

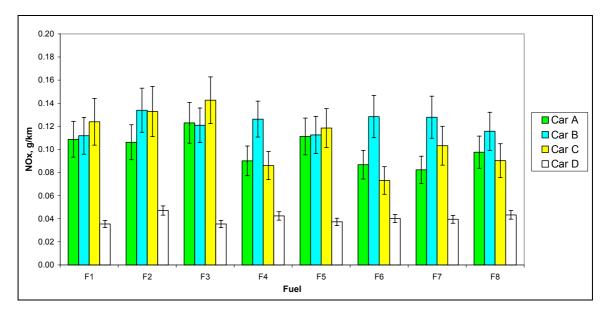
Weighted regression analysis was used to relate emissions to fuel properties as the emissions measurements were assumed to have lognormal distribution. When fitting models, each emission measurement was thus assigned a weight equal to

weight = $1 / (\text{mean emission for that fuel and vehicle})^2$

See also Annex 05 of the EPEFE report [2].

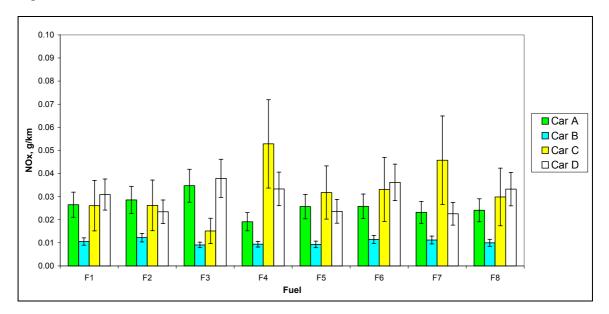
In **Figures 1 to 4** and **Figures A.3.1 to A.3.8** in this report, "error bars" are shown around the average emissions for the various fuels. These have been constructed so that when two fuels are significantly different from one another at P < 5%, their error bars will not overlap, as in EPEFE. We can be 84% confident that the true means lie within the limits shown.

	с U	Corrected									0.011	0.012	0.00	0.00	0.00	0.011	0.011	0.010																
j/km)	EUDC	Uncorrected	0.026	0.029	0.035	0.019	0.026	0.026	0.023	0.024	0.010	0.012	600.0	0.010	0.010	0.012	0.011	0.010	0.026	0.026	0.015	0.053	0.032	0.033	0.046	0.030	0.031	0.023	0.038	0.033	0.024	0.036	0.023	0.033
NOX (g/km)	ECE	Uncorrected	0.109	0.106	0.123	060.0	0.111	0.087	0.082	0.098	0.112	0.134	0.121	0.126	0.113	0.128	0.128	0.116	0.124	0.133	0.143	0.086	0.119	0.073	0.103	0.090	0.036	0.047	0.035	0.042	0.037	0.040	0.039	0.043
	NEDC	Uncorrected	0.057	0.057	0.067	0.045	0.057	0.048	0.045	0.051	0.047	0.057	0:050	0.053	0.048	0.055	0.054	0.049	0.062	0.066	0.062	0.065	0.064	0.048	0.067	0.052	0.033	0.032	0.037	0.037	0.029	0.038	0.029	0.037
	EUDC	Uncorrected	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.005	0.014	0.008	0.008	0.011	0.016	0.016	0.015	0.012	0.013	0.008	0.013	0.011	0.012	0.012	0.013	0.010
HC (g/km)	ECE	Uncorrected	0.151	0.111	0.116	0.140	0.127	0.176	0.142	0.125	0.083	0.088	0.074	0.096	0.084	0.104	0.088	0.087	0.308	0.290	0.289	0.282	0.295	0.284	0.297	0.287	0.135	0.117	0.118	0.138	0.136	0.168	0.168	0.138
	NEDC	Uncorrected	0.057	0.042	0.044	0.053	0.048	0.066	0.054	0.047	0.033	0.035	0:030	0.039	0.034	0.041	0.036	0.035	0.122	0.112	0.112	0.111	0.119	0.115	0.119	0.113	0.058	0.048	0.051	0.058	0.058	0.069	0.070	0.057
	C	Corrected									0.033	0.047	0.044	0.043	0:050	0.045	0.035	0.034																
	EUDC	Uncorrected	0.051	0.056	0.064	0.037	0.027	0.054	0.025	0.046	0.028	0.046	0.042	0.046	0.051	0.046	0.037	0.034	0.067	0.128	0.193	0.044	0.114	0.085	0.044	0.098	0.079	0.074	0.089	0.116	0.082	0.102	0.086	0.062
/km)	ü	Corrected	0.201	0.217	0.226	0.242	0.195	0.249	0.217	0.218																								
CO (g/km)	ECE	Uncorrected	0.204	0.216	0.229	0.244	0.196	0.248	0.227	0.217	1.204	1.496	1.407	1.036	1.156	0.851	0.929	1.077	1.273	1.490	1.392	1.191	1.157	1.003	1.100	1.236	0.824	0.748	0.910	0.670	0.691	0.669	0.740	0.700
	C	Corrected	0.106	0.113	0.120	0.113	060.0	0.125	0.095	0.110																								
	NEDC	Uncorrected	0.107	0.115	0.125	0.113	0.089	0.125	0.099	0.109	0.462	0.581	0.546	0.410	0.458	0.342	0.365	0.418	0.512	0.630	0.636	0.467	0.500	0.424	0.434	0.518	0.354	0.322	0.392	0.320	0.306	0.311	0.327	0.297
Fuel	I		F1	F2	F3	F4	F5	F6	F7	F8	F1	F2	F3	F4	F5	F6	F7	F8	F1	F2	F3	F4	F5	F6	F7	F8	F1	F2	F3	F4	F5	F6	F7	Е8
Car			A	٨	٩	A	٩	۷	٨	٨	В	В	В	В	8	В	В	В	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	٥	٥	٥	٥	٥	۵	٥	Δ


See Sections 5 and 6.1 for details on analysis and calculations of mean values.

ECE EUDC MEDC REIDC NEDC REIDC NEDC <	Car	Fuel		CO ₂ (g/km)				PM (g/km)	ı/km)				FC (I/100 km)	
Uncorrected Uncorrected <thuncorrected< th=""> <thuncorrected< th=""></thuncorrected<></thuncorrected<>			NEDC	ECE	EUDC	NEL	C	EC	Э.	EU	DC	NEDC	ECE	EUDC
183.2 233.6 154.4 0.0013 0.0017 0.0010 0.0013 7.877 10.018 181.4 239.5 154.0 0.0013 0.0013 0.0013 7.710 9.789 185.4 239.5 154.1 0.0013 0.0013 0.0013 7.710 9.789 185.4 239.6 154.1 0.0024 0.0049 0.0065 0.0013 7.710 9.789 186.7 239.6 156.6 0.0033 0.0067 0.0018 7.784 9.869 186.7 239.1 155.6 0.0033 0.0034 0.0003 0.0013 7.714 9.164 188.5 256.9 138.9 0.0003 0.0003 0.0003 0.0016 0.0018 7.742 11.088 188.1 257.9 138.9 0.0003 0.0003 0.0003 7.742 11.064 188.1 267.0 138.9 0.0003 0.0004 0.0003 7.742 11.064 188.1 267.0 <t< th=""><th></th><th></th><th>Uncorrected</th><th>_</th><th>Uncorrected</th><th></th><th>Corrected</th><th>Uncorrected</th><th>Corrected</th><th>Uncorrected</th><th>Corrected</th><th>Uncorrected</th><th></th><th>Uncorrected</th></t<>			Uncorrected	_	Uncorrected		Corrected	Uncorrected	Corrected	Uncorrected	Corrected	Uncorrected		Uncorrected
F2 181.2 233.2 154.0 00013 00013 00014 00010 7101 9.827 F4 185.4 236.0 156.3 00013 00013 00010 7101 9.637 F4 185.7 236.0 156.3 00013 00013 00010 7101 9.633 F5 185.7 236.0 156.3 00029 00026 00010 00101 7161 9163 F7 182.2 231.1 155.6 00033 0033 0033 0033 0033 0033 00364 00365 01361 7761 1148 F7 182.2 231.1 155.6 00033 0033 0033 0033 00364 00365 1148 1736 1148 F7 184.1 287.0 1383 00033 00036 00036 1161 7766 1148 F8 184.1 287.0 1383 00033 00036 10664 10636 <tr< th=""><th></th><th>F1</th><th>183.2</th><th>232.6</th><th>154.4</th><th>0.0013</th><th>0.0013</th><th>0.0017</th><th>0.0017</th><th>0.0010</th><th>0.0010</th><th>7.877</th><th>10.018</th><th>6.632</th></tr<>		F1	183.2	232.6	154.4	0.0013	0.0013	0.0017	0.0017	0.0010	0.0010	7.877	10.018	6.632
F3 1814 229.6 153.3 0.0013 0.0015 0.736 9.869 F5 182.4 236.6 154.1 0.0025 0.0013 0.0015 7.766 9.869 F6 182.7 230.6 154.1 0.0026 0.0024 0.0045 0.0011 7.766 9.869 F7 182.7 230.6 154.1 156.8 0.0024 0.0026 0.0016 7.766 9.869 F7 182.7 231.1 155.8 0.0033 0.0024 0.0061 0.0016 7.766 11.148 F7 181.4 234.0 155.6 0.0033 0.0034 0.0036 0.0016 7.724 9.815 F8 181.4 257.9 138.9 0.0003 0.0004 0.0003 7.736 11.1051 F9 181.1 257.9 138.9 0.0003 0.0016 7.736 11.1051 F9 181.1 257.9 138.9 0.0003 0.0016 7.742 11.9		F2	183.2	233.2	154.0	0.0013	0.0013	0.0013	0.0014	0.0012	0.0013	7.551	9.627	6.341
F4 156.4 256.0 166.5 0.0026 0.00045 0.0016 7.500 9.667 F6 168.7 2.86.4 168.3 0.0026 0.0004 0.0118 7.640 9.693 F7 182.2 2.81.1 153.8 0.0028 0.0026 0.0018 0.0118 7.784 9.693 F7 182.2 2.81.1 153.5 0.0023 0.0024 0.0061 0.0018 7.784 9.693 F7 182.2 2.81.1 155.5 0.0033 0.0034 0.0003 0.0018 7.761 11148 F7 187.5 2.85.9 138.9 0.0003 0.0003 0.0018 7.761 11035 F7 187.5 2.84.7 138.4 0.0003 0.0016 7.001 7.761 11048 F7 187.5 2.84.7 138.4 0.0003 7.001 7.761 11024 F8 181.1 2.47.1 131.4 7.767 11024 11024		F3	181.4	229.5	153.3	0.0013	0.0012	0.0017	0.0016	0.0011	0.0010	7.710	9.769	6.510
F5 182.2 230.6 154.1 0.0026 0.0043 0.0013 0.0011 7.754 9.833 F7 182.2 231.4 156.3 0.0033 0.0034 0.0016 0.0011 7.754 9.934 F7 182.2 231.4 155.6 0.0033 0.0034 0.0016 0.0011 7.754 9.934 F7 182.2 234.0 155.6 0.0033 0.0034 0.0061 0.0018 7.724 9.934 F3 181.5 258.9 138.3 0.0032 0.0033 0.0033 0.0034 0.0016 7.724 1945 F4 181.5 258.9 138.9 0.0033 0.0033 0.0033 0.0033 0.0033 0.0034 0.0044 0.0016 7.724 11210 F5 181.1 257.9 138.9 0.0033 0.0034 0.0033 0.0033 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0		F4	185.4	235.0	156.5	0.0031	0.0029	0.0056	0.0052	0.0017	0.0015	7.630	9.687	6.433
FF 185.7 236.4 156.3 0.0048 0.0048 0.0016 0.0018 7.584 9.669 F7 182.2 231.1 153.8 0.0023 0.0037 0.0067 0.0013 7.781 9.164 F7 182.2 237.0 153.6 0.0033 0.0034 0.0067 0.0013 7.781 11.148 F7 187.5 2589 138.9 0.0003 0.0034 0.0003 0.0013 7.742 11.148 F7 181.1 267.9 138.9 0.0003 0.0004 0.0004 7.616 10.922 F6 181.1 267.9 138.9 0.0003 0.0004 0.0004 7.616 11.48 F7 181.1 267.9 138.9 0.0004 0.0005 0.0004 7.616 11.48 F7 183.7 244.1 183.7 244.1 10.62 10.64.1 10.64.1 F8 193.4 166.7 138.7 0.0014 0.0016 0.	-	F5	182.2	230.6	154.1	0.0026	0.0024	0.0049	0.0045	0.0013	0.0012	7.758	9.833	6.552
F7 182.2 231.1 153.8 00023 00057 00063 00011 7.84 9.834 F1 183.4 277.0 135.5 00003 00064 0.0018 0.7784 9.814 F3 181.4 277.0 113.10 7.770 113.10 F3 181.5 269.8 136.3 0.0003 0.0003 0.0004 7.725 113.10 F3 181.5 285.9 138.9 0.0003 0.0003 0.0004 7.725 113.10 F4 186.1 287.9 138.9 0.0003 0.0004 0.0005 0.0004 7.736 113.10 F4 186.1 287.9 138.9 0.0003 0.0004 0.0005 7.742 113.61 F6 188.7 287.4 137.8 0.0004 0.0005 0.0005 7.712 110.62 F7 188.7 282.4 137.8 0.0003 0.0005 0.0005 7.712 110.62 F1		F6	185.7	236.4	156.3	0.0048	0.0049	0.0100	0.0103	0.0018	0.0018	7.584	9.669	6.373
F8 184.4 234.0 155.6 0.0033 0.0064 0.0018 0.724 9.815 F7 187.8 255.6 1.35.5 0.0003 0.0003 0.0003 7.736 11.108 F3 181.5 256.9 1.35.5 0.0003 0.0003 0.0003 7.762 11.108 F3 181.1 257.9 1.38.9 0.0003 0.0003 0.0003 7.762 11088 F5 181.1 257.9 1.38.9 0.0003 0.0003 0.0003 7.767 11051 F6 181.1 277.0 138.9 0.0003 0.0004 0.0003 7.767 11051 F7 181.7 282.4 137.8 0.0003 0.0003 0.0003 7.767 11054 F8 183.7 282.4 137.8 0.0004 0.0003 8.364 10602 F8 193.7 282.4 154.4 0.0003 0.0003 8.364 10602 10.444 F8		F7	182.2	231.1	153.8	0.0029	0.0026	0.0057	0.0053	0.0012	0.0011	7.818	9.934	6.589
F1 180.5 257.6 135.5 0.0003 0.0003 0.0003 11.108 11.108 F2 181.8 286.8 136.3 0.0003 0.0003 0.0003 7.770 11.051 11.051 F3 181.3 263.9 136.3 0.0003 0.0003 0.0003 7.770 11.051 11.051 F4 181.1 257.9 138.9 0.0003 0.0003 0.0003 7.705 11.051 11.051 F5 181.7 257.9 138.9 0.0003 0.0004 0.0003 7.705 11.051 11.051 F6 183.7 264.1 134.1 0.0003 0.0003 0.0003 0.0003 7.627 10.922 10.923 F7 283.7 134.1 0.0004 0.0003 0.0003 0.0003 0.0003 10.910 10.946 F7 283.7 144.2 0.0003 0.0003 0.0013 0.0013 10.912 10.923 F3 196.4	-	F8	184.4	234.0	155.6	0.0033	0.0034	0.0060	0.0061	0.0018	0.0018	7.724	9.815	6.507
F2 137.6 133.9 0.0004 0.0002 0.1210 1.1210 F3 181.5 288.9 138.3 0.0002 0.0002 0.77.42 11.068 F5 181.1 257.9 138.4 0.0003 0.0006 0.0002 7.736 11.061 F6 181.1 257.9 138.4 0.0003 0.0006 0.0003 7.736 11.068 F6 181.1 257.9 138.4 0.0003 0.0006 7.736 11.051 F7 185.5 254.7 138.4 0.0003 0.0004 0.0002 7.736 11.051 F7 185.7 244.0 138.4 0.0003 0.0004 0.0003 0.0016 7.712 11.056 F7 193.7 244.0 164.2 0.0016 0.0023 0.0013 0.0103 0.0126 F8 193.7 244.0 164.2 0.0016 0.0013 0.013 0.0126 F9 193.1 249.3 0.002	\vdash	F1	180.5	257.6	135.5	0.0003		0.0004		0.0003		7.785	11.148	5.820
F3 181.5 288.9 136.3 00002 00003 00002 7.527 11.088 F4 181.1 267.5 138.9 00003 00002 00004 7.527 11.085 F5 186.1 267.0 138.9 00003 00003 0.0006 7.676 10.925 F7 178.5 284.7 134.1 0.0004 0.0005 7.676 10.946 F1 133.7 264.7 134.1 0.0004 0.0005 7.676 10.946 F1 133.7 244.7 144.1 0.0004 0.0005 8.360 10.644 F3 195.4 262.4 145.8 0.0018 0.0025 0.0013 8.360 10.720 F3 195.4 260.1 243.3 165.4 10.075 8.350 10.720 F3 195.4 266.7 166.8 0.0016 0.0015 8.350 10.720 F4 191.3 246.7 166.8 0.0025	⊢	F2	187.8	269.8	139.9	0.0004		0.0003		0.0004		7.770	11.210	5.761
F4 184.9 263.9 138.9 0.0003 0.0006 7.52.7 10.922 F5 181.1 257.9 138.4 0.0005 0.006 7.56 10.935 F7 185.1 257.9 138.4 0.0003 7.67 10.935 11.051 F7 178.5 254.7 134.1 0.0004 0.0005 0.0010 7.712 11.054 F1 183.7 262.4 137.8 0.0008 0.0005 0.0010 7.712 11.054 F1 190.3 262.4 137.8 0.0003 0.0010 8.364 10.602 F3 190.3 262.4 137.8 0.0003 0.0010 8.364 10.602 F3 190.3 244.0 164.2 0.0013 0.0025 8.364 10.602 F4 190.3 246.1 156.9 0.0025 0.0015 8.367 10.444 F5 191.3 246.1 156.9 0.0025 10.441 10.667		F3	181.5	258.9	136.3	0.0002		0.0003		0.0002		7.742	11.088	5.786
F5 181.1 257.9 136.4 0.0005 0.0006 1.736 11.051 F6 186.1 267.0 138.9 0.0003 0.0004 0.003 7.610 10.946 F7 137.5 252.4.1 173.1 0.0003 0.0003 0.0003 7.712 11.0545 F1 133.7 225.4.1 173.8 0.0004 0.0003 8.364 10.602 F3 193.7 244.0 164.2 0.0016 0.0023 0.0013 8.364 10.602 F3 195.4 244.0 164.2 0.0016 0.0023 0.0013 8.364 10.602 F3 195.4 244.0 164.2 0.0024 0.0023 10.750 8.364 10.602 F3 195.4 246.7 163.8 0.0024 0.0015 8.364 10.602 F4 191.3 246.7 163.8 0.0025 0.0025 0.0025 10.444 F6 191.3 246.7 185.4	-	F4	184.9	263.9	138.9	0.0003		0.0002		0.0004		7.627	10.922	602.3
186.1 267.0 138.9 0.0003 0.0004 0.0003 0.0003 7.610 10.946 178.5 254.7 134.1 0.0004 0.0005 0.0002 7.610 10.985 18.3 252.4 143.1 0.0004 0.0005 0.0009 8.761 10.985 19.3.7 240.0 163.8 0.0018 0.0027 0.0009 8.292 10.642 19.4.4 249.5 163.8 0.0024 0.0075 0.0016 8.295 10.444 196.4 249.5 165.8 0.0024 0.0075 0.0016 8.205 10.444 196.9 251.4 155.4 0.0038 0.0728 0.0015 8.350 10.720 191.3 249.5 166.8 0.0067 0.0073 0.0016 8.205 10.444 191.1 249.5 166.8 0.0024 0.0016 8.305 10.720 191.1 249.5 166.8 0.0024 0.0073 10.040 8.305		F5	181.1	257.9	136.4	0.0005		0.0006		0.0005		7.736	11.051	5.804
178.5 254.7 134.1 0.0004 0.0006 0.0002 7.676 10.865 10.865 183.7 262.4 137.8 0.0008 0.0005 0.0010 7.712 11.054 1 193.7 262.4 137.8 0.0016 0.0027 0.0009 8.364 10.602 193.7 249.5 168.8 0.0016 0.0023 0.0013 8.205 10.1041 195.4 249.5 165.8 0.0024 0.0073 0.0013 8.205 10.419 10.744 190.9 251.4 155.4 0.0038 0.0073 0.0013 8.205 10.419 10.744 191.3 245.7 166.8 0.0057 0.0073 0.0013 8.205 10.152 10.564 191.3 246.7 166.8 0.0057 0.0073 0.0013 8.205 10.152 10.567 191.4 237.9 166.8 0.0057 0.0073 0.0013 8.205 10.152 10.567		F6	186.1	267.0	138.9	0.0003		0.0004		0.0003		7.610	10.946	5.664
183.7 262.4 137.8 0.0008 0.0005 0.0010 7.712 11054 193.7 244.0 164.2 0.0016 0.0027 0.0009 8.354 10602 200.1 222.0 164.2 0.0018 0.0024 0.0023 8.356 10.720 200.1 225.0 163.8 0.0024 0.0025 0.0013 8.356 10.720 195.4 249.5 165.4 0.0038 0.0075 0.0013 8.356 10.419 191.8 251.4 155.4 0.0038 0.0075 0.0013 8.356 10.419 191.3 246.7 158.9 0.0057 0.0128 0.0013 8.316 10.305 193.1 237.9 166.8 0.0057 0.0128 0.0027 8.333 10.567 193.1 246.1 128.7 0.0057 0.0019 8.333 10.567 1 193.1 249.9 167.9 0.0027 0.0013 8.333 10.567 1 </th <th></th> <th>F7</th> <th>178.5</th> <th>254.7</th> <th>134.1</th> <th>0.0004</th> <th></th> <th>0.0006</th> <th></th> <th>0.0002</th> <th></th> <th>7.676</th> <th>10.985</th> <th>5.748</th>		F7	178.5	254.7	134.1	0.0004		0.0006		0.0002		7.676	10.985	5.748
193.7 244.0 164.2 0.0016 0.0027 0.0029 8.364 10.602 200.1 255.0 169.8 0.0018 0.0035 0.0035 10.504 10.504 195.4 249.5 163.8 0.0024 0.0075 0.0015 8.350 10.720 190.9 251.4 155.4 0.0038 0.0075 0.0075 10.404 10.444 191.8 246.7 158.9 0.0052 0.0073 10.402 10.444 191.3 246.7 158.9 0.0052 0.0073 10.402 10.444 191.4 2745 158.9 0.0052 0.0073 10.402 10.445 193.1 237.9 167.9 0.0052 0.0073 10.0073 8.316 10.567 198.1 249.9 167.9 0.0054 0.0019 8.333 10.567 198.1 249.9 167.9 0.0024 0.0019 8.333 10.567 166.0 213.6 133.3 <td< th=""><th></th><th>F8</th><th>183.7</th><th>262.4</th><th>137.8</th><th>0.0008</th><th></th><th>0.0005</th><th></th><th>0.0010</th><th></th><th>7.712</th><th>11.054</th><th>5.765</th></td<>		F8	183.7	262.4	137.8	0.0008		0.0005		0.0010		7.712	11.054	5.765
200.1 252.0 169.8 0.0018 0.0035 0.0035 0.0036 0.0046 0.0036 0.0046 0.0046 0.0046 0.0046 0.0149 0.0040 0.0143 0.0143 0.0143 0.0143 0.0143 0.0166 0.0036 0.0166 0.0166 0.0036 0.0166 0.0036 0.0166 0.0036 0.0166 0.0037 0.0037 0.0166 0.0166 0.0036 0.0166 <th></th> <th>F1</th> <th>193.7</th> <th>244.0</th> <th>164.2</th> <th>0.0016</th> <th></th> <th>0.0027</th> <th></th> <th>0.0009</th> <th></th> <th>8.364</th> <th>10.602</th> <th>7.056</th>		F1	193.7	244.0	164.2	0.0016		0.0027		0.0009		8.364	10.602	7.056
195.4 249.5 163.8 0.0024 0.0042 0.0013 0.0135 0.0720 10.720 190.9 251.4 155.4 0.0038 0.0075 0.0015 7.887 10.444 1 191.8 242.3 162.2 0.0052 0.0073 0.0040 8.205 10.419 191.3 246.7 158.9 0.0057 0.0738 0.0728 10.0120 10.419 10.557 193.1 237.9 165.8 0.0057 0.0708 0.0027 8.316 10.567 10.567 198.1 237.9 166.8 0.0057 0.0052 0.0109 8.316 10.567 168.1 233.6 10.57 0.0027 0.0052 0.013 9.243 10.567 166.8 231.6 13.3.3 0.0052 0.0042 8.333 10.567 10.44 165.1 231.6 13.3.3 0.0027 0.0013 8.346 9.161 165.2 218.7 130.4 0.0023 <t< th=""><th></th><th>F2</th><th>200.1</th><th>252.0</th><th>169.8</th><th>0.0018</th><th></th><th>0.0035</th><th></th><th>0.0009</th><th></th><th>8.292</th><th>10.504</th><th>666.9</th></t<>		F2	200.1	252.0	169.8	0.0018		0.0035		0.0009		8.292	10.504	666.9
190.9 251.4 155.4 0.0038 0.0075 0.0075 0.0075 0.00740 7.887 10.444 191.8 242.3 162.2 0.00652 0.0073 0.0070 8.205 10.419 10.419 191.3 246.7 158.9 0.0067 0.0128 0.0073 8.205 10.419 10.152 193.1 237.9 166.8 0.0038 0.0129 0.0077 8.336 10.567 10.419 198.1 237.9 167.9 0.0057 0.0109 0.0077 8.333 10.567 10.305 198.1 249.9 167.9 0.0057 0.0052 0.0040 8.333 10.567 10.305 160.0 213.6 133.3 0.0057 0.0042 0.0013 8.333 10.567 10.43 166.0 216.0 133.3 0.0057 0.0042 8.333 10.567 9.161 165.1 214.1 128.8 0.0023 0.0042 0.0012 6.831 9.161		F3	195.4	249.5	163.8	0.0024		0.0042		0.0013		8.350	10.720	6.964
191.8 242.3 162.2 0.0052 0.0073 0.0040 8.205 10.419 191.3 246.7 158.9 0.0067 0.0128 0.0032 8.205 10.419 191.3 246.7 158.9 0.0067 0.0128 0.0128 7.839 10.152 193.1 237.9 166.8 0.0057 0.0129 8.316 10.305 198.1 249.9 167.9 0.0057 0.0109 8.333 10.567 198.1 249.9 167.9 0.0057 0.0052 0.0103 8.333 10.567 160.0 213.6 128.7 0.0027 0.0040 8.333 10.567 165.8 221.6 133.3 0.0023 0.0012 8.333 10.567 165.8 214.1 128.8 0.0023 0.0012 6.861 9.161 165.1 218.7 131.6 0.0024 0.0012 6.831 9.161 165.4 218.4 0.0060 0.0116 0.002	-	F4	190.9	251.4	155.4	0.0038		0.0075		0.0015		7.887	10.444	062.9
191.3 246.7 158.9 0.0067 0.0128 0.0032 7.839 10.152 193.1 237.9 166.8 0.0038 0.0070 0.0019 8.316 10.305 198.1 249.9 167.9 0.0057 0.0070 0.0019 8.316 10.305 198.1 249.9 167.9 0.0057 0.0109 0.0017 8.333 10.567 160.0 213.6 133.3 0.0023 0.0109 0.0012 8.335 10.567 165.0 214.1 128.7 0.0023 0.0052 0.0012 6.851 9.181 165.2 214.1 128.8 0.0053 0.0118 0.0012 6.831 9.161 165.1 218.7 131.6 0.0053 0.0118 0.0017 6.831 9.161 165.2 218.7 131.6 0.0053 0.0118 0.0012 6.831 9.161 162.4 218.7 131.4 0.0053 0.01026 8.345 9.047		F5	191.8	242.3	162.2	0.0052		0.0073		0.0040		8.205	10.419	6.907
193.1 237.9 166.8 0.0038 0.0070 0.0019 8.316 10.305 198.1 249.9 167.9 0.0057 0.0109 0.0027 8.333 10.567 10.365 160.0 213.6 128.7 0.0057 0.0109 0.0012 8.333 10.567 9.181 160.0 213.6 128.7 0.0023 0.0042 0.0012 6.901 9.243 10.567 165.8 221.6 133.3 0.0023 0.0042 0.0017 6.901 9.161 9.243 165.2 214.1 128.8 0.0034 0.0054 0.0017 6.831 9.161 165.3 218.7 131.6 0.0053 0.0118 0.0017 6.831 9.047 165.4 217.2 130.4 0.0053 0.0116 0.0023 6.931 9.299 165.4 218.0 131.3 0.0054 0.0105 6.631 9.299 9.047 165.4 218.4 0.0054 0.0		F6	191.3	246.7	158.9	0.0067		0.0128		0.0032		7.839	10.152	6.484
198.1 249.9 167.9 0.0057 0.0109 0.0027 8.333 10.567 10.567 160.0 213.6 128.7 0.0027 0.0052 0.0013 6.901 9.243 10.567 160.0 213.6 133.3 0.0027 0.0052 0.0012 6.901 9.243 10.567 160.0 214.1 128.8 0.0024 0.0064 0.0017 6.831 9.161 9.243 160.2 214.1 128.8 0.0034 0.0064 0.0017 6.831 9.161 9.161 163.1 218.7 131.6 0.0053 0.0116 0.0026 6.754 9.047 9.047 162.4 217.2 130.4 0.0053 0.0105 0.0023 6.931 9.299 9.047 163.2 218.0 131.3 0.0054 0.0105 6.619 9.299 9.047 163.2 218.0 131.3 0.0054 0.0023 6.619 9.299 9.047 9.299 9.		F7	193.1	237.9	166.8	0.0038		0.0070		0.0019		8.316	10.305	7.151
160.0 213.6 128.7 0.0027 0.0052 0.0013 6.901 9.243 8.243 8.243 8.243 8.243 8.243 8.243 8.243 8.243 8.243 8.243 8.243 8.243 9.181 9.181 9.181 9.181 9.181 9.181 9.161 9.181 9.161 9.181 9.161 9.181 9.161 9.181 9.161 9.181 9.161 9.181 9.161		F8	198.1	249.9	167.9	0.0057		0.0109		0.0027		8.333	10.567	7.028
165.8 221.6 133.3 0.0023 0.0042 0.0012 6.851 9.181 160.2 214.1 128.8 0.0034 0.0064 0.0017 6.831 9.161 9.161 160.2 218.7 131.6 0.0060 0.0118 0.0017 6.831 9.161 9.047 163.7 218.7 131.6 0.0060 0.0118 0.0026 6.331 9.047 163.2 217.2 130.4 0.0053 0.01167 0.0026 6.331 9.299 163.2 218.0 131.3 0.0054 0.0147 0.0023 6.679 8.946 163.2 218.0 131.3 0.0054 0.0147 0.0032 6.679 8.946 163.2 216.8 130.4 0.0054 0.0133 0.0024 6.810 9.200 162.2 216.8 130.4 0.0064 0.0133 0.0024 6.811 9.131		F1	160.0	213.6	128.7	0.0027		0.0052		0.0013		6.901	9.243	5.534
160.2 214.1 128.8 0.0034 0.0064 0.0017 6.831 9.161 163.7 218.7 131.6 0.0060 0.0148 0.0026 6.831 9.047 163.7 218.7 131.6 0.0060 0.0118 0.0026 6.931 9.299 162.4 217.2 130.4 0.0053 0.0147 0.0023 6.931 9.299 163.2 218.0 131.3 0.0074 0.0147 0.0023 6.679 8.946 159.6 213.1 128.4 0.0054 0.0105 0.0024 6.869 9.200 162.2 216.8 130.4 0.0064 0.0133 0.0024 6.811 9.131		F2	165.8	221.6	133.3	0.0023		0.0042		0.0012		6.851	9.181	5.492
163.7 218.7 131.6 0.0060 0.0118 0.0026 6.754 9.047 162.4 217.2 130.4 0.0053 0.0105 0.0023 6.931 9.299 163.2 218.0 131.3 0.0074 0.0147 0.0032 6.679 8.946 159.6 213.1 128.4 0.0054 0.0105 0.0024 6.679 8.946 159.6 213.1 128.4 0.0054 0.0105 0.0024 6.869 9.200 162.2 216.8 130.4 0.0064 0.0133 0.0024 6.811 9.131		F3	160.2	214.1	128.8	0.0034		0.0064		0.0017		6.831	9.161	5.471
162.4 217.2 130.4 0.0053 0.0105 0.0023 6.931 9.299 163.2 218.0 131.3 0.0074 0.0147 0.0032 6.679 8.946 159.6 213.1 128.4 0.0054 0.0105 0.0126 6.869 9.200 162.2 216.8 130.4 0.0064 0.0133 0.0024 6.811 9.131	\square	F4	163.7	218.7	131.6	0.0060		0.0118		0.0026		6.754	9.047	5.415
163.2 218.0 131.3 0.0074 0.0147 0.0032 6.679 8.946 159.6 213.1 128.4 0.0054 0.0105 0.0024 6.869 9.200 162.2 216.8 130.4 0.0064 0.0133 0.0024 6.811 9.131		F5	162.4	217.2	130.4	0.0053		0.0105		0.0023		6.931	9.299	5.550
159.6 213.1 128.4 0.0054 0.0105 0.0024 6.869 9.200 162.2 216.8 130.4 0.0064 0.0133 0.0024 6.811 9.131		F6	163.2	218.0	131.3	0.0074		0.0147		0.0032		6.679	8.946	5.358
162.2 216.8 130.4 0.0064 0.0133 0.0024 6.811 9.131		F7	159.6	213.1	128.4	0.0054		0.0105		0.0024		6.869	9.200	5.508
	⊢	F8	162.2	216.8	130.4	0.0064		0.0133		0.0024		6.811	9.131	5.457

APPENDIX 3 EMISSION DATA PLOTS BY FUEL AND VEHICLE -ECE AND EUDC PHASES


The following figures allow the relative comparison of the emissions from the two phases (ECE and EUDC) of the test cycle. Comments relating to this breakdown are given in **Section 6.1**.

For each emission, different scaling has been used for the ECE and EUDC phases of the cycle. Since the ECE distance is about half that of the EUDC phase, the maximum y-axis value of the ECE plot is double that of the EUDC plot, so that their relative contributions to the NEDC are approximately correct.

Figure A.3.2 EUDC emissions data - NOx

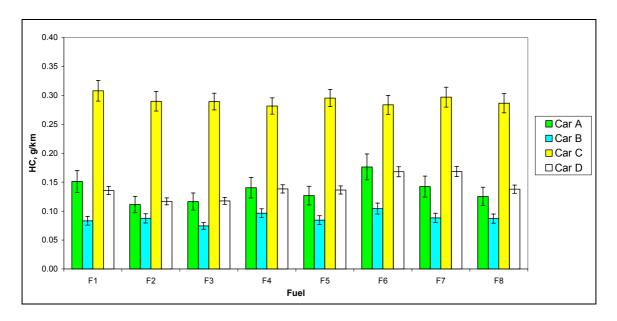
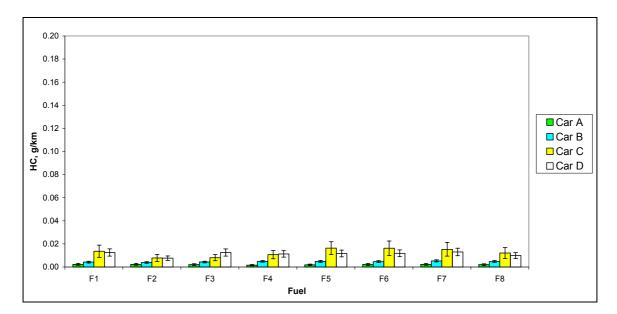



Figure A.3.3 ECE emissions data - HC

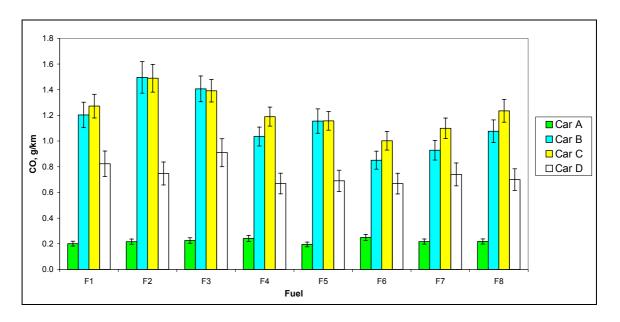
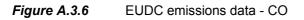
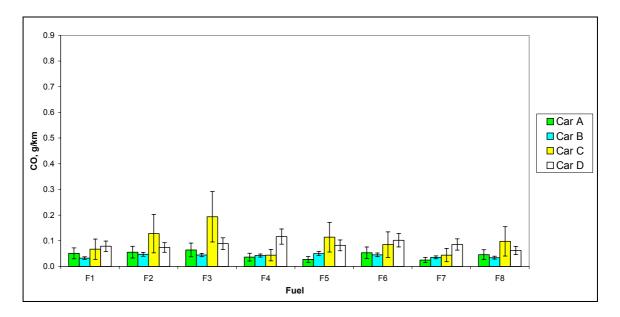




Figure A.3.5 ECE emissions data - CO

Figure A.3.7 ECE emissions data - PM

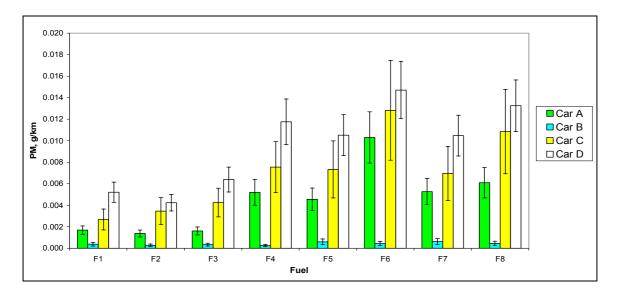
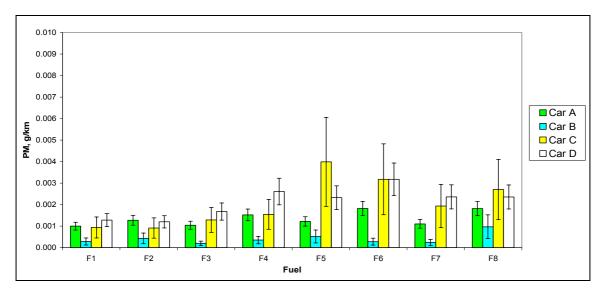



Figure A.3.8 EUDC emissions data - PM

APPENDIX 4

STATISTICAL ANALYSIS OF FUEL EFFECTS (PSEUDO ANOVA)

See also **Section 5** for details on the analysis methodology.

					,												
	overall sign.	23	8	۷	sign.	176	197	۷	sign.	26	38	4	sign.	2	4	۷	sign.
ECE+EUDC (corr)	NS (0.109	0.107	-0.002	NS	0.111	0.104	-0.007	NS	0.100	0.115	0.014	NS	0.106	0.109	0.002	NS
ECE (corr)	NS	0.225	0.214	-0.011	NS	0.219	0.221	0.003	NS	0.209	0.231	0.022	P < 5%	0.213	0.226	0.013	SN
EUDC	SN	0.039	0.040	0.002	NS	0.046	0.033	-0.013	NS	0.035	0.044	0.009	NS	0.042	0.037	-0.005	SN
ECE+EUDC	SN	0.056	0.046	-0.010	P < 1%	0.048	0.054	0.007	NS	0.052	0:050	-0.001	SN	0.051	0.051	0.000	SN
ECE	NS	0.148	0.121	-0.027	P < 1%	0.126	0.144	0.018	NS	0.137	0.133	-0.004	NS	0.135	0.135	0.000	SN
EUDC	SN	0.002	0.002	0.000	NS	0.002	0.002	0.000	NS	0.002	0.002	0.000	NS	0.002	0.002	0.000	SN
ECE+EUDC	P < 5%	0.049	0.058	0.009	P < 1%	0.057	0.049	-0.008	P < 1%	0.055	0.052	-0.003	NS	0.056	0.051	-0.005	SN
ECE	SN	0.092	0.109	0.017	P < 5%	0.109	0.092	-0.017	P < 5%	0.103	0.098	-0.005	NS	0.104	960.0	-0.008	SN
EUDC	SN	0.023	0.027	0.004	NS	0.026	0.024	-0.002	NS	0.027	0.024	-0.002	NS	0.027	0.024	-0.003	SN
ECE+EUDC	SN	184.1	182.8	-1.3	NS	183.0	183.8	0.8	NS	182.3	184.5	2.2	P < 5%	183.3	183.5	0.2	SN
ECE	SN	233.7	231.7	-2.0	NS	232.1	233.3	1.1	NS	231.1	234.3	3.3	P < 5%	232.9	232.6	-0.3	SN
EUDC	SN	155.2	154.3	-0.9	NS	154.4	155.0	0.6	NS	153.9	155.5	1.6	NS	154.5	155.0	0.4	SN
ECE+EUDC (corr)) P < 0.1%	0.0027	0.0021	-0.0005	P < 5%	0.0016	0.0032	0.0016	P < 0.1%	0.0022	0.0026	0.0005	NS	0.0020	0.0028	0.0007	P < 1%
ECE (corr)	P < 0.1%	0.0049	0.0035	-0.0014	P < 1%	0.0022	0.0062	0.0039	P < 0.1%	0.0040	0.0044	0.0004	NS	0.0032	0.0052	0.0019	P < 0.1%
EUDC (corr)	P < 5%	0.0013	0.0013	0.0000	NS	0.0012	0.0015	0.0002	P < 5%	0.0011	0.0015	0.0004	P < 1%	0.0013	0.0014	0.0001	SN
ECE+EUDC	P < 5%	7.725	7.696	-0.029	NS	7.703	7.718	0.015	NS	7.802	7.618	-0.184	P < 0.1%	7.692	7.729	0.037	SN
ECE	P < 5%	9.825	9.770	-0.056	NS	9.784	9.811	0.028	NS	906.6	9.689	-0.216	P < 1%	9.785	9.810	0.025	SN
EUDC	NS	6.504	6.488	-0.016	NS	6.491	6.501	0.009	NS	6.579	6.413	-0.166	P < 1%	6.474	6.518	0.044	NS
ECE+EUDC	P < 0.1%	0.401	0.487	0.086	P < 0.1%	0.501	0.388	-0.113	P < 0.1%	0.447	0.442	-0.005	SN	0.465	0.423	-0.042	P < 5%
ECE	P < 0.1%	1.021	1.247	0.226	P < 0.1%	1.287	0.981	-0.306	P < 0.1%	1.147	1.121	-0.026	NS	1.187	1.081	-0.106	P < 5%
EUDC (corr)	SN	0.038	0.043	0.004	NS	0.041	0.040	-0.001	NS	0.038	0.043	0.005	SN	0.043	0.038	-0.004	SN
ECE+EUDC	P < 5%	0.037	0.034	-0.004	P < 1%	0.034	0.037	0.003	P < 5%	0.034	0.037	0.003	P < 5%	0.035	0.035	000.0	SN
ECE	P < 5%	0.093	0.083	-0.009	P < 5%	0.084	0.092	0.008	P < 5%	0.083	0.093	0.010	P < 5%	0.089	0.087	-0.001	SN
EUDC	SN	0.005	0.005	0.000	NS	0.004	0.005	0.001	NS	0.005	0.005	0.000	SN	0.004	0.005	0.001	SN
ECE+EUDC	SN	0.052	0.050	-0.002	NS	0.051	0.052	0.001	NS	0.050	0.053	0.003	NS	0.051	0.051	0.000	SN
ECE	NS	0.123	0.120	-0.003	NS	0.121	0.122	0.000	NS	0.118	0.125	0.007	NS	0.121	0.122	0.000	NS
EUDC (corr)	NS	0.011	0.010	-0.001	NS	0.010	0.011	0.001	NS	0.010	0.010	0.000	NS	0.011	0.010	-0.001	NS
ECE+EUDC	P < 1%	182.6	183.1	0.5	NS	183.3	182.4	6.0-	NS	180.2	185.5	5.3	P < 0.1%	183.7	182.0	-1.8	NS
ECE	P < 0.1%	260.9	261.5	0.6	NS	261.8	260.6	-1.1	NS	257.0	265.4	8.4	P < 0.1%	262.8	259.6	-3.2	P < 5%
EUDC	P < 5%	136.9	137.4	0.5	NS	137.4	136.8	-0.6	NS	135.4	138.9	3.5	P < 0.1%	137.6	136.7	-0.9	NS
ECE+EUDC	NS	0.0003	0.0004	0.0000	NS	0.0003	0.0004	0.0001	NS	0.0004	0.0004	0.0000.0	NS	0.0004	0.0003	0.0000	NS
ECE	NS	0.0004	0.0004	0.0000	NS	0.0003	0.0005	0.0002	P < 5%	0.0005	0.0003	-0.0001	NS	0.0004	0.0004	0.0000	NS
EUDC	NS	0.0003	0.0003	0.0000	NS	0.0003	0.0003	0.0000	NS	0.0003	0.0003	0.0001	NS	0.0003	0.0003	-0.0001	NS
ECE+EUDC	NS	7.679	7.730	0.051	NS	7.734	7.675	-0.059	NS	7.730	7.679	-0.051	NS	7.730	7.679	-0.051	NS
ECE	NS	11.008	11.080	0.072	NS	11.089	10.999	-0.090	NS	11.063	11.025	-0.038	NS	11.096	10.992	-0.104	NS
EUDC	S.N	5 738	E 77E	7000											_		

CAR	Emission	Cvcle	Fuel effects			E70				FBP			Aron	Aromatics			Ő	Olefins	
			overall sign.	2	38	<	sian.	176	197	<	sian.	26	38	<	sign.	2	14	<	sian.
						1				1	b			1	>			1	
υ	ç	ECE+EUDC	P < 5%	0.464	0.555	060.0	P < 1%	0.560	0.459	-0.101	P < 1%	0.508	0.511	0.003	NS	0.520	0.499	-0.020	NS
υ	(a/km)	ECE	P < 0.1%	1.154	1.281	0.127	P < 1%	1.331	1.104	-0.228	P < 0.1%	1.211	1.224	0.013	NS	1.230	1.206	-0.024	NS
ပ	(EUDC	NS	0.058	0.119	0.061	P < 5%	0.097	0.080	-0.016	NS	0.088	0.089	0.000	NS	0.102	0.075	-0.026	NS
ပ	(ECE+EUDC	NS	0.117	0.114	-0.003	NS	0.114	0.117	0.003	NS	0.118	0.112	-0.006	P < 5%	0.117	0.114	-0.003	NS
υ	HC HC	ECE	SN	0.292	0.290	-0.003	NS	0.292	0.290	-0.001	NS	0.297	0.285	-0.013	NS	0.294	0.288	-0.006	NS
υ	(1111)R/	EUDC	SN	0.014	0.011	-0.003	NS	0.010	0.015	0.006	P < 5%	0.014	0.011	-0.003	SN	0.012	0.012	0.000	NS
υ		ECE+EUDC	NS	0.060	0.060	0.000	NS	0.064	0.057	-0.007	SN	0.063	0.058	-0.005	NS	0.060	0.060	0.000	NS
ပ	NOX (d/km)	ECE	P < 1%	0.098	0.118	0.020	P < 5%	0.123	0.093	-0.029	P < 1%	0.119	0.097	-0.022	P < 1%	0.115	0.101	-0.013	NS
ပ	(EUDC	NS	0.036	0.025	-0.012	NS	0.025	0.036	0.011	NS	0.028	0.033	0.004	SN	0.029	0.032	0.003	NS
ပ	()	ECE+EUDC	NS	192.5	195.3	2.8	NS	194.8	193.0	-1.8	NS	193.5	194.4	0.9	NS	194.2	193.7	-0.6	NS
ပ	CO ₂	ECE	SN	245.2	248.0	2.8	NS	249.2	243.9	-5.3	P < 5%	242.7	250.4	7.7	P < 1%	246.2	246.9	0.7	NS
ပ	(EUDC	SN	161.6	164.5	2.9	NS	163.0	163.2	0.2	NS	164.6	161.5	-3.1	SN	163.7	162.4	-1.4	NS
ပ	i	ECE+EUDC	P < 5%	0.0037	0.0036	-0.0001	NS	0.0024	0.0049	0.0025	P < 1%	0.0035	0.0038	0.0004	SN	0.0030	0.0042	0.0012	P < 5%
ပ	MH (a/km)	ECE	P < 1%	0.0069	0.0064	-0.0006	NS	0.0045	0.0089	0.0044	P < 1%	0.0060	0.0073	0.0013	NS	0.0054	0.0079	0.0025	P < 5%
ပ	(EUDC	SN	0.0018	0.0018	0.0000	NS	0.0012	0.0025	0.0013	P < 5%	0.0019	0.0018	-0.0001	NS	0.0016	0.0021	0.0005	NS
ပ	1	ECE+EUDC	SN	8.112	8.264	0.152	NS	8.237	8.138	-0.099	NS	8.315	8.061	-0.254	P < 5%	8.187	8.188	0.001	NS
ပ	FC (1/100 km)	ECE	NS	10.384	10.545	0.161	NS	10.594	10.336	-0.258	P < 5%	10.490	10.440	-0.050	NS	10.435	10.495	0.060	NS
ပ	()))))))))))))))))))	EUDC	NS	6.777	6.928	0.150	SN	6.857	6.848	-0.009	SN	7.040	6.665	-0.375	P < 5%	6.871	6.834	-0.036	SN
٥		ECE+EUDC	SN	0.328	0.328	0.000	NS	0.345	0.311	-0.034	NS	0.339	0.317	-0.021	SN	0.327	0.329	0.002	NS
۵	CO (u/km)	ECE	SN	0.727	0.755	0.029	NS	0.784	0.698	-0.086	NS	0.779	0.704	-0.075	SN	0.743	0.739	-0.004	NS
۵	- (111X1/R)	EUDC	SN	060.0	0.075	-0.014	NS	0.084	0.081	-0.002	NS	0.080	0.084	0.004	NS	0.082	0.083	0.001	NS
۵		ECE+EUDC	P < 0.1%	0.063	0.054	-0.009	P < 0.1%	0.053	0.064	0.011	P < 0.1%	0.061	0.057	-0.004	P < 5%	0.057	0.060	0.003	NS
۵	HC (a/km)	ECE	P < 0.1%	0.151	0.129	-0.021	P < 0.1%	0.125	0.155	0.030	P < 0.1%	0.144	0.136	-0.007	SN	0.137	0.143	0.006	NS
۵	(EUDC	SN	0.012	0.011	-0.001	NS	0.011	0.012	0.001	NS	0.013	0.010	-0.003	SN	0.011	0.012	0.001	NS
D	(ECE+EUDC	NS	0.034	0.034	0.000	NS	0.034	0.033	-0.002	NS	0.031	0.036	0.005	P < 5%	0.032	0.035	0.003	NS
۵	(a/km)	ECE	P < 5%	0.040	0.040	0.000	NS	0.039	0.040	0.001	NS	0.037	0.042	0.005	P < 5%	0.040	0.040	0.000	NS
D	(EUDC	NS	0.029	0.029	0.000	NS	0.030	0.027	-0.003	NS	0.027	0.031	0.004	NS	0.026	0.031	0.005	NS
۵	Ç	ECE+EUDC	P < 1%	161.8	162.3	0.5	NS	162.2	161.9	-0.4	NS	160.3	163.7	3.4	P < 0.1%	162.8	161.3	-1.5	NS
۵	(a/km)	ECE	P < 5%	216.0	216.9	0.9	NS	216.7	216.2	-0.5	NS	214.2	218.8	4.6	P < 0.1%	217.5	215.5	-2.0	NS
۵		EUDC	P < 1%	130.1	130.4	0.3	NS	130.4	130.1	-0.3	NS	128.9	131.6	2.7	P < 0.1%	130.9	129.7	-1.2	P < 5%
۵		ECE+EUDC	P < 0.1%	0.0051	0.0044	-0.0007	NS	0.0034	0.0061	0.0026	P < 0.1%	0.0046	0.0049	0.0003	NS	0.0038	0.0057	0.0019	P < 0.1%
۵	(a/km)	ECE	P < 0.1%	0.0100	0.0086	-0.0015	NS	0.0065	0.0121	0.0056	P < 0.1%	0.0090	0.0096	0.0006	NS	0.0074	0.0113	0.0039	P < 0.1%
		EUDC	P < 1%	0.0022	0.0019	-0.0002	NS	0.0016	0.0025	0.0009	P < 1%	0.0020	0.0021	0.0002	NS	0.0017	0.0024	0.0006	P < 5%
۵	C	ECE+EUDC	P < 5%	6.805	6.852	0.047	NS	6.846	6.811	-0.035	NS	6.881	6.776	-0.106	P < 1%	6.846	6.811	-0.035	NS
۵	FC (1/100 km)	ECE	NS	9.115	9.188	0.073	NS	9.175	9.127	-0.047	NS	9.223	9.080	-0.143	P < 5%	9.174	9.128	-0.047	NS
۵	······ · · · · · · · · · · · · · · · ·	EUDC	P < 1%	5.457	5.489	0.032	NS	5.486	5.460	-0.026	SN	5.515	5.431	-0.084	P < 1%	5.487	5.458	-0.029	NS