a survey of european gasoline qualities – summer 1996

Prepared for the CONCAWE Automotive Emissions Management Group by its Special Task Force, AE/STF-2

W. Dörmer (Chairman)

- S. Hill
- R. Jørgensen
- A. Kovacs
- A. Lermusiaux
- J. Lluch-Urpi
- A. Marotta
- S. Reeson

P. Heinze (Technical Coordinator)

Reproduction permitted with due acknowledgement

© CONCAWE Brussels October 1998

ABSTRACT

CONCAWE has conducted a new survey of gasoline qualities in sixteen European countries. Over 1100 samples were collected in the summer period 1996 and analysed. This report summarises the findings by country.

KEYWORDS

Gasoline, characteristics, composition, Europe, fuel specification, survey

NOTE

Considerable efforts have been made to assure the accuracy and reliability of the information contained in this publication. However, neither CONCAWE nor any company participating in CONCAWE can accept liability for any loss, damage or injury whatsoever resulting from the use of this information.

This report does not necessarily represent the views of any company participating in CONCAWE.

CONTEN	CONTENTS		
SUMMARY			IV
1.	INTR	ODUCTION	1
2.	METH	HODOLOGY	2
3.	QUA	LITY STATEMENTS	3
	3.1.	AUSTRIA	3
	3.2.	BELGIUM	4
	3.3.	DENMARK	4
	3.4.	FINLAND	5
	3.5.	FRANCE	6
	3.6.	GERMANY	7
	3.7.	GREAT BRITAIN	8
	3.8.	GREECE	9
	3.9.	HUNGARY	11
	3.10.	ITALY	13
	3.11.	NETHERLANDS	14
	3.12.	NORWAY	14
	3.13.	PORTUGAL	16
	3.14.	SPAIN	17
	3.15.	SWEDEN	18
	3.16.	SWITZERLAND	20
4.	CON	CLUSIONS	21
APPENDIX	1	COUNTRIES SURVEYED AND SAMPLE NUMBERS	23
APPENDIX	2	TEST DATA AVAILABLE BY COUNTRY	24
APPENDIX	3	PARAMETERS MEASURED/TEST METHODS	25
APPENDIX	4	OVERVIEWS BY COUNTRY	27
APPENDIX	5	KEY PARAMETERS	65

SUMMARY

CONCAWE has conducted a survey of gasoline qualities in Europe (16 countries). Over 1100 samples were collected in summer 1996 and analysed by member companies or independent laboratories (Appendix 1).

This report summarises the findings by country. The following fuel characteristics are reported:

•	Density at 15 °C	[kg/m³]
•	Lead content	[mg/l]
•	Distillation	[°C/vol.%]
•	Sulphur content	[mg/kg]
•	RON	
•	MON	
•	Reid Vapour pressure	[kPa]
•	VLI	
•	Gum (unwashed)	[mg/100 ml]
•	FIA (aromatics, olefins, saturates)	[v/v%]
•	Benzene	[v/v%]
•	Benzene, Toluene, Xylene	[w%]
•	Total aromatic content	[w%]
•	Ether (MTBE, ETBE)	[v/v%]
•	Alcohols	[v/v%]
•	Oxygen content	[w%]

1. INTRODUCTION

This report describes the quality of automotive gasoline grades in the European market. It will thus provide a useful reference baseline for ongoing studies (in CONCAWE and elsewhere) which are assessing the implications of adjusting gasoline fuel characteristics.

The survey covers the 1996 summer season.

The majority of previous investigations (for example, surveys by Ethyl, Octel, Paramins etc.) were limited in terms of the number of samples analysed. This survey has the advantage of a larger data base.

The objectives of this report are:

- to determine the quality of the different gasoline grades marketed in Europe during the sampling period
- to provide comprehensive data on fuel characteristics to assist in the development of sound cost estimates for changes in those parameters.

These data are **not sales weighted** and this must be considered in any interpretation.

2. METHODOLOGY

In each country, the gasoline samples were taken at various locations, such as refineries, terminals or service stations. These samples were subsequently tested in laboratories run by either the major fuel retailers or by independent laboratories.

Appendix 1 contains an overview of the number of samples taken by country. The report contains analysis results for a total of 1197 fuel samples (1000 branded and 197 non branded). Not all the relevant characteristics were available for fuels of some countries.

Appendix 2 gives an overview of the fuel parameters tested in individual countries. The test methods used are shown in **Appendix 3**. Surveys carried out by individual CONCAWE member companies were collated by the CONCAWE Secretariat to maintain the confidentiality of the data source and to preserve the anonymity of the fuel samples. They were then transferred to the corresponding overviews by AE/STF-2, a **S**pecial **T**ask **F**orce of the Automotive Emissions Management Group.

The complete information on which report is based represents a very large body of data and is available on 3.5" diskettes from CONCAWE upon request. A small handling charge may be applied. Please contact the Secretariat for further information.

STF-2 evaluated the data provided and drew up appropriate overviews for each country which, in addition to the ranges (min, max.) and average values of the individual parameters, also contain details of the number of samples (**Appendix 4**).

The fuel specifications requirements applicable at the time the samples were taken are also included. The ranges and average values for the most relevant fuel parameters for each country are also presented graphically (**Appendix 5**).

The most relevant information concerning:

- sampling/testing
- specifications
- additives
- sales (consumption)

can be found in the "Quality Statement" section for each country.

Sales (total consumption) quoted in the report are based on information from the International Energy Agency (IEA).

3. QUALITY STATEMENTS

3.1. AUSTRIA

Sampling/Testing

All samples were taken from service stations in the area of Steiermark and Kärnten (South of Austria).

The analyses of the gasoline samples were carried out by the University of Technology, Vienna, and by a member company research laboratory.

Specifications

Quality requirements for Austria's unleaded gasolines are based on the CEN Standard EN 228.

National Specifications:

Limit for benzene content: max. 3 %vol.

Three grades of unleaded gasoline are marketed in Austria:

Regular:	MON = 82,5 min.; RON = 91 min.
Super:	MON = 85 min.; RON = 95 min.
SuperPlus:	MON = 87 min.; RON = 98 min.

Leaded Gasoline has not been available in Austria since 1993.

Additives

Performance additive packages are individually added by most companies. According to the "Österreichische Kraftstoffverordnung" of 1992 Super Plus has to be treated with Anti-Valve-Seat-Recession-Additives.

1996 Sales

Unleaded: 2.215 metric tons x 10⁶

The market share of the different qualities and the trend for increase/decrease in the market of Austria at the time of sampling were:

Unleaded:

- Regular: 32.4 % constant
- Super: 47.2 % increasing
- SuperPlus: 20.4 % decreasing

3.2. BELGIUM

(Only data available)

1996 Sales

Unleaded: 2.026 metric tons x 10^6 Leaded: 0.712 metric tons x 10^6

74% unleaded

3.3. DENMARK

Sampling/Testing

Samples for this report were all collected from refineries and terminals in Denmark from May to August 1996. All samples were analysed by the marketing oil companies, but the information is not complete. Especially GC data are not available.

Specifications

Leaded gasoline is no longer marketed since 1993. Instead, the industry offer the UL 98 octane quality blended with Anti-Valve-Seat-Recession Additive to satisfy older engine technology.

The different gasoline qualities are normally identified by their octane quality number (RON). Gasoline pumps are always marked with "92", "95" or "98". In this report the same table headings are used for all countries. To avoid any confusion regarding the names "Regular, Premium, Super" the headings for Danish qualities in this report are:

•	Regular unleaded (92)	=	92 RON
---	-----------------------	---	--------

- Super unleaded (95) "Europremium" = 95 RON
- Super unleaded (98) "SuperPlus" = 98 RON

These three summer grades (1 May - 31 August) were marketed according to the EN 228 Specification, Volatility Class 4.

The main parameters of the specifications (Danish. Pet. Inst. 01/10/90) at the time of sampling were:

		ULG 98	ULG 95	ULG 92
RON	(min.)	98	95	92
MON	(min.)	88	85	83
RVP	(bar)	0.45 - 0.80	0.45 - 0.80	0.45 - 0.80
VLI	(max.)	1050	1050	1200
E70	(%v/v)	15 - 45	15 - 47	15 - 47
E100	(%v/v)	40 - 65	43 - 70	43 - 70
E180	(%v/v, min)	85	85	85
RESIDUE	(%v/v, max)	2		
DENSITY	15 °C (kg/m ³)	730 - 780	730 - 770	710 - 750
Sulphur	(%m/m, max.)	0.05	0.05	0.05

Additives

Performance additive packages are individually added by most companies (opt.).

1996 Sales

Unleaded: 1.929 metric tons x 10⁶ Leaded: NIL

100% unleaded

There is no trend for increase/decrease between 98/95/92 octane.

3.4. FINLAND

Gasolines marketed in Finland are reformulated except for some batches.

Compared to the standard specification environmentally more acceptable reformulated gasolines are encouraged by means of a tax incentive. Environmental grades exceeding the tax incentive limits are also available.

Sampling/Testing

Samples for this survey were collected from refineries during June to July 1996. One sample collected at a service station was also reported.

Samples were analysed at refinery laboratories and a member company research laboratory.

Specifications

Gasolines are specified in SFS-EN 228. Reformulated gasolines are given a tax reduction (0,05 FIM/I). The requirements are oxygen content of 2 - 2.7 %v/v, and

benzene below 3 %v/v. The vapour pressure is specified at max. 70 kPa from 1 June to 31 August and at max. 90 kPa outside this summer period.

In Finland reformulated gasoline is also marketed containing benzene below 1 % v/v and sulphur below 100 mg/kg.

Additives

All fuels marketed contain a detergent additive package. The quality labelled as "99+" and a part of unleaded 98 also contain Anti-Valve-Seat-Recession-Additives.

1996 Sales

Unleaded: $1.834 \text{ metric tons x } 10^6 \text{ Leaded:} 0 \text{ metric tons x } 10^6$

100% unleaded

The following table shows the development of sales for the period from 1992 to 1994 by grades.

	1992	1993	1994	1995	1996
Unleaded 95	62.5%	66.0%	63.5%	66.6%	70.4%
Unleaded 98	7.8%	12.1%	14.9%	15.2%	14.7%
Unleaded 99	0.0%	8.8%	21.5%	18.2%	14.8%
Leaded 99	29.7%	13.1%	0.0%	0.0%	0.0%
Total 1000 m ³	2 650	2 500	2 560	2 529	2 446

3.5. FRANCE

Sampling/Testing

The samples for this survey were all taken at service stations run by major fuel retailers or by discounters.

The analyses of the samples were carried out by a member and by independent laboratories.

Specifications

Quality requirements for unleaded Super (Supercarburant sans plomb (95) and (98)) are based on the CEN Standard EN 228.

National Specifications:

The unleaded fuels are coloured with a green tracer. From 20 June until 9 August the summer grades are based on volatility class 1 (EN 228).

Additives

Only gasolines of the refining companies are additivated with individual performance-additive-packages.

1996 Sales

Unleaded: 8.391 metric tons x 10^6 Leaded: 6.610 metric tons x 10^6

55.9% unleaded

3.6. GERMANY

Sampling/Testing

The samples of the gasoline qualities tested for this report were all taken at service stations run by the five major fuel retailers (classified as A) in the vicinity of the corresponding refinery, at service stations run by smaller fuel retailers (classified as B), and outlets run by discounters (hypermarkets), in areas selected for high throughput.

Samples of leaded Super have not been taken.

The tests were carried out in laboratories run by the A companies and results were checked jointly.

Specifications

When the samples were taken, DIN EN 228 specification for unleaded fuels and DIN 51 600 specification for leaded Super were in force.

These two standards are embodied in the so called 10. BImSchV (Bundes-Immissionsschutz-Verordnung).

This regulation lays down that any fuel not complying with the limits given in DIN EN 228 or DIN 51 600 shall not be introduced into the market. Quality compliance is checked by an inspectorate and failure to comply is dealt with accordingly.

Since the end of 1996 leaded gasoline is no longer available in the German market.

The benzene content of SuperPlus (RON 98) is voluntarily limited at a maximum of 1 % v/v.

According to the German gasoline Lead Law (Benzin-Blei-Gesetz) it is not allowed to introduce metal containing additives in gasolines during manufacturing or to market such products.

To satisfy older engine technology Anti-Valve-Seat-Recession-Additives are available at most of the service stations to be added by the customer (not restricted by law).

Additives

The fuels marketed by the five majors all contained their own individual, multipurpose additive packages. The fuels marketed by the B-companies contained additives with lower concentration and unknown performance. The hypermarket fuels, with some exceptions, did not contain additives.

1996 Sales

Unleaded: 29.233 metric tons x 10^6 Leaded: 0.782 metric tons x 10^6

97.4% unleaded

The market share of the different unleaded qualities at the end of 1996 were:

- Normal bleifrei (Regular (91)): 40%
- Super bleifrei (Super unleaded (95)): 54%
- Super Plus (Super unleaded (98)): 6%

3.7. GREAT BRITAIN

Sampling/Testing

The samples used to provide the data for the survey were drawn from refineries, terminals and retail outlets. The samples were analysed at oil company laboratories.

Specifications

The following specifications apply to the gasoline grades used in the survey:

Unleaded Petrol, Premium (95) BS E

- Unleaded Petrol, Super (98) BS 7800
- Leaded Petrol (97) BS 4040

The above grades also comply with The Motor Fuel (composition and content) Regulations 1994. (Statutory Instrument No. 2295).

Summer grade product sold ex petrol retail outlets shall comply with CEN class 4 volatility requirements during the period 1 June to 31 August inclusive.

Additives

The majority of gasoline marketed in the UK contains Performance Enhancing Additives, although these are not mandatory.

1996 Sales

Unleaded: 15.231 metric tons x 10^6 Leaded: 7.178 metric tons x 10^6

68% unleaded

3.8. GREECE

Sampling/Testing

All the samples mentioned in this report were taken from the refinery storage tanks and the analyses were performed at the refinery laboratory.

Specifications

During the period of sampling the following specifications in Greece were in force:

- Premium: GREEK Government Gazette 556/B/27.7.93 190/B/21.3.95, 271/B/10.4.95
- Regular: GREEK Government Gazette 581//1991, 774/B/12.10.94, 190/B/21.3.95, 271/B/10.4.95

The summer period for stricter specification of RVP and VLI lasts from 1 April to 31 October.

The main properties/limits of the specifications at the time of sampling were:

PROPERTY				LIMITS		
			Premium leaded	95 RON unleaded	98 RON unleaded	
1.	Density at 15 °C	(kg/m³)	720 - 770	725	- 780	
2.	Distillation: Evaporated at 70 °C (E70) " at 100 °C (E100) " at 180 °C (E180) Final boiling point Distillation residue	(%v/v) " (°C) (%v/v)	min. 10 30 - 65 min. 85 max. 215 max. 2	40 mir max	– 45 – 65 1. 85 K. 215 ax. 2	
3.	Vapour pressure (RVP) at 37.8°C a. From 1 April to 31 October b. From 1 November to 31 March	(kPa)	max. 62 max. 80		– 70 - 80	
4.	Sulphur	(%m/m)	max. 0.10	max	. 0.05	
5.	Lead	(g/l)	max. 0.15	max.	0,013	
6.	RON		96 - 98	min. 95	min. 98	
7.	Copper strip corrosion, 3 h, at 50°0	C, ASTM No	max. 1	ma	ax. 1	
8.	Existent gum, solvent washed	(mg/100 ml)	max. 4	ma	ax. 5	
9.	Oxidation stability (hours)		min. 6	min. 6		
10.	Benzene	(%v/v)	max. 4	ma	max. 4	
11.	Aromatics	(%v/v)	to	be reported		
12.	Olefins	(%v/v)	to	be reported		
13.	Colour		Green	und	dyed	
14.	Organic oxygenated compoundsa)i. Total oxygen(%m/rii. Ingredients(%v/v)	,	max. 2.5	max. 2.5		
	Methanol ^{b)}		max. 3	ma	ax. 3	
	Ethanol ^{c)}		max. 5	-	ax. 5	
	iso-propanol iso-butanol		max. 5 max. 7	-	ax. 5 ax. 7	
	t-butanol		max. 7			
	Other primary alcohols ^{d)}		max. 7	max. 7 max. 7		
	Methyl-t-butyl-ether (MTBE)	max. 10	max. 10		
	Methyl-t-amyl-ether (TAME		max. 10	max. 10		
	Ethyl-t-butyl-ether (ETBE)		max. 10	max. 10		
	Other ethers ^{c)}		max. 10	max. 10		
	Acetone ^{f)}		max. 0.8		k. 0.8	

(a) Oxygenated organic compounds addition is permitted (like alcohols, ethers or mixtures), but in percentage which does not exceed the limits in 85/536 EC Directive /2133/87 decision of Greek State Chemical Laboratory G.G.G. 823/B/9.11.88.

(b) With Stabilisers

(c) Possible need for stabilisers

Acidity smaller than 0,007 % m/m (as acetic acid), when is determined according with the method ISO 1388-2

(d) Their boiling point is not over the final distillation boiling point of gasoline

(e) With five or more carbon atoms, with their boiling point not over the final distillation boiling point of gasoline

(f) As a by - product of the synthesis of particular oxygenated compounds

Additives

Addition of gasoline additives by the Marketing Companies is mainly done for detergent purposes.

According to SEEPE estimations, additives penetration in gasoline grades in the Greek market is:

•	in unleaded gasoline:	approx.	50 %
---	-----------------------	---------	------

•	in leaded gasoline:	approv	59 %
•	in leaueu yasoline.	approx.	59 70

1996 Sales

Unleaded: $1.107 \text{ metric tons x } 10^6$ Leaded: $1.833 \text{ metric tons x } 10^6$

37.7% unleaded

•	Premium leaded gasoline:	approx.	63 % of the market
•	Unleaded gasoline:	approx.	36 % of the market
•	Other gasolines:	approx.	1 % of the market

3.9. HUNGARY

Sampling/Testing

The data submitted are from refinery batch samples and supply about 80% of branded service stations and about 45 - 50 % of non-branded service stations.

Specifications

	leaded * ⁾ 92AB-92	leaded 98 AB-98	unleaded 91 Eu-91	unleaded 95 Esz-95	unleaded 98 Esz-98
RON, min.	92	98	91	95	98
MON, min.	83	88	82.5	85	88
lead, g/l max.	0.15	0.15	0.013	0.013	0.013
benzene, %v/v			max. 3.0		
sulphur, %m/m			max. 0.05		
Evaporation residue, g/100 cm ³			max. 5		
copper corrosion	max. 1				
specific gravity at 15 °C kg/m ³	720 - 770 730 - 780 720 - 780				
Distillation characteristics			•		
T70E, %v/v summer / winter	15 - 42 / 20 – 47				
T100E, %v/v summer / winter	40 - 65 / 42 - 70				
T180, %v/v at least			85		
End boiling point,. °C max.	215				
Residue, %v/v, max.			2		
Reid vapour pressure, bar summer/winter		0.45	0.70 / 0.60	0.90	
colour	greenish blue	red	green	colourless	colourless

*) withdrawn from 1.7.1996

Additional features

- 1. Gasoline grades are free of water, mechanical impurities and water soluble acids and bases.
- 2. All grades are free of phosphorous.
- 3. Alcohols can be used only on the basis of agreements.
- 4. The maximum amount of oxygenates is related to a threshold oxygen content of 2.5 % and is in detail as follows:

MeOH	max. 3%	conditioned to use of cosolvents (higher alcohols) at a minimum rate of 2/3
EtOH	max. 5%	conditioned to use of cosolvents (higher alcohols) at a minimum rate of 2/3
IPA	max 5%	
TBA, IBA	max. 7%	
MTBE	max. 10%	

Additives:

All gasoline samples tested were treated with an additive package of the latest standard.

1996 Sales

Unleaded: 0.810 metric tons x 10^6 Leaded: 0.456 metric tons x 10^6

64% unleaded

3.10. ITALY

Sampling/Testing

All samples which were taken during July and August 1996 came from branded service stations; no samples were taken at terminals or refinery locations.

The sampling plan is representative of main markets (i.e. large cities) and refineries, or main supply routes. Samples were taken in Turin, Genoa, Milan, Cremona, Trieste, Venice, Ravenna, Bologna, Florence, Ancona, Pescara, Rome, Naples, Taranto, Reggio Calabria, Catania, Palermo, Cagliari.

Although the total number of samples is roughly proportional to the market share of different companies, samples are not fully sales-weighted in every area, to take account of product exchanges.

Specifications

In Italy two grades of gasolines are available on the market.

- the Europremium super unleaded (95), called "Benzina senza Piombo" in Italian,
- the leaded super (97), called "Benzina super" in Italian.

Unleaded gasoline has to comply with the EN 228 (1993) specification (Volatility Class 1).

Leaded gasoline has to comply with the Italian National Specifications, CUNA NC 623-01.

CUNA* NC-Requirements

Density	kg/m³	725 - 770
Lead content	g/l	max. 0.15
Distillation		
E 70	% v/v	10 – 45
E 100	% v/v	30 – 70
E 180	% v/v	min. 85
FBP	°C	max. 220
Sulphur content	% m/m	max. 0.20
RON		min. 97.0
MON		min. 87.0
Reid Vapour Pressure	kPa	40 - 73.5
Benzene	% v/v	max. 5

* CUNA: Commissione Tecnica di Unificazione nell'Autoveicolo

Additives

It is estimated that about 70 % of unleaded gasoline is treated with detergent additives.

1996 Sales

Unleaded: 8.084 metric tons x 10^6 Leaded: 9.639 metric tons x 10^6

45.6% unleaded

3.11. NETHERLANDS

(Only data available).

3.12. NORWAY

Sampling/Testing

All samples for this reported survey were collected from refineries and terminals in Norway from May to August 1996.

All samples were analysed by the marketing oil companies, but the information is not complete. Especially GC data are not available.

Specifications

Norway has no national standard required by law, but the industry has accepted the EN 228 standard for unleaded gasolines.

Leaded gasoline has not been marketed since 1993. Instead, the industry offer the ULG 98 octane quality blended with Anti-Valve-Seat-Recession-Additives to satisfy older engine technology.

The different gasoline qualities are named by their octane quality number (RON). Gasoline pumps at service stations are always labelled with "95" or "98". In this report the same table headings are used for all countries. To avoid any confusion regarding the names "Regular, Premium, Super" the headings for Norwegian qualities in this report are:

- Super unleaded (95) "Europremium" = 95 RON
- Super unleaded (98) "SuperPlus" = 98 RON

The two summer grades (1 April - 31 August) on the market are:

- 98 RON, EN 228 Volatility Class 5
- 95 RON, " "

The main specification properties (NS EN 228) at the time of sampling were:

		ULG 98 [*]	ULG 95 [*]
RON		min. 98	min. 95
MON		min. 87	min. 85
RVP	(bar)	0.55 - 0.90	0.55 - 0.90
VLI	(max.)	1100	1100
E70	(%v/v)	15 - 47	20 - 50
E 100	(%v/v)	43 - 70	43 - 70
E180 (%	óv/v, min.)	85	85
FBP	(°C)	max. 215	max. 215
Density 15 °C	(kg/m ³)	725 - 780	725 - 780
Sulphur	(%m/m)	max. 0.05	max. 0.05

ULG = unleaded gasoline

Additives

Performance additives packages are individually added by most companies (optional).

1996 Sales

Unleaded: $3.862 \text{ metric tons x } 10^6$ Leaded: $0.341 \text{ metric tons x } 10^6$

91.9% unleaded

The trend shows that sales of ULG 98 are decreasing and sales of ULG 95 are increasing.

3.13. PORTUGAL

Sampling/Testing

All samples were taken from refineries and tests were run at refinery laboratories.

Specifications

All grades are regulated for some properties by an Official Specification: Portaria 1489/95 dated 29 December 1995. Other properties according to internal specifications.

Seasonal limits:		
RVP for all grades:		
15 October - 31 March	60 - 95 kPa	(10*RVP+7*E70 = max. 1200)
1 April - 31 May	45 - 80 kPa	(10*RVP+7*E70 = max. 1050)
1 June - 14 October	35 - 70 kPa	(10*RVP+7*E70 = max. 900)

Additives (total market)

The penetration of performance-additives in the Portuguese market is estimated as follows:

•	Unleaded gasoline	43 %
---	-------------------	------

- Leaded gasoline 38 %
- Diesel fuel 37 %

1996 Sales

Unleaded: 0.804 metric tons x 10^6 Leaded: 1.127 metric tons x 10^6 41.6% unleaded

The trends by grade in the market were:

- Super leaded \rightarrow decreasing
- Europremium \rightarrow increasing
- SuperPlus \rightarrow increasing

3.14. SPAIN

Sampling/Testing

All samples were taken from refineries, corresponding with refinery deliveries to intermediate distribution terminals. At the sampling the products were not additivated yet. The analyses were carried out in the Refinery Laboratories, except FIA- and GC-Aromatics analyses which were carried out in laboratories of one Research Centre.

The methods of analysis were as indicated in the specifications or equivalent.

The Gum content monitored is the **washed** gum.

Specifications

There were three different types of gasolines marketed:

Super	97 RON leaded
EUROSUPER	95 RON unleaded
SUPERPLUS	98 RON unleaded

The 97 RON leaded grade has to comply with the specifications according to the "Real Decreto 1485/1987" modified by the "Real Decreto 1513/1988". The specs for 95 RON unleaded were equivalent to the CEN standard EN 228 and published in the "Real Decreto 398/1996". There is no National Specification for the 98 RON unleaded but it is specified by an Industrial Agreement.

Units	95 F	nleaded RON 8/1996	97 I	leaded RON 5/1987*)	SuperPlus unleaded Industry agreed spec.							
	max.	min.	max.	min.	max.	min.						
Specific gravity 15 °C kg/m ³ Distillation	780	725	780	720	780	725						
Recovered at 70 °C %v/v	45	15	45	10	45	15						
Recovered at 100 °C %v/v	65	40	70	30	65	40						
Recovered at 180 °C %v/v		85		80		85						
End Point °C	215		210		215							
Residue %v/v	2		2		2							
Losses			1.5									
Reid Vapour Pressure kPa												
Winter (1 Nov 31 March)	80	45	78	55	80	45						
Summer (1 April - 31 October)	70	35	64	48	70	35						
VLI (10 RVP) + 7 E 70)												
Winter (1 Nov 31 March	1050				1050							
Summer (1 April - 31 October)	900				900							
Sulphur %m/m	0.05		0.13		0.05							
Copper Corrosion Scale	Class 1				Class 1							
Oxidation Stability minutes		360		240		360						
Gum content (washed) mg/100 ml	5		5		5							
Lead g/l	0.013		0.15		0.013							
Benzene %v/v	5		5		5							
Research Octane Number		95		97		98						
Motor Octane Number		85		87								
(RON + MON)/2						93						

* Modified by RD 1513/1988 (Lead content)

Additives

Performance additive packages are individually added by production or distribution companies. The penetration of additives in gasolines in the market is estimated of more than 90 %.

1996 Sales

Unleaded: $3.154 \text{ metric tons x } 10^6$ Leaded: $5.930 \text{ metric tons x } 10^6$

34.7% unleaded gasoline grades are increasing.

3.15. SWEDEN

Sampling/Testing

Samples for this report were all collected from refineries and terminals in Sweden from April to August 1996. All samples were analysed by the marketing oil companies, but not for all properties. Especially GC data were not available.

Only class 2 gasoline for catalyst cars was sampled for this survey.

Specifications

Leaded gasoline is not marketed. Instead, the industry offer the UL 98 octane quality blended with Anti-Valve-Seat-Recession additive to satisfy older engine technology.

During 1993, Sweden has developed an environmental classification for gasolines, comprising 4 different classes. From 1994, the quality marketed, both 95 and 98 octane, follows Class 2, specifications described in the following table. The Class 1 project is intended to be implemented in 1997.

The different gasoline qualities are normally named by their octane quality number (RON). Gasoline pumps are always labelled with "95" or "98". In this report the same table heading are used for all countries. To avoid any confusion regarding the names "Regular, Premium, Super" the headings for Sweden qualities in this report are:

- Super unleaded (95) "Europremium" = 95 RON
- Super unleaded (98) "SuperPlus" = 98 RON

The two summer grades, UL 95 and UL 98, are marketed in the period:

- Summer grade south: 14 April 30 September
- Summer grade north: 14 May 31 August

Property	Class 2
	Catalyst
Sulphur %m/m (max.)	0.01
RVP (S/W) kPa (max.)	70/95
RVP (S/W) kPa (min.)	45/75
E100 (S/W) %v/v (min.)	47/50
FBP °C (max.)	205
Benzene %v/v (max.)	3
Aromatic index (max.) (Aromatics/13)+Benzene	5.5
Oxygen %m/m (max.)	2
Lead mg/l (max.)	5
Phosphorus mg/l (max.)	Nil

Additives

Performance additives packages are individually added by most of the companies (opt.).

1996 Sales

Unleaded: 4.203 metric tons x 10^6 Leaded: 0 metric tons x 10^6

100% unleaded

3.16. SWITZERLAND

(Only data available).

1996 Sales

Unleaded: 3.223 metric tons x 10^6 Leaded: 0.459 metric tons x 10^6

87.5% unleaded

4. CONCLUSIONS

CONCAWE's gasoline quality survey, representing samples from a wide range of outlets, provides an overview of relevant fuel parameters in sixteen European countries.

It was not possible to present true sales weighted average qualities as insufficient samples were taken in some countries. Information on sales/trends can be found under the "Quality Statements" for each country.

The samples were taken in summer 1996 (mostly in June). In most of the countries (Denmark, Finland, Greece, Hungary, Norway, Portugal, Spain and Sweden) samples were taken at refineries/terminals. In Austria, Germany and Italy the samples were drawn at retail service stations. In Great Britain the samples were taken at both locations.

In countries where a sufficient number of samples was taken the results provide a reliable overview of the corresponding market situation.

As can be seen from the overviews of the fuel characteristics (Appendix 4 and 5), gasoline qualities by country and within individual countries can vary significantly. The reasons therefore are highly complex and the following provides only some basic facts:

- Gasoline properties are also dependent on refinery configuration.
- The demand ratio between gasoline, industrial gas-oil, diesel fuel and kerosine also influences the gasoline quality.
- The crude source favoured by particular countries/refineries is a complex issue. Basic crude quality has a major impact on resultant gasoline quality characteristics.

In CONCAWE's estimation the use of different (albeit approved) test methods when analysing the samples has little influence on the results.

In most of the countries a major segment of the market use multifunctional / detergent additives. The penetration of such fuels in the individual countries is mentioned in section 3 "Quality Statements".

Additive type, performance and dosage cannot be established by routine determination of the unwashed gum. However concentrations of additives used can vary widely in different market segments.

In most of the countries in this survey the FBP of the gasoline grades is specified not to exceed 215 °C. Values above 215 °C obtained in some fuel samples could possibly indicate contamination with diesel fuel by distribution.

Other distillation figures show a wide variation regarding to crude sources, refinery technology and different volatility classes as mentioned before.

Whilst a wide spread was found in the Vapour Pressure figures, these do not show a strict correlation between high RVP and "cooler climate" and low RVP in "warmer climate".

The EN 228 specification for unleaded gasoline was not applicable in all of the countries involved at the time the samples were taken for this survey.

General Comments on the Results

These data are not sales weighted and this must be considered in any interpretation. This survey gives an overview of gasoline qualities in Europe in 1996 and variation from one country to another result from:

- differences in refinery complexity, crude slate and amount of different fuel grades produced
- different level of specifications:
 - EN 228 was not introduced in all of the participating countries
 - different volatility classes
- the structure of the individual markets.

APPENDIX 1 COUNTRIES SURVEYED AND SAMPLE NUMBERS

Country	Country Abbr.	Samples	branded	non branded	%brand.:% non brand
Austria	AT	30	15	15	50 : 50
Belgium	BE	26	23	3	90 : 10
Denmark	DK	47	47	0	100:0
Finland	FI	12	1	11	10:90
France	FR	41	32	9	80:20
Germany	DE	319	172	147	60:40
Great Britain	GB	87	75	12	86 : 14
Greece	GR	95	95	0	100:0
Hungary	HU	116	116	0	100:0
Italy	ІТ	124	124	0	100:0
Netherlands	NL	24	24	0	100:0
Norway	NO	103	103	0	100 : 0
Portugal (S/N)	PT	31	31	0	100:0
Spain	ES	21	21	0	100:0
Sweden	SE	84	84	0	100:0
Switzerland	СН	37	37	0	100 : 0
Total		1197	1000	197	86 : 14

X X X X

××

d× ×× < k

××

SU 98	×			×	×	4			X			×	<	×	×		×	×	×	×	×	×	×	×	×	x	×		×	×			L	Ļ	L	L			
	×			×	×	ſ			×			×	{	×	×		х	×	×	×	×	×	×	×	×		×		×	×	_		L			L			
	×	×					Γ							×	×		х	×		×	х	×	×	×	×		X		×	×				L					×
5L 95	×	×												×	×		×	×		×	×	×	×	×	×		×		×	×				L	L				×
SL	×	х		×		1								×	×	×	×	×		×	×	×	×	Ľ×			×		×	×			L	L	L				×
	х	×		×	×	$\langle \rangle$	×	X	×	×	×>	< >	<	×	×	×	X	×	×	×	×	×	×	×	×	×			×						L				
50 95	Х	Х		×	×	$\langle \rangle$	×	×	×	×	×>	< >	٩×	×	×	×	×	×	×	×	×	×	×	×	×	×			×				L	L	L			×	
รั	×	×		×	×	$\langle \rangle$	×	X	×	×	×>	< >	٩×	×	Х	×	×	×	×	×	×	×	×	×		×			×										
	Х			×	×	<			×			Ý	<	×			×	×	×	×	×	×	×	×	×	×	×		×	×			L						
	Х			×	×	<			×			Ŷ	<	×			×	×	×	×	×	×	×	×	×	×	×		×	×	_		L			L			
SU 98	х	х		×	>	<			×			Þ	<	×	×	×	×	×		×	×	×	×	×	×	×	×		×	×	×	_×	×	×	×	Ľ	×	×	
50 35	×	×		×	7	<			х			À	<	×	×	×	×	×		×	×	×	×	×	×	×	×		×	×	×	×	×	Ľ	Ľ	×	×	×	
ş	×	×		×	×	4			×			Þ	<	×	×	×	×	×		X	×	×	×	×		×	×		×	×	×	×	×	×	×	×	\times	×	
SU 95	×	×		×	×	ф	×	×	×	×	×'	< >	٩×	×	X	×	×	×		Х	×	×	×	×	×	×	×		×	×	×			Ĺ					×
รี	×	×		×	7	ק >	: ×	×	×	×	×Þ	<>	۲×	×	X	×	×	×		×	×	×	×	×		×	×		×	×	×								×
5U 98	×	X		×	7	$\overline{\phi}$	$\langle \times \rangle$	×	×	×	×Þ	<>		×		×	×	×	×	×	×	×	×	×	×		×		×	X			ŀ		Γ				×
SU 95	×	x		×	>	ϕ	< ×	×	×	×	×ì	< >	$\langle \times$	×		×	×	×	×	×	×	×	×	×	×		×		×	x				Γ	Γ				×
St	×	Х		×	>	4>	< ×	×	×	×	×	< >	$\langle \times$	×		×	×	×	×	×	×	×	×	×			×		×	х									
RU 52	×	×		×	Þ	$\langle \rangle$	×	×	×	×	×	< >	$\langle \times$	×		×	×	х	X	×	×	×	×	×	×		×		×					L					
RL	×	×		×	Þ	< >	×	: ×	×	×	×	<>	$\langle \times$	×		×	×	×	×	×	×	×	×	×	×				×										
22 88	×	×		×	Þ	∢	۲×	:	×		Τ	Þ	$\langle \times$	×	×	×	×	×		×	×	×		×	×					×				L					×
50 95	×	x		×	ॊ		٩×	×	×	×	×Þ	×>	۲×	×	×	×	×	х	×	Х	×	×		×	×		×		×	×									×
5	x	х		×	7	$\langle \rangle$	۲×	×	×	×	×	<>	×	×	×	×	×	×	×	×	×	×		×			×		×	Х	×	×	<	×	×	×	×	×	×
SU 98	×	×		×	ॊ	$\overline{\phi}$	<u>م</u>	×	×	×	×	<>	$\langle \times \rangle$	×	×	×	×	×	×	×	×	×	×	×	×	×	×		х	х	×		I						
5U 95	×	×		×	T	4	٩×	$\langle \times \rangle$	×	×	×	$\langle \rangle$	$\langle \times$	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×								
ไร้	×	×		×	┝	ϕ	٢	×	×	×	×	< >	۲×	×	×	×	×	×	×	×	×	×	×	×	Γ	×	×		×	×	×			Ι					
52 98	×	×		×	<>	¢	۲×	×	×	×	×	×>	<×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×	×	< >	×	×	٩×	×	×	×
50 95	×	×		×	<>	þ	۲×	×	×	×	×	× >	٢×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×	×		< X	×	÷	×	×	×
SL		×			T	T	T	Т	Γ	Π			T	Τ				Γ	Γ		[Ι	Γ	Γ		Γ							Τ		Γ				
BU 92	×	×		×	4	办	4	ا ×	×	×	×	~ >	< ×	; ×	×	×	×	×	×	×	×	×	X	×	×	×	×	Γ	×	×	×	>	< >	<u>ل</u>	F	$\langle \times$	×	×	×
ទ្លន		—		×	卞	하	4	< <u>×</u>	×	×	×	×Þ	<×	ŧ×	×	×	×	×		×	×	†	×	×	×	[×	F	×		Γ	Ī	T	T	Т	Т	Γ		
50 25				×	\$		۲×	×	×	×	×	×>	<×	ŧ×	×	×	×	×		×	×		×	×	×	Ī	×	[×				T	T	Ī	Τ	Γ		
5C 88	×			Τ	「	4	T		Γ	П			Т	×	×		×	×	Γ	×	×	×	×	Ī×	×	×	×	1	×	×	Γ	Γ	Т	T	T	T	Γ		
5U 95	×	·			5	4	Ť		t	Π			十	TX	k		×	$\overline{\mathbf{x}}$	ſ	×	×		×	t _×	×	×	×	1	×	×		T	T	Т	T	Т	Τ-	Γ	T
	SUI SUI <td>Su Su S</td> <td>Su Su Su Su Ru St Su Su</td> <td>Su Su Su Ru St Su Su</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td>Su Su S</td> <td></td> <td>Su Su S</td> <td>Su Su S</td> <td></td> <td></td> <td></td> <td>Su Su S</td> <td></td>	Su S	Su Su Su Su Ru St Su	Su Su Su Ru St Su	Su S	Su S	Su S	Su S	Su S	Su S	Su S	Su S	Su S	Su S	Su S	Su S	Su S	Su S	Su S		Su S	Su S				Su S													

× × × ×

×× ××

×× ××

× × ×

×

×× ×

×

×

×

×

APPENDIX 2 TEST DATA AVAILABLE BY COUNTRY

	R.	×	×		×	×	×		×>	4-	$\langle \times$	×		-+	×	×			×		×		×	×					×				_	1	_					_	ļ	
	22 88	×	×		×	×	╉┉╉	×	┢		_	-		-+	××	–			-	×	×	×	.j	×					_	~	–		_		-	_				<	+	
GR	50 95	×	×		×	×	×			4	٩×	-	×	꺅	-	×		\vdash	×		×	×			×		×		×	×	+		_	-	 						-	
	ਤ ਹ	×	×		<u>×</u> _	ř	×	×	×	+	Ύ	×	×	<u> </u>	× ×	-	×		×		×	×	+	×			×		×		×		< >	×	Ť	×	×	×		< ×	¶×	×
	1 SU 98	×	×		×	Ľ	Ľ	-	Ŷ	⋬	4×	×	×	× :	×	+-			×		×		×	×	×	×	×		×		¥–				+	Ц						
GB	5U 35	×	×		<u>×</u> _	×	Ľ	×	×Þ	4	Ψ×	×	×	×	× ×	4	×		×		<u>×</u>		×	×	×	×	×		×		¥				4							┝─┤
	ซี	×	×		×	×	<u> </u>		<u>×</u> }	-	Ŷ	+		×	× ×		×		┝─┥	×	×		×	×		×	×		×	~				-	1					-	+	
	23 B	×	×		××		×		×)>	-	< <u> </u> ×				× ×		<u> </u>		×		×		×	ļ	×	×	×		×		×		<u>*</u> }	- 	-f	<u> </u>				< ×		
ΒG	. SU 95	<u>×</u>	×		××	×	×	×	×Þ	⋬	¥	ľ	×	×	× ×	: ×	×	×	×	×	<u>~</u>	×	ľ×	Ľ	×	×	×		×	~	(×		< >	×	¥	X	×	×	~~~~~~	<	4~	×
Ι.	รี	_	×	_		ļ	Į			4		ļ						Ц	\square				L	L									-	+	+					-	+	
	J RU 92	×	×		××	1	┿┈┥		×	+	-	+	-	-	××	- ļ			-	_	×	×	×	┣—	×	×	×		×	~	* ×	Ļ	*	42	1×	Ě	X	×	,	< ×	Ŧ	H
H	US 1 98				×	×	┉			4	-	·+	×	-+	<u>× ×</u>	+-	×	×		×	×		×	Ļ	×		×		×		<u> </u>		_	╇	4		-			╞	+	\vdash
	U SU 1 95			_	×	×		×	׾	4	4×	ľ	×	×		< ×				×	×		×	ł	×		×		×		+				╇	ļ				+	+	┢─┥
Ē	1 SU 98	×		$ \rightarrow $		×	+	_	_	+	+	╞	\square		× ×		×	×	Į	×	×		×	 	×	×	×		×	×	-				+	┝				╇	+	\vdash
	55L 95	×				×	ł		_	4	4-	+			× ×	-	×	×		×	×	×	-	ļ	×	×	×		×			ļ	-	Ļ	╇					_		Н
	1 S U 98	×			×	×	+		_}	+	4	ļ	×		׾×		×		4	×	×		×	⊢	×	×	×		×	<u> </u>			_	1			Ļ			_	+	╇
ž	1 SU 95	×			×	×	1		~ ^	4		╞	×		× ×	4	×	<u> </u>	×	×	×	×	<u> </u>	×	ļ	×	×		×	<u> </u>	- <u>+</u>		_	-	-		 			┢	+	┉
L	52 92	×					-	_	_	4	┿	╞		_	∔		×	ļ					¥	∔—	×				×	`	- -	ļ		+	+	_	_			+	┿	┝
I	กร 86	×	×		×	×		×		\$		¥	+	-	×Þ	1		-		×	×		4×	Ľ		×	×	ļ	×	<u> </u>	(×		×		4×	<u>+</u>	×	×			_	_
Ш	SS BS	×	×		×	×		×		\$	+	╀		×		- <u> </u>		×	ļļ	×	×		×	 	×	×	×	<u> </u>	×	<u> </u>		ļ	Ŷ	_	+-	×	+	.			+-	\vdash
L	li SL	×	×		×	×	×	×	×	狞	4×	ľ	×		×	< ×	×			×	×	×	-	×		×	×		×	ļ		ļ	×þ			1×	×				+	╇
<u>ا</u>	1 SU	×	×	\square	×		\bot		4	╇	-	-			×	+-	×		ţļ	×	×		×	÷	×	×	 		×	 		[╇	+-	╞	_	×		_	+-	┝
AT	1 SU 95	×			×		-		_	+	-	╞			×	_	_	×	1	×	×		×	ŧ	×	×		 	×	i—	4×	ļ		_		<u> </u>	╞	×				+
Ļ	RU 92	×			×		<u> </u>	Ļ		Ļ			Ļ	Ĥ	<u>×</u>		×	×		×	×		×	Ľ	×	×		 	×		<u></u>				+	╞		×		_	+	+
	Quality	Density 15°C	Lead content	Distillation	88 727	10%	20%	30%	40%	200 200	50.% 70%	80%	%06	95%	FBP Deciding	Losses		E100	E150	E180	Sulphur content	Octane Quality	NON	Rold Vapour Pressure	VLI (10"RVP + 7"E70)	Gum washed or unwashed	FIA	GC-Analysis	Benzene	Ether content	ETBE	Alcohol content	MeOH	ETUR TEA		NBA	IBA	Oxigenates	Aromatics	Benzene	10(uene Xulane	Total

APPENDIX 3 PARAMETERS MEASURED/TEST METHODS

Properties	Methods EN 228	Methods Survey 1996
1. Density at 15°C	ISO 3675/ASTM D 4052	ISO 3675/ASTM D 4052
2. Research octane number	ISO 5164	ISO 5164
3. Motor octane number	ISO 5163	ISO 5163
4. Lead content	EN 237	EN 237
5. Sulphur content	EN 24260/ISO 8754	EN 24260/ISO 8754
6. Alcohols content		NF M054/DIN51413
7. Ether content		NF M054/DIN51413
8. Benzene content	EN 238	EN 238
9. FIA Aromatics content Saturates Olefins		ASTM D 1319-95
10. Distillation E 70 E 100 E 125 E 180 IBP FBP	ISO 3405	ISO 3405
11. Volatility Reid Vapour Pressure E 70 VLI (10 x RVP + 7 x E 70)	EN 12 ISO 3405	EN 12/ EN 798 ISO 3405
12. Oxygenates content		NF M054/DIN51413
13. Existent gum content	EN 5	EN 26246
14. Oxidation stability	ISO 7536	
15. Copper strip corrosion	ISO 2160	

APPENDIX 4

OVERVIEWS BY COUNTRY

Quality			Regular	Regular unieaded (91)	(16) be			Super I	Super unleaded (95)	1 (95)			Super	Super unleaded (98)	d (98)	
Property	Unit	Spec.	E	Min.	Max.	Average	Spec.	c	Min.	Max.	Average	Spec.	u	Min.	Мах.	Average
Density 15°C	kg/m³	725 - 780	10	727.0	760.0	743.0	725 - 780	10	736.6	759.5	751.3	725 - 780	10	754.4	766.9	759.8
Lead content	l/gm	max. 13		1	1	I	тах. 13	1	1	1	1	max. 13	10	Ŷ	5	2
Distillation																
BP	ပု	1	10	35	39	37	1	ę	33	39	36	1	9	33	40	37
5%	ပံ	1	1	1	1	1	I	1	I	1	I	1	l	I	1	I
10%	ပ္	1	ł	1	1	I	1	1	ł	1	1		1	1	1	
20%	ပ္	1	I	1	1	1	1	1	1	1	1	ł	1	I	1	t
30%	ပ္	1	1		1	ł	1		1	1	1	ł	1		1	ł
40%	ပ္	1	I	1	1	1	1	1	I	1	1	1	1		1	ł
50%	ပ္	1	I	1	1	1	1	1	I	I		1	1	ł	1	1
60%	ပံ	1	1	I	1	1	1	1	I	1	1	1	1	1	1	1
70%	ပ္	1	I	1	1	1	I	1	I	1	1	1	ł	I	1	1
80%	ပ္	1	I	1	1	1	1	1	1	1	1	1	I	1	1	ł
80%	ပ္	ł	1	1	1	I	1	1	1	1	1	I	I	1	1	I
95%		1	1	1	1	1	1	1	1	ł	1	I	ł	1	1	1
685		max. 215	10	186	245	204	max. 215	1	194	222	207	max. 215	6	193	218	201
Residue		тах. 2	ł		1	1	max. 2	ł	1	ł	1	max.2	1	1	1	1
Losses	% viv	1	I	1	1	ł	I	1	I	I	1	1	1	1	1	I
ETO		15 - 45	10	27.3	47.5	33.4	15 - 45	9	27.4	34.6	30.1	15 - 45	10	24.2	31.5	28.8
E100	V/V %	40 - 65	10	41.6	64.8	55.6	40 - 65	5	48.0	58.0	51.8	40 - 65	9	47.6	53.5	51.1
E150	V/v %	1	1	1		1	1	1	1	1		1	1	1	1	1
E180	V/V %	min. 85	10	93.2	97.5	95.3	min. 85	10	93.2	97.6	95.3	min. 85	₽	94.0	97.0	95.7
Sulphur content	mg/kg	max. 500	10	20	170	49	max. 500	10	ę	120	54	max. 500	10	6	80	31
Octane quality															1	Ş
RON		min. 91.0 min. 82.5	19	82.6	85.0	83.2	min. 95.0 min. 85.0	1 0	84.6	87.2	85.4	min. 98.0 min. 87.0	5 5	98.0 85.6	87.6 87.6	96.4 87.2
		36 _ 70	ę	£3	69	65	35 - 70	\$	64	78	68	35 - 70	1 0	54	71	64
VLI (10"RVP + 7"E70)	5	max. 950	2 2	836	942	878	max. 950	10	843	1002	889	тах. 950	10	738	934	846
Gum unwashed	ma/100ml	1	10	4.0	64.8	36.9	1	10	11.2	64.8	43.9	1	10	26.6	78.0	55.3

Austria

concawe

							Belgium	æ								1
Quality			Supe	Super leaded	(86)			Super I	Super unleaded (95)	d (95)			Super	Super unleaded (98)	d (98)	
Property	Cuit	Spec.	E	Min.	Max.	Average	Spec.	u I	Min.	Max.	Average	Spec.	Ľ	Min.	Max.	Average
Density 15°C	kg/m³	720-770	8	731.9	762.3	748.4	725 - 780	6	736.6	762.6	748.6	725 - 780	on	732.8	770.1	758.5
Lead content	убш	150	8	126	146	137	тах. 13	6	< 2	< 2	< 2	тах. 13	6	< 2	< 2	~ 7
Distillation																
IBP			œ	28	36	31	1	Б	28	34	31	1	сл	99	33	5
5%			1	ł	1	1	I	1	1	1	1	1	1	1	1	1
10%			8	40	55	46	1	m	40	51	47	1	თ	4	53	48
20%			89	49	67	56	1	თ	50	61	57	1	თ	53	99	23
30%			œ	60	79	68	1	o,	62	73	69	1	6	65	81	2
40%			8	76	92	82	1	ŋ	76	87	82		Б	80	97	06
50%			8	06	106	96	1	ŋ	96	104	66	1	6	100	112	107
60%			83	100	118	109	ł	ۍ	108	120	111	1	თ	117	122	119
20%			8	109	131	121	I	ŋ	118	135	124	ł	on	124	134	130
80%	ပ္		8	119	145	135		ол С	133	149	139	I	g,	134	147	143
%06			8	140	161	154		ø	156	164	159	1	ŋ	149	164	159
95%			8	158	175	169	!	თ	164	175	169	1	on	161	177	169
FBP			80	174	198	189	max. 215	თ	179	196	190	max. 215	on	178	194	187
Residue	V/V %		œ	1.0	2.0	1.3	max. 2	თ	1.0	5	1.1	max. 2	σ	1.0	i, L	<u></u>
Losses			ŝ	0.5	1.5	0.7	•	ഹ	0.0	1.5	0.7	1	6 71	0.5	1. 5	1.0
E70	% v/v	15-45	œ	22.5	37.0	31.4	15 - 45	ŋ	27.5	35.5	30.8	15 - 45	a,	23.0	34.0	28.2
E100	% v/v	40-70	æ	46.0	61.1	53.3	40 - 65	თ	48.0	53.5	51.9	40 - 65	ъ	42.5	50.5	46.3
E150	% viv	,	1	ł	1	I	1	I	1	ł	l	1	1	I	1	1
E180	VIV %	•	8	96.0	98.5	97.3	min. 85	6	96.0	98.5	97.6	min. 85	а	9.79	98.5	97.5
Sulphur content	mg/kg	max. 500	8	< 100	< 100	< 100	max. 500	4	100	300	150	тах. 500	đ	< 100	< 100	< 100
Octane Quality																
RON		97.5	80	98.6	100.9	93.6	min. 95.0	თ	96.7	98.3	97.3	min. 98.0	en.	98.4	100.8	99.3
MON		-	8	88.0	88.7	88.2	min. 85.0	6	85.1	85.4	85.2	min. 87.0	ъ	88.0	88.4	88.1
Reid Vapour Pressure	kPa		8	70	86		45-80	a	69	86	79	45-80	en.	72	86	5
VLI (10*RVP + 7*E70)				ŀ	1	I	max. 1050	5	884	1089	1000	max. 1050	6	881	1094	970
Gum unwashed	mg/100ml		8	3.0	124.0	37.1	ı	თ	2.0	64.0	28.4	1	6	10.0	60.0	35.4

report	no.	5/98
--------	-----	------

							•									
Quality			Supe	Super leaded(98)	1(98)			Super	Super unleaded (95)	d (95)			Super	Super unleaded (98)	(86) pe	
Property	Unit	Spec.	E	Min.	Max.	Average	Spec.	u	Min.	Max.	Average	Spec.	-	Min.	Max.	Average
FIA																
Aromatics	V/V %		80	27.4	43.7	37.2	ł	თ	32.5	43.0	37.5	ł	c,	32.5	51.1	44.0
Olefins	~^/ ^/		ø	6.7	17.9	11.8	I	<u>о</u>	10.2	18.9	15.6	1	ch	2.8	6.6	6.0
Saturates	% v/v		89	38.7	64.4	49.7	I	6	38.0	52.2	46.8	1	6	39.2	58.7	47.9
GC-Analysis																
Benzene	V/V %		89	6.0	2,3	1.9	тах. 3	ø	1.2	2.4	1.7	тах. 3		0.4	2.9	1.9
Ether content							max. 15					max. 15				
MTBE	V/V %		80	< 0.1	2.4	1.2		6	< 0.1	0.4	0.1		~~~	0.6	5.7	2.5
ETBE	NN %		8	 0.1 	< 0.1	< 0.1	73936	თ	< 0.1	< 0.1	< 0.1		m	< 0.1	40.1	< 0.1
Alcohol content							***									
MeOH	V/V %		æ	< 0.1	< 0.1	< 0.1	max. 3	6	< 0.1	< 0.1	< 0.1	тах. 3	0	< 0.1	< 0.1	< 0.1
EtOH	∧/∧ %		8	< 0.1	< 0.1	< 0.1	max. 5	o	< 0.1	< 0.1	< 0.1	max. 5	5	< 0.1	< 0.1	< 0.1
TBA	V/N %		~	< 0.1	< 0.1	< 0.1	max. 7	σ	< 0.1	< 0.1	< 0.1	max. 7	σ	< 0.1	< 0.1	< 0.1
IPA	N/N %		œ	× 0.1	< 0.1	< 0.1	max. 5	თ	 <td>< 0.1</td><td>< 0.1</td><td>max. 5</td><td>л</td><td>< 0.1</td><td>< 0.1</td><td> < 0.1 </td>	< 0.1	< 0.1	max. 5	л	< 0.1	< 0.1	 < 0.1
NBA	^/∧ %		80	× 0.1	< 0.1	<0.1	max. 7	σ	< 0.1	< 0.1	< 0.1	max. 7	o,	< 0.1	< 0.1	<0.1
IBA	N/N %		80	×0.1	< 0.1	× 0.1	max. 7	თ	< 0.1	< 0.1	< 0.1	max. 7	Б	< 0.1	< 0.1	< 0.1
Oxygen content	m/m %		ŝ	0.10	0.50	0.28	max. 2.5	æ	< 0.10	0.20	0.04	max. 2.5	on	0.10	1.10	0.49
Aromatics																
Benzene	m/m %		ł	I	1	I	I	I	1	ł	1	ł	ł	I	I	1
Toluene	m/m %		1	ļ	I	I	1	ł	I	1	1	1	1	I	!	I
Xylene	m/m %		1	1	I	I	1	I	1	1		1	t	ł	!	1
Total	m/m %		ł	I	ł	ł	I	I	1	I		I	I	ł	!	1
												1	-			

Belgium

					ſ			2								ſ
Quality			Regula	Regular unleade	ed (92)			Super I	Super unleaded (95)	d (95)			Super	Super unleaded (98)	d (98)	
Property	Unit	Spec.	E	Min.	Max.	Average	Spec.	Ľ	Min.	Max.	Average	Spec.	e	Min.	Max.	Average
Density 15°C	kg/m³	710 - 750	4	733.6	744.6	738.4	730 - 770	23	740.7	764.5	754.4	730 - 780	20	758.9	771.6	766.2
Lead content	убш	тах. 13	1	ŀ	1	ŀ	max. 13	1	1	1	-	max. 13	1	ł	ł	1
Distillation																
d8	ပံ	1	1	I	1	1	I	÷	28	3	30	I	10	27	90	29
5%	ပံ	I	1	1	ł	1	I	1	1	1	1	1	1	1	I	1
10%	ပ္	1	1	1	1		l	5	47	49	48	I	ę	46	49	47
20%	ပ့	1	1	1	1	1	I	ł	1	1]	I	1	1	ł	1
30%	ပ္	1	1	I	1	1	I	1	1	I	1	I	1	I	1	
40%	ູ່	1	ł	1	1	1	I	1	1	1	1	I	1	I	1	
50%	ပ္	1	ł	1	ł	I	ł	1	88	11	66	ł	9	92	113	109
60%	ပ့	1	ł	I	1	1	I	1	1	1	1	l	1	I	1	1
20%	ပ့	1	ł	1	ł	1	1	I	ł	I	1	1	1	1	I	1
R0%	ç	ł	1	I	ł	ł	1	1	1	1	ł	1	I	1	ł	1
20%	ပ္	ł	1	ł	1	I	1	÷	146	163	155	I	10	148	162	155
% 5 6	ပ္	1	1	ł	1	I	1	1	1	1	1	ł	1	I	1	1
dBi	ç	ł	I	1	I	1	1	20	180	196	187	ł	16	182	191	188
Residue	% viv	I	ł	1	ł	1	1	თ	0.5	1.0	0.6	тах. 2	9	0.5	1.0	0.6
Losses	V/V %		1	ł	1	1	1	1	ł	1	ł	1	1	1	l	1
E70	v/v %	15 - 47	4	36.0	41.0	37.3	15 - 47	20	24.1	36.0	30.0	15 - 45	16	24.9	31.5	26.7
E100	V/V %	43 - 70	4	57.0	64.0	60.3	43 - 70	20	42.4	58.1	50.0	40 - 65	16	42.0	55.2	44.3
F150	N/N %	I	1	1	1	1	1	4.	81.6	92.0	87.1	I	<u>0</u>	81.3	91.3	86.4
E180	Viv %	min. 85	1	ł	1	1	min. 85	20	96.5	99.3	98.2	min. 85	16	97.0	99.5	98.1
Suiphur content	mg/kg	max.500	1	1	-	1	max. 500	7	24	70	47	тах.500	6		34	13
Octane Quality																
RON		min. 92.0	4	92.0	92.4	92.1	min. 95.0	23	95.0	97.4	96.0	mìn. 98.0	50	98.0	100.2	0.66
MON		min. 83.0	4	83.2	83.9	83.5	min. 85.0	23	85.0	88.3	86.1	min. 88.0	20	87.5	89.5	88.5
Reid Vapour Pressure	kPa	45 - 80	4	80	80	80	45 - 80	20	72	80	78	45 - 80	16	69	82	78
VLI (10*RVP + 7*E70)		max.1200	4	1024	1087		max. 1050	50	936	1052	988	max.1050	9	872	1012	96/
Gum unwashed	mg/100ml	I	1	1	ł	1	1	+	47.9	47.9	47.9	1	-	103.7	103.7	103.7

Denmark

Concawe

	<u> </u>	ge	T				Г																	
		Average		48.5	9.5	1		2.4		6.3	1		1								1			
	(86) þe	Max.		51.0	10.7	ł		3.0		8.4	1		1	1	1			1	1		I	ł	1	1
	Super unleaded (98)	Min.		44.4	0.4	I		1.7		0.1	I		I	I	1	1	ł	I	1		I	1	1	-
	Super	Ľ		10	: ₽	1		16		14	ł		ł	I	ļ	1	1	I	I		ł	1	1	1
		Spec.		1	1	I		max. 5	max. 15				max. 3	max. 5	тах. 7	max. 5	max. 7	max. 7	max. 2.5		1	I	ł	I
		Average		41.8	6.7	1		2.4		0.4	l		ļ	1	1	1	1	1	1		ł	1	1	1
	id (95)	Max.		47.3	18.0	ł		2.9		1.9	I		ł	1	ł	I	I	I	1		l	1	ł	ł
	Super unleaded (95)	Min.		38.8	0.7	I		1.6		0.0	1		ł	I	I	I	1	1	1		1	1	1	1
ark	Super	5		1	++	I		20		18	I		ł	1	ł	I	I	1	1		I	ł	ł	ł
Denmark		Spec.		ł	I	ł		тах. 5	max. 15				тах. 3	max. 5	max. 7	max. 5	тах. 7	тах. 7	тах. 2.5		ł	1	1	1
		Average		1	1	ł		< 2.5		< 0.1	1		1	1	ł	l	I	ł	1		1	I	ł	I
	ed (92)	Max.		1	1	ł		< 2.5		< 0.1	I		1	1	1	1	ţ	1	1		l	1	1	1
	Regular unleaded (92)	Min.		I	I	ł		< 2.5		< 0.1	1		1	I	I	1	1	1	1		1	ł	I	1
	Regula	u,		ł	1	1		4		4	1		ł	1	1	1	ł	ł	1		1	1	1	1
		Spec.		1	1	I		max. 5	max. 15				тах. 3	max. 5	max. 7	max. 5	тах. 7	тах. 7	max. 2.5		1	ł	I	1
		Unit		V/V %	VIV %	VIV %		V/V %		V/V %	V/V %		∧/∧ %	N/N %	% ۷/۷	۸/۸ %	% v/v	V/V %	m/m %		% m/m	m/m %	% m/m	m/m %
	Quality	Property	FIA	Aromatics	Olefins	Saturates	GC-Analysis	Benzene	Ether content	MTBE	ETBE	Alcohol content	МеОН	EtOH	TBA	IFA	NBA	[IBA	Oxygen content	Aromatics	Benzene	Toluene	Xylene	Total

CONCAWe

report no. 5/98

					Finland						
Quality			Super	Super unleaded (95)	d (95)			Super	Super unleaded (98)	d (98)	
Property	Unit	Spec.	u	Min.	Max.	Average	Spec.	c	Min.	Max.	Average
Density 15°C	kg/m²	725 - 780	7	739.8	759.9	748.5	725 - 780	5	755.1	767.8	762.1
Lead content	l/gm	max. 13	7	< 2	< 2	< 2	max. 13	5	< 2	< 2	< 2 2
Distillation											
BP	ပ္	I	1	I	1	I	ł	1	ł	ł	I
5%		1	1	I	1	1	I	1	I	1	1
10%	ပ္	1	~	41	2	49	I	ц	49	56	51
20%		1	1	I	1	1	I	1	ł	1	I
30%		1	1	1	1	1	1	1	I	1	1
40%		1	1	I	1	1	1	1	ł	ł	1
20%		1	1	I	1	1	1	1	I	ł	1
60%		1	1	1	1	1	1	1	I	1	1
%02		1	1	1	ł	1	I	1	I	ł	1
80%		ł	1	I	1	1	I	1	1	ł	1
%06		I	1	I	1	1	ł	I	I	ł	1
95%		1	1	1	1	1	I	ł	ł	1	1
481		max. 215	7	181	204	190	max. 215	Ś	179	207	189
Residue	% v/v	max. 2	7	1.0	1.3	1.2	max. 2	S	-	1.3	7.7
Losses		1	1	-	ł	1	I	1	1	ł	I
E70	V/V %	15 - 45	7	22.5	40.5	29.2	15 - 45	ŝ	20.2	28.4	24.9
E100	V/V %	40 - 65	2	47.6	65.6	56.7	40 - 65	ŝ	44.0	50.8	47.9
E150	% v/v	ł	1	1	1	1		1 1	1		
E180	% ۷/۷	min. 85	7	96.2	98.6	97.7	min. 85	ŝ	90.3	98.0	9.72
Sulphur content	mg/kg	max. 500	7	< 50	100	34	max, 500	5	< 50	70	14
Octane Quality											
RON MON		min. 95.0 min. 85.0	~ ~	95.2 85.3	96.8 86.1	96.0 85.7	min. 98.0 min. 87.0	ມ	99.3 88.2	99.7 88.7	99.5 88.4
Daid Vanour Braceura	¢Da	45-80		66	20	69	45-80	5	66	69	67
VLI (10*RVP + 7*E70)	3	max. 1050	7	858	944	893	max. 1050	ъ	811	869	850
Gum unwashed	mg/100ml	1	7	< 1.0	42.6	6.1	1	S	ł	1	ł

Finland

Quality			Super	Super unleaded (95)	(36) p			Super	Super unleaded (98)	(86) bi	
Property	Unit	Spec.	u	Min.	Max.	Average	Spec.	c	Min.	Max.	Average
FIA											
Aromatics	V/V %	ł	7	22.0	36.0	28.7	I	S	29.6	44.0	38.3
Olefins	۸/۸ %	ł	7	2.0	12.0	7.4	1	S	1.8	4.8	3.6
Saturates	V/V %	1	7	46.0	58.0	51.4	1	ເດ	41.0	53.5	45.6
GC-Analysis											
Benzene	% v/v	max. 3	2	0.3	0.9	0.6	max. 3	ŝ	0.4	0.9	0.5
Ether content		max. 15					max. 15				
MTBE	V/V %		7	4.2	12.7	8.0	<u>.</u>	ŋ	11.6	14.2	12.4
ETBE	NN %		ł	1	I	1		I	ļ	I	I
Alcohol content											
MeOH	V/V %	max. 3	ł	I	1	ł	max. 3	1	ł	I	1
EtOH	V/V %	max. 5	I	I	ł	ł	тах. 5	1	ł	I	1
TBA	√\v %	тах. 7	ł	1	ł	I	max. 7	ł		I	1
IPA	∿\v %	max. 5	I	ł	I	1	max. 5	I	1	ł	1
NBA	V/V %	max. 7	1	1	ł	ł	тах. 7	I	1	1	I
IBA	V/V %	max. 7	I	1	I	I	тах. 7	1	1	ł	
Oxygen content	% m/ш	max. 2.5	I	I	ł	ł	тах. 2.5	1	1	ł	1
Aromatics											
Benzene	m/m %	I	I	ł	I	1	ł	1	1	ł	ł
Toluene	m/m %	I	1	1	I	1		1	ł	1	
Xylene	m/m %	ł	1	1	I	1	1	I		ł	1
Total	m/m %	I	l	1	1	ł	1	1	1	I	I

Finland

											ſ
Quality			Super	Super unleaded	d (95)			Super	Super unleaded	d (98)	
Property	Unit	Spec.	٢	Min.	Max.	Average	Spec.	Ľ	Min.	Мах.	Average
Density 15°C	kg/m²	725 - 780	ł	I	ł	1	725 - 780	1	1	ł	1
Lead content	l/gm	тах. 13	ł		1		max. 13	1	1	1	1
Distillation											
BP	ပ္	1	20	28	35	3	I	24	28	34	30
5%		1	1	I	ł	1	1	1	ł		1;
10%		ł	20	47	54	8	1	2	48	25	51
20%		ł	20	54	67	61	1	2	23	69	64
30%		ł	20	09	85	73	1	24	68	86	11
40%		ł	20	70	103	87	1	21	78	101	92
20%		ł	20	83	118	101	1	21	89	118	105
60%		I	20	102	129	115	I	3	101	129	116
20%		I	20	117	139	128	ł	2	115	138	127
80%		ł	20	130	151	140	1	2	130	147	138
%06		I	20	146	167	157	I	21	144	159	152
65%		1	20	156	182	170	1	21	152	173	163
481		max. 215	20	176	208	193	max. 215	21	174	195	186
Residue	% vív	max. 2	20	0.5	1.0	6.0	max. 2	21	0.5	1.0	6.0
Losses	V/V %	I	20	0.5	1.0	0.6	l	5	0.5	1.0	0.6
E70	۸/۸ %	15 - 45	20	22.0	40.0	29.2	15 - 45	5	21.0	32.0	25.4
E100	V/V %	40 - 65	20	40.0	59.0	49.2	40 - 65	54	40.0	59.0	46.1
E150	۸/۸ %	1	1 :	ł	1	ij	1	i a	ļ	1 2	1 2
E180	∧/∧ %	min. 85	20	95.0	99.U	2.18	min. 85	17	U.76	23.U	4°0°4
Sulphur content	mg/kg	max. 500	20	100	390	210	max. 500	21	20	6	56
Octane Quality											
RON		95.0	1	1	ł	I	98.0	1	1	1	1
MON		85.0	20	84.6	85.6	85.2	87.0	24	87.7	88.3	88.1
Reid Vapour Pressure VI I (10*RVP + 7*E70)	kРа	35 - 70 max. 900	2 2 2 2	58 775	69 897	63 835	35 - 70 max. 900	23	60 748	68 852	64 820
Gum unwashed	mg/100ml				1	1	1	-		1	

France

CC											
Quality			super	super unieaded (95)	(cs) D			Super	Super unleaded (98)	(ac) bi	
Property	Unit	Spec.	Ľ	Min.	Max.	Average	Spec.	Ш	Min.	Max.	Average
FIA											
Aromatics	V/V %	ł	20	26.3	52.7	41.1	1	21	34.3	60.2	48.2
Olefins	NN %	1	88	6.7	22.6	14.8	1	2	0.9	19.4	7.1
saturates	7/0 V/V	1	20	31.6	57.2	44.1	1	21	25.4	58.0	44.7
GC-Analysis											
Benzene	۸/۸ %	max. 5	20	0.8	3.7	2.3	max. 5	21	0.6	4.9	2.8
Ether content		max. 15					max. 15				
MTBE	۷/۸ %		1	1	ł	1	I	I	I	ł	ł
ETBE	V/V %		I	1	ł	1	ł	ł	I	ł	I
Alcohol content											
MeOH	∿/∧ %	max. 3	I	1	I	I	max. 3	I	I	I	ł
EtOH	V/V %	max. 5	1	1	ł	1	max. 5	I	1	I	1
TBA	V/N %	max. 7	1	1	I	I	max. 7	ł	1	I	1
IPA	V/V %	max. 5	1		ł	I	max. 5	ł	I	1	ł
NBA	۸/۸ %	max. 7	1	1	I	1	max. 7	ł	ł	I	ł
IBA	∧/∧ %	тах. 7	I	1	ł	1	max. 7	ł	1	ł	I
Oxygen content	m/m %	max. 2.5	1	1	I	I	max. 2.5	I	I	I	1
Aromatics											
Benzene	% m/m	I	1	I	ł	I	I	1	1	I	I
Toluene	m/m %	1	1	1	1	1	1	1	I	I	I
Xylene	m/m %	1	1	1	1	ł	1	1	1	I	I
Total	m/m %	1	I	1	1	1	1	ł	1	ł	ł

France

Quality			Regulai	Regular unleaded (91)	ed (91)			Supe	Super leaded (98)	d (98)	
Property	Unît	Spec.	c	Min.	Мах.	Average	Spec.	u	Min.	Max.	Average
Density 15°C	kg/m³	725 - 780	96	731.7	763.6	745.3	I	1	ł	ł	1
Lead content	l/ɓɯ	тах. 13	96	0	1	***	1	1	I	1	ł
Distillation											
IBP			3 6	27	20	33	1	ł	ł	1	1
5%			ł	1	ł	1	1	I	1	1	I
10%		1	96	47	20	2 2	1	1	ł	1	I
20%		1	96	55	69	61	I	1	1	ł	1
30%		1	96	63	õ	2	1	l	1	ł	1
40%		I	96	73	96	83	1	1	I	1	1
50%		1	96	87	110	<u> 38</u>	1	I	ł	I	1
60%		1	96	104	125	114	I	1	1	1	1
20%		I	96	119	143	130	ł	1	1	1	1
80%		1	96	135	159	147	1	1	1	I	1
20%	ပ္	i	96	149	179	165	l	l	1	I	1
95%		1	96	163	199	181	1	ł	I	1	1
481		max. 215	96	177	220	201	1	1	1	I	1
Residue		max. 2	36	1.0	1.3	1:0	ł	ł	I	1	1
Losses		1	96	0.2	2.9	1.4	1	ł	1	I	1
E70	% v/v	15 - 45	96	22.5	37.7	30.0	I	ł	1	1	I
E100	% v/v	40 - 65	96	44.6	58.0	51.7	1	1	1	1	1
E150	% v/v	1	96	75.4	91.6	83.2	1	1	ł	I	1
E180	V/V %	min. 85	96	90.8	99.0	95.3	1	1	I	1	1
Sulphur content	mg/kg	max. 500	96	-10	490	244	1	1	I	ł	1
Octane Quality											
RON		min. 91.0	96	90.7	95.8	93.5	1	ł	ł	I	1
MON		min. 82.5	96	82.3	83.2	82.7	1	1	;	1	
Reid Vapour Pressure	kPa	35 - 70	96	48	72	64	I	1	ł	I	1
VLI (10*RVP + 7*E70)		max. 950	96	655	964	853	1	1	1		1
Gum unwashed	mg/100ml	I	96	1.0	300.0	41.1	ł		1	***	l

Germany

38

					y					
Ŕ	ല	gular	Regular unleaded (91)	ed (91)			Sup	Super leaded (98)	d (98)	
Spec.		u	Min.	Max.	Average	Spec.	r	Min.	Max.	Average
		96	22.0	65.6	33.1	ł	I	1	ł	ł
бл 	σ.	9	0.8	32.7	16.6	I	1	1	1	1
	Ξī i		25.2	65.0	49.9	1	1	I	1	1
max. 5 96	36		0.6	3.2	1.5	I	1	ł	I	I
max. 15										
96	98		0.0	2.9	0.3	ł	ł	ł	I	
96	96		0.0	0.0	0.0	1	1	I	I	1
max. 3 96	98		0.0	0.0	0.0	1	ł	I	I	1
	ശ്ല		0.0	0.0	0.0		ł	I	I	1
max. 7 96	90		0.0	1 .8	0.1	1	I	1	1	1
	g		0.0	0.0	0.0	ł	1	ł	I	1
	98		0.0	0.0	0.0	I	I	1	1	1
	99		0.0	0.0	0.0	I	I	1	1	I
пах. 2.8 🛛 96	99		0.00	0.53	0.07	1	1	I	I	1
	90		0.7	3.7	1.8	1	I	1	1	!
	æ		3.8	15.2	8.5		1	1		1
- 36	96		4.6	16.6	10.4	1	I	1	1	1
	ഴ്ജ		23.5	49.3	34.9	1]			

Average 759.7 99.3 88.0 48.4 66 854 5 Super unleaded (98) Max. 120.5 785.4 102.2 89.1 190 78 983 Min. 728.8 97.4 85.4 52 1.0 10 o 80 80 80 80 E 80 80 808 min. 98.0 min. 88.0 тах. 215 тах. 2 35 - 70 max. 950 max. 500 725 - 780 min. 85 max. 13 15 - 45 40 - 65 Spec. I I Average 755.6 46.2 96.3 85.2 106 64 843 ~ Max. 772.3 100.0 Super unleaded (95) 280 99.7 86.0 72 -----Min. 733.4 94.9 84.4 1.0 9 55 o 96 98 88 c 96 96 98 98 max. 215 max. 2 min. 95.0 min. 85.0 35 - 70 max.950 725 - 780 max. 500 max. 13 ---min. 85 15 - 45 40 - 65 Spec. I mg/100ml mg/kg kg/m³ **** \$\$\$\$ Unit l/ɓw КРа 18P 5% 70% 20% 20% 40% 60% 60% 80% 90% 95% FBP FBP FBP Reid Vapour Pressure VLI (10*RVP + 7*E70) 15°C Quality Sulphur content Gum unwashed E70 E100 E150 E180 **Octane Quality** Lead content Property Distillation Density RON

Germany

Quality			Super	Super unleaded (95)	id (95)			Super	Super unleaded (98)	ed (98)	
Property	Unit	Spec.	E	Min.	Max.	Average	Spec.	_	Min.	Max.	Average
FIA											
Aromatics	% v/v	ł	96	28.7	56.8	40.3	1	80	17.4	72.9	40.7
Olefins	% v/v	1	96	0.9	20.5	9.2	I	80	1.0	11.7	4.9
Saturates	% v/v	1	96	32.2	60.3	48.7	1	80	11.2	63.0	47.9
GC-Analysis											
Benzene	% v/v	max.5	96	0.5	4.1	2.1	тах. 1	80	0.3	2.0	0.8
Ether content		max. 15					max. 15				
MTBE	V/V %		96	0.0	9.6	1.6		80	0.0	13.6	6.2
ETBE	% <i>دا</i> ر		3 6	0.0	0.0	0.0		80	0.0	0.0	0.0
Alcohol content											
MeOH	v/v %	max. 3	96	0.0	1.8	0.1	max. 3	80	0.0	0.5	0.0
EtOH	v/v %	max. 5	96	0.0	0.0	0.0	max. 5	80	0.0	0.0	0.0
TBA	% v/v	max. 7	96 96	0.0	2.5	0.1	max. 7	80	0.0	5.2	0.2
IPA	V/V %	max. 5	96	0.0	0.0	0.0	max. 5	80	0.0	0.0	0.0
NBA	∧/∧ %	max. 7	96	0.0	0.0	0.0	max. 7	80	0.0	0.0	0.0
IBA	viv %	max. 7	96	0.0	0.0	0.0	тах. 7	80	0.0	0.0	0.0
Oxygen content	m/m %	max. 2.8	96	0.00	2.16	0.36	max. 2.8	80	0.00	2.65	1.21
Aromatics							·				
Benzene	m/m %	1	96 1	0.6	4.8	2.4	ł	80	0.3	2.3	1.0
Toluene	m/m %	I	96	6.9	21.6	13.0	I	80	3.9	33.3	15.6
Xylene	m/m %	I	96	4.5	35.6	13.9	1	80	5.3	23.3	13.5
Total	/// m/m	1	<u> 96</u>	33.8	55.6	44.8	1	80	18.8	60.1	45.6

Germany

Spec	Super lead n Min. 32 721.0	ded Max. 751.1	Average 736.4	Si Spec 725 - 780	32 In I	Super unleaded n Min. 32 729.3	(95) Max. 765.2	Average 745.5	Spec 725 - 780	n n 23	Super unleaded n Min. 23 739.7	d (98) Max. 778.7	Average 756.7
32 66		150	128	max 13		0	m	-	max 13	16	4	4	2
32 23		35	3	1	32	25	35	3	I	23	26	35	31
1		i	1	1	1	1	ł	 I	ł	1	1	1	I
32 46		3	49	1	32	4	56	49	1	23	41	53	49
32 54		63	58	1	32	55	69	60	1	22	50	73	62
32 62		75	69	I	32	64	82	72	I	22	61	88	75
		2	81	ł	32	76	94	84	I	23	75	102	88
32 84		105	64	1	32	68	108	97	1	23	88	115	102
32 100		118	108	ł	32	103	120	÷.	ł	23	100	125	114
32 115		131	122	ł	32	113	131	123	I	22	111	133	124
32 131		150	139	1	32	126	147	138	1	22	123	147	135
32 150		177	162	1	32	148	172	157	1	23	141	165	151
21 175		199	188	ł	2	174	190	182	I	1 5	168	184	175
32 184		213	200	max 215	32	182	210	196	max 215	23	170	209	189
32 0.7		2.0	÷	max 2	32	0.7	4.0	12	max 2	23	0.6	r. Si	1.0
32 0.2		3.0	1.7	1	32	0.5	4.0	2.4	1	53	0.8	4.1	2.4
32 27		39	32	15 - 45	32	21	37	30	15 - 45	53	19	37	28
32 46		61	55	40 - 65	32	45	59	53	40 - 65	23	39	62	49
32 80		32	87	I	32	84	93	88	1	22	83	3 2	9
32 91		98	95	mìn 85	32	92	98	96	тп 85	22	94	66	98
31 230		1000	558	max 500	32	80	200	303	max 500	ខ្ល	9	400	180
			1		ł		1	2		ş	6 1 0	2	5
77 AP./		4	21.1	0.02	3 5	20.0	C'/F	- 0 0 0	niin 30.0	3 5	0,10	7 0 0 0	0.0C
_		r.)8	9.08	0.c8 nm	ž	24./	-00-	4.00		3	000	000	5,14
32 70		68	75	45 - 80	32	60	81.5	22	45 - 80	33	<u>66</u>	83	75
32 908	œ	1096	977	max 1050	32	747	1055	936	max 1050	23	802	1089	943
		100 mm										Į	

concawe

report	no.	5/98
--------	-----	------

Quality			Su	Super leaded	۶đ		Ñ	uper	Super unleaded (95)	1 (95)		S	uper	Super unfeaded (98)	d (98)	
Property	Unit	Spec	E	Min.	Max.	Average	Spec	Ľ	Min.	Max.	Average	Spec	u	Min.	Max.	Average
Density 15°C	Unit		32	721.0	751.1	736.4	725 - 780	32	729.3	765.2	745.5	725 - 780	23	739.7	778.7	756.7
FIA																
Aromatics	viv %	1	÷	16	35	28	I	5	24.7	41.2	33.0	1	80	29.1	55	40.3
Olefins	N/N %	I	÷	~	20	ζ,	1	5	4.9	12.2	8.6	ł	8	0.8	11.4	5.2
Saturates	N/N %	Ŧ	÷	53	67	57	1	7	52.5	66.2	58.4	ł	80	41.6	61.1	54.5
GC - Analysis													E			
Benzene	∧/∧ %	тах 5	32	0.3	3.8	1.7	max 5	32	0.3	4.4	2.5	max 5	23	0.49	4.8	3.09
Ether content		max 10	-				max 10					max 10				
MTBE	N/N %	_	÷	0	0.8	0.1		7	0	0.5	0.1		80	0	0.98	0.21
ETBE	N/N %	_	ž	0	0	0		Ŧ	0	0	0		~~~~	0	0	0
Alcohol content		_														
MeOH	N/N %	max 3	1	1	1		max 3	ł	1	1	ł	тах 3	1	1	1	ł
EtOH	∧j∧ %	max 5	I	1	1	1	тах 5	1	1	I	1	max 5	1	1	1	ł
TBA	~/^ %	тах 7	1	I	1	1	max 7	I	1	ł	ł	max 7	I	I	1	ł
IPA	N/N %	max 5	1	l	I	1	max. 5	1	1	ł	I	max 5	I	ł	I	1
NBA	N/N %	max 7	1		1		max 7	I	ł	1	ł	max 7	I	ł	ł	1
IBA	∧/∧ %	max 7	I	I	I	ł	max 7	I	1	1		max 7	ł	l	ł	1
Oxygen Content	ш/ш %	max 2.5	I	1	ł	1	max 2.5	1	I	I	ł	max 2.5	1	ł	ł	ł
Aromatics																
Benzene	m/m %	I	1	I	I	1	1	1	1	I		I	I	1	1	1
Toluene	//////	I	1	ł	I	1	1	1	1	ł		1	I	I	1	1
Xylene	m/m %	I	1		1	1	I	1	1	1		ł	1	1	I	1
Total	m/m %	1	I	1	1		1	1	1	I	1	I	1	1	1	1
			1					J		1			-			

Great Britain

	Super unleaded (98)	e Spec. n Min. Max. Average	725-780 3 777.0 778.5 778.0	max.13 3 1 3 2			1 ;		1 74 74	85			1		1 171 171	187 187	3 210 215	1.0 1.2	1 1.0 1.0	3 16.0	42.0	1	min. 85 3 93.0 94.0 93.3	max. 500 3 100 100 100		6 0.86 0		35-70 3 55 61 58	554 122	3 <1 <1 <1
	5)	x. Average	1 757.8	2								÷ ÷										5 85.7		116		о 		63		1 <1
	ded (95)	Max.	777.1	7		50		6	76	6	22	124	14	149	173	190	215	1.3	1.8	29.5	21.2	89.5	-26	230		96.6	1	68	87	< 1
	Super unleaded	Min.	735.0	0		ы Б	1	53	9		50	40¥	2 *	133	152	165	191	0.7	0.3	15.0	40.5	81.0	92.0	90		95.0		58	705	ř
ece	Supe	c	38	38		38	1	51	21	17	2 8	7 ¢	22	4	27	25			25	38	38	17	38	1 38		38		38		21
Greece		Spec.	725 - 780	тах. 13		1	1	1	1	1	1	1		1	1	1	max. 215	max.2	1	15 - 45	40 - 65	1	min. 85	max. 500		mn. 95.0	min. 85.0	35-70	max. 900	1
-		Average	752.8	133		37	1	54	63	28	22	35	2 6	14	157	170	186	1.0	0.8	27.2	49.0	82.3	96.3	279		96.1	1	59	1	÷
	(96) p	Max.	766.2	170		47	•	61	72	200	89	212		179	170	186	209	1.4	1.6	36.5	58.0	86.3	98.5	830		96.3		64	1	× 1
	Super leaded	Min.	734.0	80		34	1	48	55	 6 1	8/2	30 4 72	35	135	146	154	174	0.6	0.2	19.0	42.5	79.3	93.2	200		96.0	1	51	1	۰
	Supe	u	54	54		37	ļ	37	37	37	21	<u>چ</u>	2 6	3 🗧	37	33	44	43	36	4	4	17	32	37		5	-	54	1	37
		Spec.	720 - 770	тах. 150		I	ł	ł	I	ł	1	1	1		1	1	max. 215	max. 2		min. 10	30-65	1	min. 85	тах.1000		96 - 98	1	max. 62	I	ł
		nnit	kg/m²	l/6m		ပ္	ပ	ပ္	ပ္	ပ္စ	ų į	ပုပ္	ູ	ຸ ບ	ů	ပ္	ပ့	V/V %	V/V %	VIV %	% v/v	∿/∧ %	V/V %	63)6W				kPa		mg/100ml
	Quality	Property	Density 15°C	Lead content	Distillation	4. 00	5%	10%	20%	30%	40%	50%	200 200	%04 %08	206	95%	d 84	Residue	Losses	E70	E100	E150	E180	Sulphur content	Octane Quality	RON	MON	Reid Vapour Pressure	VLI (10"RVP + 7"E70)	Gum unwashed

concawe

report no. 5/98

report	no.	5/98
--------	-----	------

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Quality			Supe	Super leaded (96)	(96)			Super	Super unleaded (95)	d (95)			Super	Super unleaded (98)	(86) p	
% vv	Property	Unit	Spec.	u	Min.	Max.	Average	Spec.	c	Min.	Max.	Average	Spec.	Ľ	Min.	Max.	Average
% WV 43 170 433 416 6 200 335 348	FIA							(1) W W									
% vv	Aromatics	V/V %	1	\$	17.0	48.3	41.6	ł	9	20.0	38.5	34.8	1	1	1	1	I
% vv max 4 6 1.3 1.7 1.5 max 4 27 1.6 3.3 2.9 max 4 -	Olefins	V/V %		4	0.2	22.3	3.6	1	9	10.5	13.0	11.3	I	1	1	1	I
% V/V max.4 6 1.3 1.7 1.5 max.4 2.7 1.6 3.3 2.9 max.4 - <t< td=""><td>Saturates</td><td>% v/v</td><td>I</td><td>ł</td><td>1</td><td>ł</td><td>ł</td><td>1</td><td> </td><td>ł</td><td>1</td><td>1</td><td>I</td><td>1</td><td>1</td><td>1</td><td>1</td></t<>	Saturates	% v/v	I	ł	1	ł	ł	1		ł	1	1	I	1	1	1	1
%vv max. 4 6 1.3 1.7 1.5 max. 4 27 1.6 3.3 2.9 max. 4 - </td <td>GC-Analysis</td> <td></td>	GC-Analysis																
max. 10 max. 1 max.	Benzene	V/V %	max.4	9	1.3	1.7	1.5	max. 4	27	1.6	3.3	2.9	тах. 4	ł	ł	1	1
% v/v 37 0.0 1.6 0.2 27 3.3 4.0 3.5 3 8.0 8.0 % v/v max.3 37 0.0 0.0 0.0 0.0 0.0 8.0 8.0 % v/v max.3 37 0.0 0.0 0.0 0.0 0.0 1.4 1.5 1.4 1.5 <td>Ether content</td> <td></td> <td>max. 10</td> <td></td> <td></td> <td></td> <td></td> <td>max. 10</td> <td></td> <td></td> <td></td> <td></td> <td>max. 10</td> <td></td> <td></td> <td></td> <td></td>	Ether content		max. 10					max. 10					max. 10				
% v/v max.3 37 0.0 <t< td=""><td>MTBE</td><td>V/V %</td><td></td><td>37</td><td>0.0</td><td>1.6</td><td>0.2</td><td></td><td>27</td><td>3.3</td><td>4.0</td><td>3.5</td><td></td><td>ŝ</td><td>8.0</td><td>8.0</td><td>8.0</td></t<>	MTBE	V/V %		37	0.0	1.6	0.2		27	3.3	4.0	3.5		ŝ	8.0	8.0	8.0
% v/v max.3 37 0.0 0.0 0.0 0.0 max.3 37 0.0 0.0 0.0 max.3 7 1	ETBE	V/V %		31	0.0	0.0	0.0		1	1	1	1		1	1	ł	I
% vv max.3 37 0.0 0.0 0.0 max.3 <	Alcohol content																
% vv max.5 37 0.0 0.0 0.0 max.5 max.5	MeOH	VIV %	max. 3	37	0.0	0.0	0.0	max. 3	I	ł	ł	1	тах. 3	ł	1	1	1
% v/v max.7 37 0.0 0.0 0.0 max.7 max.7	EtOH	V/V %	max. 5	37	0.0	0.0	0.0	max. 5	ł	1	1	1	тах. 5	1	1	1	1
% v/v max.5 37 0.0 0.0 0.0 max.5 max.5	TBA	V/V %	max. 7	37	0.0	0.0	0.0	тах. 7	1	1	1	1	max. 7	1	-	1	I
% v/v max.7 37 0.0 0.0 0.0 max.7 max.7	IPA	% v/v	max.5	37	0.0	0.0	0.0	тах. 5	ł	1	1	I	max. 5	1	1	1	1
% v/v max.7 37 0.0 0.0 0.0 max.7 max.7	NBA	V/V %	max.7	37	0.0	0.0	0.0	max. 7	1	1	1	1	тах. 7	1	1	1	1
% m/m max.25 37 0.0 0.0 max.25 max.25 max.25 max.25 max.25	IBA	VIV %	тах. 7	37	0.0	0.0	0.0	тах. 7	ł	ł	1	I	max. 7	1	1	1	1
cs %m/m 43 1.6 4.0 2.9 6 1.9 3.6 3.2 3 3.5 3.5 6.5 19.1 15.1 6 7.0 10.7 9.9	Oxygen content	m/m %	max. 2.5	37	0.0	0.0	0.0	max, 2.5	I	ł	I	1	тах. 2.5	ł	ł	ł	1
% m/m - 43 1.6 4.0 2.9 - 6 1.9 3.6 3.2 - 3 3.5 3.5 3.5 3.5 1.5.1 1.2.1 - 6 7.0 10.7 9.9 - 3.2 3.5 3.5 3.5 3.5 15.1 1.2.1 - 6 7.0 10.7 9.9 - - - - - - - 3.5 15.1 1.5.1 - 6 9.0 11.8 11.1 - 3.2 3.5 3.20 10.0 39.4 -	Aromatics					_											
% m/m - 43 5.5 15.1 12.1 - 6 7.0 10.7 9.9 - - - - - - 43 5.5 15.1 1 6 7.0 10.7 9.9 -	Benzene	m/m %	1	43	1.6	4.0	2.9	I	9	1.9	3.6	3.2	1	сэ	3.2	3.5	3.4
% m/m — 43 6.5 19.1 15.1 — 6 9.0 11.8 11.1 — — — — — — — — — — — — — — — — —	Toluene	m/m %	1	ą	5.5	15.1	12.1	1	9	7.0	10.7	6.6	1	ł	1	ļ	1
26.5 37.9 32.0 — 5 39.0 40.0 39.4 — — — — — — — — — — — —	Xylene	m/m %	1	43	6.5	19.1	15.1	1	9	9.0	11.8	11.1	I	1	ł	I	I
	Total	m/m %	I	64	26.5	37.9	32.0	I	ۍ ا	39.0	40.0	39.4	I	1	1	1	ł

Greece

Į		Зe			Γ																			Γ							
		Average	754.2	107		36	1	55	67	80	6	106	116	129	147	167	182	202	÷	0.7	25.0	47.3	81.2 94.3	156		99.0	88.5	99	1	1.0	
	i (98)	Max.	767.0	140		41	I	60	72	84	97	109	120	134	152	171	189	210	2.0	0.8	42.0	65.0	84.0 96.0	250		100.8	89.0	81	I	1.2	
	Super leaded (98)	Min.	739.0	30		33	1	5	62	74	85	98	109	121	139	164	177	192	0. 1	0.7	19.0	42.0	78.0 91.0	< 100		97.8	88.0	58	ł	6.0	
	Supe	u	33	33		33	I	15	14	14	14	15	14	14	14	15	14	69	18	4	33	33	44 65	15		1 5	15	15	1	3	
		Spec.	730 - 780	max. 150		I	I	1	ł	1	!	1	1		1	1	1	max. 215	max. 2	1	15 - 42	40 - 65		max.500		min. 98.0	min. 88.0	45 - 70	1	I	
ĺ		Average	750.2	2		36	ł	52	60	2	82	97	114	132	150	170	188	204	0.1	0.7	29.6	51.4	79.9 93.1	120		94.1	83.1	62	830	1.1	
	ied (91)	Max.	763.0	3		41	1	58	68	79	92	107	121	136	154	177	197	212	0	0.8	35.0	56.0	83.0 96.0	340		99.8	84.0	68	925	1.5	
	Regular unleaded (91)	Min.	742.0	<1		33	1	49	57	65	76	06	108	127	145	165	178	195	1.0	0.7	22.0	46.0	78.0 91.0	< 100		91.0	82.5	47	708	0.8	
	Regula	u	26	26		26	l	15	15	- 1	15	'n	15	15	15	15	15	26	4	ņ	26	26	15 26	26		26	15	5	15	15	
i iungai y		Spec.	720 - 780	max. 13		1	l	1	I	1	1	1	1	1	1	1	1	max. 215	max. 2	1	15 - 42	40 - 65	min. 85	max. 500		mín. 91.0	mìn. 82.5	45 - 70	1		
		Average	742.5	105		40	1	22	63	72	82	54	109	126	146	168	187	201	1	0.8	28.5	54.5	82.5 94.0	150		93.3	83.8	62	819		
	ed (92)	Max.	744.0	120		4	1	56	63	72	83	96	111	128	147	166	190	202	ł	0.8	29.0	66.0	83.0 95.0	200		94.0	84.0	65	853	I	
	Regular leade	Min.	741.0	06		38	1	54	63	7	80	92	106	124	144	167	184	200	1	0.7	28.0	53.0	82.0 93.0	100		92.5	83.5	63	786	ł	
	Regul	c	2	2		1	2	ы	N	N	N	ณ	2	~	8	10	~	2	N	~	2	N	~ ~	~		7	2	~	7	1	
		Spec.	720 - 770	max. 160		1	1	I	1	1	1	ł	1	ł	!	1	I	max. 216	max. 2	1	15 - 42	40 - 65	min. 85	max.500		min. 92.0	min. 83.0	45 - 70	1	1	
ſ		Unit	kg/m³	₩8m		ပ္	ပူ	ပ္	ပ္	ပ္	ပ	ပ္	ပု	ပ္	ပ္	ç	ç	င့ ဂ	NN %	V/V %	V/V %	VIV %	~\^ %	mg/kg				kРа		mg/100ml	
	Quality		15°C	ent		18P	5%	10%	20%	30%	40%	50%	60%	20%	80%	%06	95%	FBP	Residue	Losses	E70	E100	E150 E180	ontent	uality			Reid Vapour Pressure	VLI (10"RVP + 7"E70)		
	ð	Property	Density	Lead content	Distillation																			Sulphur content	Octane Quality	RON	MON	Reid Vapo	VLI (10"R	Gum. washed	

concawe

46

		e																						
		Average		34.9	8.3	57.0		1.8		1:	1		1		1	1	1		1		1	1		1
	(36) I	Max.		35.0	8.3	57.1		2.7		6.5	1		I	1	1	ł	I	ł	1		1	1	ł	1
	Super leaded (98)	Min.		34.8	8.2	56.8		1.1		0.1	1		I	1	1	1	1	ł	I		ł	1	1	1
	Supe	e		6	7	7		33		15	1		I	1	1	ł	1	ł	1		1	1	1	1
		Spec.		1	ł	ł		тах. 3	max. 15			••••••	max. 3	max. 5	тах. 7	max. 5	max. 7	max. 7	max. 2.5		I	1	1	1
		Average		42.8	14.4	42.8		1.8		1	1		I	1	I	1	ł	1	1		I	6.3	7.7	1
	led (91)	Max.		44.2	14.4	44.2		2.7		1	1		ł	1	1	1	I	1	1		I	7.3	8.0	
	Regular unleaded (91)	Min.		41.4	14.4	41.4]	1		ł	I	ł	I	ł	1	I		I	5.3	7.3	1
	Regula	c		N	04	2		26		I	I		1	I	1	1	1	1	ł			2	2	1
Hungary		Spec.		I	I	I		max. 3	max. 15				тах. 3	max. 5	тах. 7	max. 5	max. 7	max. 7	max. 2.5		I	1	ł	1
Ηn		Average		1	1	1		1.6		1	1		1	I	1	1	1	I	1		ł	ł	1	i
	d (92)	Max.		1	1	1		1.7		1	i		ł	I	ł	I	ł	ł	1	-	1	1	ł	I
	Regular leaded (92)	Min.		1	1	1		1.4		1	I		I	I	1	I	ł	1	1		1		1	
	Regul	Ľ		1	1	1		7		1	1		ł	1	1	I	1	1	1		I	1	1	1
		Spec.		ł	I	ł		max. 3	max. 15				тах. 3	max. 5	тах. 7	max, 5	max. 7	max. 7	max. 2.5		ł	I	1	1
		Unit		∧/∧ %	% ۸/۷	% ^/^		V/V %		~/^ %	V/V %		% v/v	% viv	% <i>دا</i> ر	N/N %	V/V %	N/N %	// m/m		// m/m	w/m %	/ m/m %	m/m %
	Quality	Property	FIA	Aromatics	Olefins	Saturates	GC-Analysis	Benzene	Ether content	MTBE	ETBE	Alcohol content	MeOH	EtOH	TBA	IPA	NBA	IBA	Oxygen content	Aromatics	Benzene	Toluene	Xylene	Total

				H	Hungary	y					
Quality			Super	Super unleaded (95)	d (95)			Super	Super unleaded (98)	ed (98)	
Property	Unit	Spec.	c	Min.	Max.	Average	Spec.	c	Min.	Max.	Average
Density 15°C	kg/m*	720 - 780	45	748.0	773.0	756.8	720 - 780	10	752.0	757.0	765.0
Lead content	l/6m	max. 13	45	<1	3	*	max. 13	10	<1	2	+
Distillation											
181	ပ္	ł	45	26	40	35	1	10	36	38	37
5%	ပ္	1	ł	ł	ł	1	1	1	1	1	I
10%	ပ္	1	5	5	57	54	1	4	55	<u>56</u>	5 <u>5</u>
20%	ပ္	1	10	61	69	65	1	4	64	67	65
30%	ပ္	1	ų.	70	82	76	1	4	74	62	76
40%	ပ္	l	15	80	9 6 7	80	1	4	85	5	87
50%	ပု	ł	15	94	108	103	I	4	97	104	100
60%	ပု	1	15	108	124	117	1	4	111	115	113
70%	ပ္	1	15	121	140	131		4	124	127	125
80%	ပ္	1	15	138	154	149	1	4	141	145	143
%06	ပု	1	15	159	175	168	1	খ	163	166	165
95%	ပ္	ł	15	170	200	184	1	4	177	183	180
481	ပ္	max. 215	45	193	215	203	max. 216	ţ	196	215	202
Residue	V/V %	max. 2	30	0.1	2.0	0; 1:0	max. 2	ß	0.1	1. 0	1.0
Losses	V/V %	I	15	0.7	0.8	0.7	1	4	0.7	0.7	0.7
E70	VIV %	15 - 42	45	14.0	30.0	28.0	15 - 42	10	23.0	28.0	25.7
E100	% v/v	40 - 65	45	43.0	56.0	49.4	40 - 65	10	47.0	54.0	50.8
E150	V/v %	ł	10	77.0	86.0	80.4	1	4	82.0	84.0	83.0
E180	∿'v %	min. 85	45	92.0	98.0	94.2	min. 85	10	93.0	96.0	95.3
Sulphur content	mg/kg	max.500	45	< 100	200	75	max.500	10	< 100	100	28
Octane Quality											
RON		min. 95.0	45	95.0	99.8	96.9	min. 98.0	10	98.3	100.2	99.3
NON		min. 85.0	15	85.0	86.0	85.4	mìn. 88.0	4	88.0	88.5	88.1
Reid Vapour Pressure	kPa	45 - 70	15	62	70	66	45 - 70	4	56	68	64
VLI (10*RVP + 7*E70)		1	15	787	893	830	1	4	815	862	845
Gum. washed	mg/100ml	1	15	0.8	2.0	1.3	I	4	1.1	1.4	1.2

report no. 5/98

				C	nungary	y					
Quality			Super	Super unleaded (95)	d (95)			Supe	Super unleaded (98)	ed (98)	
Property	Unit	Spec.	Ľ	Nin.	Max.	Average	Spec.	Ľ	Min.	Max.	Average
FIA											
Aromatics	% v/v	ł	2	35,9	37.9	36.9	ł	2	38.6	39.6	39.1
Olefins	% v/v	1	ы	8.9	11.1	10.0	1	7	7.4	7.6	7.5
Saturates	% v/v	1	2	53.0	53.2	53.1	1	2	52.8	54.0	53.4
GC-Analysis											
Benzene	V/V %	max. 3	45	0.6	2.7	1.6	max. 3	10	1.4	2.0	1.7
Ether content		max. 15					тах. 15				
MTBE	V/V %		15	0.1	9.8	2.0		4	7.0	11.0	9.5
ETBE	v/v %		I	ł	1	1		ł	ł	1	I
Alcohol content											
MeOH	V/V %	max. 3	ł	1	I	ł	max. 3	1	1	ł	ł
EtOH	% v/v	max. 5	I	ł	ł	1	max. 5	ł	ł	1	ł
TBA	% v/v	тах. 7	1	I	ł	1	max. 7	1	I	ł	1
IPA	% ۷/۷	max. 5	1	1	I	I	max. 5	1	1	1	ł
NBA	% v/v	тах. 7	I	ł	1	1	max. 7	I	ł	1	ł
IBA	V/V %	тах. 7	1	ł	ł	1	max. 7	1	1	I	1
Oxygen content	m/m %	max. 2.5	ł	1	1	ł	тах. 2.5	ł	ł	ł	I
Aromatics											
Benzene	m/m %	1	15	1.7	2,6	2.0	1	4	2.0	2.3	2.1
Toluene	m/m %	ł	ŝ	6.3	8.7	7.9	1	64	6.7	8.1	8.0
Xylene	m/m %	I	w	7.4	8.8	8.2	I	2	7.6	7.7	7.7
Total	m/m %		1	ł	1	ł	1	1	1	I	1

Hungary

Average 744.2 352 - 252 - 14.6 126 96.4 86.1 63 841 2 Мах. Super unleaded (95) 766.9 98.2 86.5 56.4 368 71 4 Min. 729.0 95.0 85.0 43 0.8 e **c** 62 2 4 62 62 62 62 mín. 95.0 min. 85.0 35 - 70 max. 900 725 - 780 max. 215 max. 500 max. 13 min. 85 max. 2 15 - 45 40 - 65 Spec. l I Average 746.1 126 145 98.1 87.7 8.3 63 Max. 761.4 117.0 50 425 99.3 90.0 Super leaded (97) 21 Min. 728.1 96.3 86.5 100 ų. 1 45 ω c 62 62 4 62 62 | 62 97.0 87.0 max.2000 725 - 770 max. 150 40 - 73.5 10 - 45 30 - 70 --min. 85 Spec. ļ I 1 min. 1 mg/100ml kg/m³ mg/kg Unit **** \$\$\$\$ \$\$\$\$ l/6m КРа IBP 5% 5% 10% 20% 50% 50% 50% 50% 90% 70% FBP FBP FBP FBP Reid Vapour Pressure VLI (10*RVP + 7*E70) 15°C Quality Sulphur content Gum unwashed E70 E150 E180 **Octane Quality** Lead content Distillation Property Density RON

Italy

					ltaly						
Quality			Supe	Super leaded (97)	1 (97)			Super	Super unleaded (95)	d (95)	
Property	Unit	Spec.	c	Min.	Max.	Average	Spec.	u	Min.	Max.	Average
FIA											
Aromatics	% v/v	1	62	22.9	47.1	36.3	ł	62	22.3	46.5	33.7
Olefins Saturates	~^^ %	11	62 62	1.0 36.4	24.8 63.2	13.4 48.2		62 62	0.5 37.0	22.0 63.7	12.0
GC-Analysis											
Benzene	% v/v	max. 5	62	0.3	2.5	1.4	max. 5	62	0.3	3.1	1.1
Ether content		1					max. 15				
MTBE	% v/v		62	0.1	5.7	1. 9.		62	0.1	11.7	4.3
ETBE	√/∧ %			8.1	8.1			m	0.3	3.5	4.
Alcohol content											
MeOH	% ۷/۷	I	1	1	1	ł	max. 3	ł	1	1	1
EtOH	~/^ %	ł	I	1	I	I	max. 5	ł	1	1	I
TBA	۸/۸ %	ł	ł	I	1	ł	тах. 7	1	I	I	ł
IPA	۸/۸ %	I	ł	1	ł	I	max. 5	ł	ł	1	I
NBA	۷/۸ %	ł	I	1	I	1	max. 7	I	ł	I	ł
IBA	∿/\^%	I	1	1	1	1	max. 7	I	I	I	I
Oxygen content	m/m %	ł	I	I	1	I	max. 2.5	ł	1	1	1
Aromatics											
Benzene	m/m %	I	62	0,4	3.0	1.7	1	62	0.3	3.7	1.
Toluene	m/m %	1	62	2.9	20.0	10.5	ł	62	4.2	23.5	10.2
Xylene	m/m %	1	62	5.0	15.9	11.1	1	62	2.9	19.6	10.5
Total	m/m %	I	62	27.4	54.4	42.8	ł	62	26.0	54.3	39.8

						2		ŝ								
Quality			Su	Super leaded	ed			Super	Super unleaded (95)	d (95)		-	Super	Super unleaded (98)	d (98)	
Property	Unit	Spec.	c	Min.	Max.	Average	Spec.	Ľ	Min.	Max.	Average	Spec.	u	Min.	Max.	Average
Density 15°C	kg/m*		8	731.8	759.5	741.9	725 - 780	8	736.7	756.1	743.4	725 - 780	8	737.8	764.0	747.4
Lead content	l/6w		8	112	140	129	max. 13	8	< 2	<2 <2	5 7	max. 13	83	< 2	< 2 <	~ 2
Distillation																
[BP	ပ္		8	27	34	5	1	ŝ	3	34	32	1	ŝ	30	33	32
5%	ပ္		I	I	I	1	1	1	1	1	1	ł	1	1	1	
10%	ပ		83	43	51	46	ł		43	20	46	l	æ	42	52	47
20%	ပု		I	1	I	I	1	1	1	1	ł	I	ł	ł	ł	1
30%	ပ္		1	1	1	I	I	1	ļ	I	I	1	ł	I	I	
40%	ပူ		1	1	1	1	1	1	1	1	ł	1	1	1	1	1
50%	ပ္		œ	88	103	93	1	œ	83	96	06	1	æ	96	103	100
80%	ပ္		ł	ł	ł	1	1	1	1	I		1	1	1	1	
20%	ပ္		ł	1	I	1	1	ł	1	ł	1	1	1	1	ł	1
80%	ပ္		I	ł	I	ł	1	1	1	1	1	1	1	1	1	
%06	ပ္		œ	149	159	156	1	89	146	168	157	1	æ	149	164	158
95%	ပ္		1	1	1	I	1	I	1	1	ł	1	1	1	1	1
	ပ္		8	188	211	198	max. 215	8	184	197	190	max. 215	8	186	200	191
Residue	% v/v		ස	0	1.0	0.1	max. 2	8	0.9	1. 5	1.0	max. 2	8	0.8	1.0	1.0
Losses	% viv		æ	0.5	2.0	ť.	1	8	0.2	2.5	1.2	I	æ	0.3	1.2	0.8
E70	V/V %		œ	29.0	34.6	32.3	15 - 45	80	29.7	40.8	36.0	15 - 45	8	25.0	36.4	31.2
E100	∿ v/v		æ	48.2	57.9	54.5	40 - 65	æ	52.0	62.1	56.0	40 - 65	æ	48.4	51.6	49.8
E150	viv %		1	1	1	I		Ŀ	1	1	1	1	1	1	1	1
E:180	7/2 V/V		8	34.5	38.2	20.3	min. 85	×	7.05	98.3	97.0	mn. 85	8	57.1	98.3	97.16
Sulphur content	mg/kg		8	10	260	74	max. 500	8	20	120	50	max.500	8	10	80	36
Octane Quality																
RON			æ	98.4	99.4	98.8	min. 95.0	~~~	95.6	97.6	96.3	min. 98.0	80	98.2	99.3	98.7
MON			8	88.0	88.2	88.1	min. 85.0	8	85.0	85.3	85.1	min. 87.0	8	88.0	88.2	88.1
Reid Vapour Pressure	kРа		8	69	87	78	45-80	æ	75	80	11	45-80	8	68	85	76
VLI (10*RVP + 7*E70)			1	ł	1	1	max. 1050	8	775	1190	1101	max. 1050	8	930	1205	1073
Gum unwashed	mg/100ml		8	9.0	44.0	29.3	1	8	20.0	49.0	30.4	I	8	26.0	44.0	33.4

Netherlands

concawe

ds	
rlan	
thei	
Ne	

Quality			Su	Super leaded	ed			Super	Super unleaded (95)	d (95)			Super	Super unleaded (98)	d (98)	
Property	Unit	Spec.	Ľ	Min.	Max.	Average	Spec.	E	Min.	Max.	Average	Spec.	c	Min.	Max.	Average
FIA																
Aromatics	V/V %		Ø	21.8	44.1	33.4	1	æ	32.6	43.0	36.9	1	83	24.5	47.6	34.8
Olefins	V/V %		æ	2.7	13.8	8.8	1	æ	1.2	17.7	7.7	1	8	2.7	16.4	6.3
Saturates	N/N %		¢	47.7	67.0	57.8	1	8	46.4	65.9	55.5	:	8	49.7	64.6	58.9
GC-Analysis												-				
Benzene	V/V %		8	0.6	3.6	1.9	max. 5	æ	< 0.1	3.6	1.8	max. 5	œ	0.3	2.6	1.2
Ether content							max. 15					max. 15				
MTBE	% v/v		æ	0.0	4.2	1.2		80	< 0.1	2.2	0.8		80	< 0.1	10.5	5.4
ETBE	% v/v		ω	< 0.1	< 0.1	<0.1		8	× 0.1	< 0.1	× 0.1			< 0.1	< 0.1	< 0.1
Alcohol content																
MeOH	V/V %		æ	< 0.1	< 0.1	< 0.1	max. 3	8	< 0.1	< 0.1	< 0.1	max. 3	8	0.1	< 0.1	< 0.1
EtoH	V/v %		æ	< 0.1	< 0.1	< 0.1	max. 5	¢	< 0.1	< 0.1	< 0.1	max. 5	8	< 0.1	< 0.1	< 0.1
TBA	% v/v		8	< 0.1	< 0.1	<pre>< 0.1</pre>	max. 7	æ	< 0.1	< 0.1	< 0.1	max. 7	æ	< 0.1	× 0.1	< 0.1
IPA	% viv		8	< 0.1	< 0.1	< 0.1	max. 5	80	< 0.1	< 0.1		max. 5	œ	< 0.1	< 0.1	< 0.1
NBA	V/V %		89	× 0.1	× 0.1	< 0.1	max. 7	æ	< 0.1	× 0.1	× 0.1	max. 7	æ	< 0.1	< 0.1	۰ 0.1 1.0
IBA	V/V %		80	< 0.1	< 0.1	< 0.1	max. 7	æ	< 0.1	< 0.1	× 0.1	max. 7	8	< 0.1	< 0.1	< 0.1
Oxygen content	m/m %		æ	< 0.50	< 0.50	< 0.50	тах. 2.5	æ	< 0.50	< 0.50	< 0.50	max. 2.5	æ	< 0.50	< 0.50	< 0.50
Aromatics																
Benzene	m/m %		1	1	I	I	ł	1	1	1	l	ł	1	1	ł	ł
Toluene	m/m %		ł	1	ł	1	1	I	I	1	ł	1	I	I	1	1
Xylene	m/m %		ł	1	I	1	1	1	I	1	ł	1		ł	ł	1
Total	m/m %		ł	I	ł	!	1	I	I	1	1	1	1	ł	1	1

Quality			Super	Super unleaded (95)	ded (95)			Super	Super unleaded (98)	(86) þí	
Property	Unit	Spec.	c	Min.	Max.	Average	Spec.	E	Min.	Max.	Average
Density 15°C	kg/m³	725 - 780	59	737.4	767.0	751.2	725 - 780	44	743.7	769.7	761.9
Lead content	l/6m	max. 13	ł	1	ł	1	max. 13	ł	1		1
Distillation											
B		1	48	27	33	29	ł	10	27	32	29
5%		1	1	1	I	1	1	I	1	1	ł
10%		1	2	45	51	48	1	7	44	51	48
20%			1	1		I	1	1	1	1	1
30%		1	1	1	1	1	1	1	1	1	1
40%		I	r	;	1	1 8	I	1	1	1	ł
2/aC3		I	-	ŝ	201	מת	I	_	32	114	103
7604					1	1		Arritra	1	1	1
80%		1								1	ł
%06		1	~	146	166	155	1	~	148	160	153
95%		1	1	1	1		I	1		1	
481		max. 215	53	188	215	203	max. 215	34	182	207	197
Residue		max. 2	1	1	1	ł	max. 2	I	I	1	ł
Losses	%	****	1	1	1	I	1	I	1	1	1
E70	% viv	20 - 50	នួន	22.0	38.8	29.2	15 - 47	34	21.5	32.1	28.2
		43 - 70	201	42.U	0.20 0.20	44.9 0 1 0	43 - 70	5 r	39.6 39.6	55.5	48.8
E180		min. 85	53	92.6	97.7 98.6	07.0 95.5	mín. 85	34	82.8 95.1	91.1 98.8	88.2 96.8
Sulphur content	mg/kg	max. 500	16	22	305	162	max. 500	15	16	205	82
Octane Quality											
RON MON		min. 95.0 min. 85.0	59 59	94.9 85.0	98.5 87.8	95.9 85.6	min. 98.0 min. 87.0	**	95.9 85.8	99.4 88.7	98.4 87.6
Reid Vapour Pressure	kРа	55 - 90	53	69	86	82	55 - 90	34	68	86	82
		0011.XBM	53	933	1106	1022	max.1100	34	907	1051	1016
Gum unwashed	mg/100ml	l	4	37.9	64.9	49.8	1	4	36.6	60.2	48.0

Norway

Concawe

.

				Nc	Norway						
Quality			Super	Super unleaded (95)	d (95)	-		Super	Super unleaded (98)	d (98)	
Property	Unit	Spec.	L	Min.	Max.	Average	Spec.	E	Min.	Max.	Average
FIA											
Aromatics*	۸/۸ %	ł	7	32.9	51.5	41.6	ł	~ 2	35.1	53.4	46.8
Olefins Saturates	% v/v % v/v		38	9.8	20.0	14.7	11	<u>8</u> 1	9.8 I	18'N	4.
GC-Analysis											
Benzene	~/^ %	max. 5	53	1.1	4.8	2.7	max. 5	34	1.6	4.8	3.0
Ether content		max. 15					тах. 15				
MTBE	viv %		22	<0.1	9.5	3.8		20	. 0.1	9.9	5.1
ETBE	VIV %		I	****	1	ł		1	1	I	1
Alcohol content											
MeOH	V/V %	тах. 3	1	I	ł	I	тах. 3	ł	ł	ł	I
EtOH	V/V %	max. 5	I	1	ł	1	max. 5	I	I	ł	ł
TBA	V/V %	тах. 7	1	ł	ł	1	max. 7	1	1	ł	1
IPA	V/V %	max. 5	1	1	1	1	max. 5	1	1	I	1
NBA	۸/۸ %	тах. 7	ł	I	I	I	max. 7	ł	I	ł	1
IBA	۸/۸ %	тах. 7	I	1	I	1	max. 7	I	1	1	1
Oxygen content	m/m %	тах. 2.5	1	I	ł	ł	max. 2.5	1	1	1	I
Aromatics											
Benzene	m/m %	ł	ł	ł	ł	1	I	I	I	1	I
Toluene	m/m %	ł	1	1	I	1	l	1	1	I	I
Xylene	m/m %	I	I	1	1	1	ł	ł	1	1	1
Total	m/m %	1	ł	ł	1	1	1	1	1	ł	1
*Aromatics are not part of the specifications and so far not reported in every case.	of the spe	cifications	and so fa	r not repo	rted in eve	ery case.					

							Portugal	gal								
Quality			SL	Super lead	led			Super	Super unleaded (95)	id (95)			Super	Super unleaded (98)	d (98)	
Property	Unit	Spec.	u	Min.	Max.	Average	Spec.	E	Win.	Max.	Average	Spec.	c	Min.	Max.	Average
Density 15°C	kg/m*		11	759.4	769.8	764.9	725 - 780	8	748.7	767.2	761.0	725 - 780	12	760.1	780.0	771.1
Lead content	l/6m		11	114	150	133	max. 13	8	3	3	e	max. 13	12		s	6
Distillation																
d III	ပ္		1	24	37	33	ł	ß	28	36	33	1	12	20	28	25
5%			1	1	1	1	1	1	1	1	I	1	1	1	1	1
10%			<u></u>	49	57	54	ł	80	47	60	24	1	12	£ 1	55	49
20%	_		÷	65	69	67	I	8	57	75	99	ł	12	59	71	99
30%	ပ္စ		÷	75	83	80	1	8	69	86	79	I	12	74	86	81
40%			÷	87	97	94	I	8	83	66	92	I	12	30	100	95
50%			+	101	113	107	1	8	8 6	111	105	I	12	102	112	108
60%			;	113	127	121	I	æ	ŧ	124	117	I	12	114	127	122
20%			t	125	141	133	1	ø	126	136	130	I	12	126	137	134
80%			÷	137	155	147	1	8	141	150	4	1	12	140	153	149
80%			Ţ	158	170	164	1	8	154	168	163		12	159	169	165
95%			Ť	167	182	177	1	8	166	183	177	1	12	170	180	175
<u>a</u>			÷	193	202	198	max. 215	8	194	201	199	max. 215	12	181	198	194
Residue	V/V %		÷	1.0	1.5		max. 2	80	1.0	2.0	1.2	max. 2	12	0.5	1.6	.
LOSSES			77	1.0	2.0	1.8	1	æ	1.0	1.8	1.2	I	12	1.0	1.7	1.3
E70	۸/۸ %		÷	20.5	26.1	22.6	15 - 45	8	17.9	32.0	23.7	15 - 45	12	19.5	27.5	22.8
E100	VIV %		:	40.5	49.6	44.2	40 - 65	æ	40.5	50.5	45.6	40 - 65	12	40.0	48.5	43.3
E150	V/V %		11	77.0	88.0	82.1	1	80	80.0	88.0	83.9	I	12	78.0	85.0	81.0
E180	N/N %		#	94.0	98.2	95.7	min. 85	8	94.0	98.2	95.7	min. 85	12	95.0	98.0	96.4
Sulphur content	mg/kg		11	180	700	401	max. 500	8	200	500	380	тах. 500	12	10	340	252
Octane Quality																
RON			1	98.0	98.9		min. 95.0	63	95.0	96.3	95.7	min. 98.0	12	98.0	98.6	98.2
MON			11	87.1	88.2	87.6	mìn. 85.0	8	85.0	85.8	85.3	min. 87.0	얻	87.0	88.2	87.4
Reid Vapour Pressure	ķРа		11	54	67	61	35 - 70	8	61	70	65	35 - 70	12	56	20	65
VLI (10"RVP + 7"E70)			1	1	1	1	max. 900	8	773	006	830	max, 900	12	704	850	808
		-					-	-					ſ	ľ	ľ	ľ

1.0

1.0

5

12

l

5°

1.0

1.0

ø

I

1.0

. I

1.0 1

mg/100ml

Gum unwashed

1 ÷

report	no.	5/98
--------	-----	------

FrometryUnitSpec.nMin.Max.AverageSpec.nMin.Max.AverageSpec.nMin.Min.Max.AverageFlat% vv \sim	Quality			Su	Super leaded	ed			Super	Super unleaded (95)	d (95)			Super	Super unleaded (98)	(86) p	
% VV T	Property	Unit	Spec.	L	Min.	Max.	Average	Spec.	c	Min.		Average	Spec.	Ľ	Min.	Max.	Average
% WV III IIII IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	FIA																
% W T	Aromatics	V/V %		1	1	I	1	ł	ł	ł	ł	1	1	1	1	1	1
% VV =	Olefins	V/V %			1	ł	ł		ł	ł	1	1	1	1	1	1	1
% wv 11 1.9 3.9 2.7 max.5 8 1.7 3.6 2.8 max.5 12 2.5 3.6 % wv	Saturates	V/V %			1	-	I	1	1	:	1	ł	ł	1	I	ł	1
% wv 11 1.9 3.9 2.7 max.5 8 1.7 3.6 2.8 max.5 12 2.5 3.6 % vvv % vvv max.15 1.7 3.6 2.8 max.5 12 2.5 3.6 % vvv % vvv 1.1 1.9 3.9 2.7 max.15 12 2.5 3.6 % vvv 1.1 1.1 1.6 1.7 3.6 2.8 max.15 12 2.5 3.6 % vvv 1.1 <td< td=""><td>GC-Analysis</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	GC-Analysis																
% VV max. 15 max. 15 % VV	Benzene	V/V %		ţ	1.9	3.9	2.7	max. 5	8	1.7	3.6	2.8	max. 5	12	2.5	3.6	2.8
% v/v <td< td=""><td>Ether content</td><td></td><td></td><td></td><td></td><td></td><td></td><td>max. 15</td><td></td><td></td><td></td><td></td><td>max. 15</td><td></td><td></td><td></td><td></td></td<>	Ether content							max. 15					max. 15				
% w/v	MTBE	V/V %		1	1	1	I		I	1	1	I		1	I	1	ł
% viv	ETBE	∧/∧ %		1	1	1	ł		ł	ł	1	1		1	1	1	1
% VV max.3 <t< td=""><td>Alcohol content</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Alcohol content					_											
% VV	MeOH	V/V %		1	1	I	I	max. 3	1	1	ł	I	max. 3	ł	ł	ł	I
%vv	EtoH	N/N %₀		1	1	1	I	max. 5	1	1	ł	1	max. 5	1	ł	1	1
% VV	TBA	N/N %		I	I	1	1	max, 7	1	1	I	1	max. 7	I	1	1	1
% VV	IPA	V/N %		!	1	1	1	max. 5	I	1	I	1	max. 5	1	I	I	1
% VV max.7 <t< td=""><td>NBA</td><td>N/N %</td><td></td><td> </td><td>}</td><td>1</td><td>1</td><td>тах. 7</td><td>1</td><td>1</td><td>ł</td><td>1</td><td>тах. 7</td><td>1</td><td>ł</td><td>1</td><td>I</td></t<>	NBA	N/N %			}	1	1	тах. 7	1	1	ł	1	тах. 7	1	ł	1	I
% m/m	IBA	V/V %		1	1	ł		max. 7	1	1	ł	1	max. 7	1	ł	I	1
% mim	Oxygen content	m/m %		1		1		max. 2.5	~~	0.10	2.20	0.87	max. 2.5	1	1	ł	ł
mm	Aromatics																
	Benzene	m/m %		1	1	1	1	1	ł	ł	ł	1	ł	1	ł	ł	1
	Toluene	m/m %		1	1	1	1	1	ļ	ł	1	1	1	1	1	1	1
	Xylene	m/m %		1	1	1	ł	•	l	I	1	ł	1	ł	ł	1	I
	Total			I	!	I	I	1	1	ł	E	1	1	I	I	ł	1

Portugal

							- hail									
Quality			Supe	Super leaded	1 (97)			Super I	Super unleaded (95)	d (95)			Super	Super unleaded (98)	d (98)	
Property	Unit	Spec.	u	Min.	Max.	Average	Spec.	c	Min.	Max.	Average	Spec.	c	Min.	Max.	Average
Density 15°C	kg/m⁵	720 - 780	8	746.9	775.8	763.4	725 - 780	8	745.0	769.0	759.4	725 - 780	5	746.4	778.2	768.2
Lead content	l/gm	max. 150	8	130	140	138	max. 13	. 8	1	3	2	тах. 13	S.	+	e	2
Distillation																
đ	ပံ	ł	œ	<u>.</u>	39	35	1	I	ŀ	1	1	1	1	1	1	
5%	ပ္	ł	1	1	1	I	1	1	1	1	1		I	1	1	1
10%	ပ	1	1	1	1	I	ł	1	ł	I	1	1	1	1	1	1
20%	ပု	1	ł	1	1	1	1	1	I	1	1	1	1	1	1	1
30%	ပ့	ł	1	1	1	I	ł	1	ł	1	1	1	1	1	1	I
40%	ပ္	1	1	1	1	1	1	1	I	1	1	1	1	1	1	
50%	ပ္	I	ł	1	1	1	1	1	ł	ł	1	1	1	I		I
80%	ပ္	1	ł	1	1	1	ł	1	ł	1	1			I	ł	
70%	ပ္	I	ł	I	1	I	1	1	1	1	ł		1	ł	1	
80%	ပ္	1	I	ł	1	1		1	I	!	ł	1	1	1	1	I
%06	ပ့	1	ł	1	1	1		1	I	1	ł	1	I	1	1	
95%	ပ့	1	I	1	1	1	1	1	1	ł	ł	1	1	ł	1	
FBP	ပံ	max. 210	80	180	208	195	max. 215	89	177	203	197	max. 215	ŝ	178	197	188
Residue	V/V %	max. 2	8	0.5	1.5	1.0	max. 2	83	0.6	5	1.2	max. 2	ŝ	0.5	1.6	1.2
Losses	V/V %	max. 1.5	80	0.0	1.5	0.7	1	ł	1	1	I		1	1	1	1
E70	VIV %	10 - 45	~	18.0	29.5	23.2	15 - 45	8	20.0	30.4	25.8	15 - 45	ŝ	22.0	29.3	25.7
E100	VIV %	30 - 70	63	40.0	53.1	46.1	40 - 65	æ	44.0	53.1	49.0	40 - 65	ŝ	48.0	51.0	49.4
E150	V/V %	1	1	1	1	1	1	1	1		I	1	1	1	1	1
E180	VIV %	min. 80	8	95.0	98.9	96.6	min. 85	7	93.0	97.1	95.2	min. 85	5	94.0	99.0	96.7
Sulphur content	mg/kg	тах. 1300	8	251	700	466	max. 500	8	267	500	378	max. 500	5	100	300	172
Octane Quality																
RON		min. 97.0	8	97.4	100.0		min. 95.0	80	95.0	98.1	96.4	min. 98.0	40	98.0	99.8	98.9
MON		m\n. 87.0	8	87.0	87.4	87.1	min. 85.0	8	85.0	85.2	85.1	1	5	86.7	88.2	87.5
Reid Vapour Pressure	kPa	48 - 64	8	56	64	61	35 - 70	8	56	68	63	35 - 70	чQ	59	68	64
VLJ (10*RVP + 7*E70)		-	1	!	1	I	тах. 900	8	758	878	810	max. 900	5	764	869	822
Gum washed	mg/100ml	max.5	8	1.0	1.6	1.2	max. 5	8	0.8	1.4	1.1	max. 5	ស	0.8	1.2	1.0

ţ

Spain

report no. 5/98

rty Unit Spec. n Min. Max. Average Spec. Spec.	Quality			Supe	Super leaded	(26) 1			Super	Super unleaded (95)	d (95)			Super	Super unleaded (98)	d (98)	
% v/v 8 33.6 53.3 45.2 8 34,1 50.4 43.5 % v/v 8 33.6 43.1 13.5 8 7.1 55.7 13.5 % v/v 8 33.6 43.0 41.3 8 7.1 55.7 13.5 8 7.1 55.7 13.5 8 7.1 55.7 13.5 8 7.1 55.7 13.5 13.	Property	Unit	Spec.	Ľ	Min.	Max.	Average	Spec.	-	Min.	Мах.	Average	Spec.	c	Min.	Max.	Åverage
% vv 8 33.6 53.3 45.2 8 34.1 50.4 43.9 % vv 8 35.6 43.0 41.3 8 7.1 16.7 12.5 % vv 8 35.6 43.0 41.3 8 7.1 16.7 12.5 % vv max.15 8 1.9 3.3 2.5 max.15 8 7.1 16.7 12.5 % vv max.15 8 0.3 6.2 2.0 8 1.8 2.6 2.2 max.5 % vv max.15 8 0.3 6.2 2.0 max.15 1.8 0.7 9.0 4.7 % vv max.15 8 0.7 9.0 4.7 1.4 1.4 1.4 1.4 <t< td=""><td>FIA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	FIA																
% WV 8 9.5 19.1 13.5 8 7.1 16.7 12.5 % VV max.5 8 1.9 3.3 2.5 max.5 8 1.9 3.3 2.5 max.5 8 1.8 2.6 2.2 max.5 % VV max.15 8 0.3 6.2 2.0 8 1.8 2.6 2.2 max.5 % VV max.15	Aromatics	۸/۸ %	1	æ	33.6	53.3	45.2	1	8	34.1	50.4	43.9	I	ŝ	34.3	57.8	51.2
% v/v max.5 8 1.9 3.3 2.5 max.5 8 1.8 2.6 2.2 max.5 % v/v max.15 8 1.9 3.3 2.5 max.5 8 1.8 2.6 2.2 max.5 % v/v max.15 8 0.3 6.2 2.0 max.15 8 0.7 9.0 4.7 % v/v max.3 max.15 max.15 1.8 1.7 2.6 2.2 max.5 max.15	Olefins	۸v %	I	8	9.5	19.1	13.5	1	8	7.1	16.7	12.5	ł	ۍ م	0.7	9.3	5.3
% v/v max.15 8 1.9 3.3 2.5 max.15 8 1.8 2.6 2.2 max.5 % v/v max.15 8 0.3 6.2 2.0 8 0.7 9.0 4.7 % v/v max.15 8 0.3 6.2 2.0 8 0.7 9.0 4.7 % v/v max.3 max.3 max.7 max.7 max.7 max.7 max.7 max.	Saturates	V/V %	ł	8	33.6	48.0	41.3	1	8	35.0	50.5	43.6	1	ŝ	33.9	56.5	43.5
% vv max.15 8 1.9 3.3 2.5 max.15 8 1.8 2.6 2.2 max.5 % vv max.15 8 0.3 6.2 2.0 8 0.7 9.0 4.7 max.15 % vv max.15 max.15 max.15 max.15 max.15 max.15 max.15 max.15 max.15 max.15 max.15 max.15 max.17 max.16 max.17 max.17	GC-Analysis																
max.15 max.15 max.15 max.15 max.15 max.15 % v/v = = = = = = = max.15 % v/v max.3 =	Benzene	VIV %	тах. 5	æ	б. Т	3.3	2.5	max. 5	89	1.8	2.6	2.2	max, 5	ŝ	1.7	3.1	2.6
% vv 8 0.3 6.2 2.0 8 0.7 9.0 4.7 % vv max.3 % vv max.3 % vv max.5 max.5	Ether content		max. 15					max. 15					тах. 15				
% VV max.3	MTBE	N/N %		æ	0.3	6.2	2.0		~	0.7	0.6	4.7		ŝ	6.9	9.6	8.5
% v/v max.3 max.3 max.3 % v/v max.5 max.5 max.3 % v/v max.7 max.5 max.5 % v/v max.7 max.5 max.7 % v/v max.7 max.7 max.7 % v/v max.7 max.7 max.7 % w/m max.2.5 max.2.5 max.2.5 % m/m 8 1.8 3.7 2.7 max.2.5 % m/m 8 1.7 2.9 2.4 max.2.5 % m/m 8 8.4 13.2 10.7 max.2.5 % m/m 8 8.4	ETBE	۸/۸ %		I	I	I	I		1	1	ł	1		ł	1	I	1
% vv max.3 max.3 max.3 % vv max.5 max.3 max.3 % vv max.7 max.3 max.3 % vv max.7 max.7 max.7 % vv max.7 max.7 max.7 % vv max.7 max.7 max.7 % vv max.7 max.7 max.7 % vv max.17 max.7 % vv max.25 max.2.5 % m/m 8 18 17 2.9 2.4 % m/m 8 8.4 13.1 12.0	Alcohol content																
% VV max.5 max.5 max.5 % VV max.7 max.7 max.7 % VV max.7 max.7 max.7 % VV max.7 max.7 max.7 % VV max.7 max.7 max.7 % VV max.7 max.7 max.7 % M/m max.2.5 max.2.5 max.7 % m/m 8 1.8 3.7 2.7 max.2.5 % m/m 8 1.7 2.9 2.4 % m/m 8 10.8 13.1 12.0 % m/m 8 10.8 13.1 12.0 % m/m	MeOH	V/V %	max.3	ł	I	1	1	max. 3	I	1	1	1	max. 3	ł	ł	ł	1
% VV max.7 max.7 max.7 % VV max.5 max.5 max.7 % VV max.7 max.5 max.7 % VV max.7 max.7 max.7 % VV max.7 max.7 max.7 % VV max.7 max.7 max.7 % M/m max.2.5 max.2.5 max.7 % m/m 8 1.8 3.7 2.7 8 10.7 % m/m 8 8.4 13.2 10.7 max.2.5 % m/m 8 8.4 13.1 12.0 max.2.5 max.2.5 % m/m 8	EtOH	V/N %	max.5	I	1	1	1	max. 5	I	ł	1	1	max. 5	I	1	I	ł
% VV max.5 max.5 max.5 % VV max.7 max.7 max.7 % VV max.7 max.7 max.7 % VV max.7 max.7 max.7 % VV max.7 max.7 max.7 % M/m 8 1.8 3.7 2.7 8 1.7 2.9 2.4 % m/m 8 8.4 15.1 11.7 8 8.4 13.2 10.7 % m/m 8 10.8 13.1 12.0 max.2.5	TBA	۸/۸ %	max.7	I		I]	тах. 7	1	I	1	1	max. 7	1	1	1	1
% v/v max.7 max.7 max.7 % v/v max.7 max.7 max.7 % v/v max.7 max.7 max.7 % v/v max.7 max.7 max.7 % m/m max.2.5 max.2.5 % m/m 8 1.8 3.7 2.7 8 1.7 2.9 2.4 % m/m 8 8.4 15.1 11.7 8 8.4 13.2 10.7 % m/m 8 9.8 14.1 12.5 8 10.8 13.1 12.0	IPA	V/V %	max. 5	1	1		I	тах. 5	1	I	1	ł	max. 5	1	1	I	I
% VV max.7 max.7 max.7 % m/m max.25 max.25 max.25 % m/m 8 1.8 3.7 2.7 8 1.7 2.9 2.4 % m/m 8 8.4 15.1 11.7 8 8.4 13.2 10.7 % m/m 8 9.8 14.1 12.5 8 10.8 13.1 12.0	NBA	% v/v	max.7	1	1	1		max. 7	1	I		I	max. 7	1	I	1	1
% m/m max.2.5 max.2.5 max.2.5 % m/m 8 1.8 3.7 2.7 8 1.7 2.9 2.4 % m/m 8 8.4 15.1 11.7 8 8.4 13.2 10.7 % m/m 8 9.8 14.1 12.5 8 13.1 12.0	IBA	V/V %	тах. 7	1	1	1	1	max. 7	ł	1		I	тах. 7	1	I	ł	1
tcs % m/m 8 1.8 3.7 2.7 8 1.7 2.9 2.4 8 % m/m 8 8.4 15.1 11.7 8 8.4 13.2 10.7 8 % m/m 8 9.8 14.1 12.5 8 10.8 13.1 12.0 1	Oxygen content	m/m %	max. 2.5	1	ł	ł	ł	max. 2.5	1	1	1	1	max. 2.5	1	I	1	1
е % m/m — 8 1.8 3.7 2.7 — 8 1.7 2.9 2.4 — 8 % m/m — 8 8.4 15.1 11.7 — 8 8.4 13.2 10.7 — 8 % m/m — 8 9.8 14.1 12.5 — 8 10.8 13.1 12.0 —	Aromatics					1											
ь	Benzene	m/m %	1	8	1.8	3.7	2.7	I	80	1.7	2.9	2.4	1	40	1.6	4.2	3.0
% m/m — 8 9.8 14.1 12.5 — 8 10.8 13.1 12.0 — 1	Toluene	ш/ш %	!	~	8.4	15.1	11.7	1	80	8.4	13.2	10.7	1	ŝ	8.4	14.6	12.9
	Xylene	ш/ш %	1	œ	9.8	14.1	12.5	1	æ	10.8	13.1	12.0	1	ю	10.4	15.2	13.6
	Total	ш/ш %	1	80	38.9	56.5	49.7	ł	~~~	40.3	50.3	46.7		ю	34.3	56.7	44.1

Spain

				Ñ	oweden						
Quality			Super	Super unleaded	(36) pa			Super	Super unleaded (98)	(86) þá	
Property	Unit	Spec.	L	Min.	Max.	Average	Spec.	u	Min.	Max.	Average
Density 15°C	kg/m³	725 - 775	50	733.7	756.6	750.9	725 - 775	34	738.5	767.9	758.1
Lead content	l/6m	max. 5	-	-	1	1	тах. 5	1	1	1	1
Distillation											
8	ပ္	I	4	31	33	32	I	m	30	31	31
5%		I	1	!	I	1	1	1	1	1	1
10%		1	4	50	51	50	1	ę	51	52	51
20%		1	I	I	1	1	1	1	1	1	1
30%		1	1	1	1	1	I	1	1	1	1
40%		1	ł	I	1	1	1	1	1	1	1
20%		1	4	95	102	66	1	e	97	100	66
60%		1	I	1	1	1	1	1		1	1
20%		1	1	I	1	1	1	I		1	I
80%		I	1	1	I	1		I	I		1
%06		I	4	149	158	155	1	ŝ	154	157	155
65%		1	1	I	I	I		I	I]	ł
FBP		max. 205	47	172	198	190	max. 205	30	178	201	189
Residue	_	max. 2	43	0.5	1.2	1.0	max. 2	27	0.3	2.5	1.0
Losses	% viv	I	1	I	1	I	I	1	1	I	1
E70	V/V %	15 - 45	47	24.8	38.0	30.3	15 - 45	30	24.0	35.6	29.6
E100	V/V %	min. 47	47	47.6	62.1	51.8	min. 47	90	47.0	53.5	49.5
E150	2/2 %	I	4	85.5	90.6	87.0	1	ო	85.8	87.5	86.9
E180	% viv	min. 85	47	96.0	99.3	97.5	min. 85	30	96.0	99.0	97.8
Sulphur content	mg/kg	max. 100	46	<1	< 100	<100	max. 100	31	<1	< 100	0.7
Octane Quality						*****					
RON		mín. 95.0	05	95.0	97.7	95.6 21.1	min. 98.0	34	98.0 7 7	99.5 00 0	98.4
MUN		min. 85.0	9	0.CD	88.3	60.0	min. 8/U	\$	C' 10	8 3 .U	88.U
Reid Vapour Pressure VLI (10*RVP + 7*E70)	kРа	45 - 70 max. 1050	46 46	65 842	70 966	69 668	45 - 70 max. 1050	34 31	57 688	70 924	68 880
			Î								

Sweden

concawe

65.4

107.1

45.6

►

ł

ļ

ł

ł

l

ł

mg/100ml

Gum unwashed

				5							
Quality			Super	Super unleaded (95)	d (95)			Super	Super unleaded (98)	(86) pi	
Property	Unit	Spec.	u	Min.	Max.	Average	Spec.	u	Min.	Max.	Average
FIA											
Aromatics	V/V %	ł	4	36.1	45.1	41.8	ł	4	44.9	48.1	46.2
Olefins	% v/v	I	4	0.7	14.8	5.4	I	4	0.5	2.1	1.0
Saturates	% viv	1	****			***	1	I			1
GC-Analysis											
Benzene	V/V %	max. 3	47	0.4	2.4	1.6	тах. 3	31	0.3	2.4	1.4
Ether content		max. 15					max. 15				
MTBE	V/V %		47	< 0.5	1.1	< 0.5		붌	0.1	12.1	6.0
ETBE	V/V %							1	1	1	ļ
Alcohol content											
MeOH	% v/v	тах. 3	1	1	ł	ł	max. 3	I	ł	1	1
EtOH	√\v %	max. 5	I	I	I	I	max. 5	1	1	I	1
TBA	V/V %	max. 7	1	I	ł	ļ	max. 7	I	ł	ł	1
IPA	v/v %	max. 5	I	I	ł	1	max. 5	I	1	I	I
NBA	∧/∧ %	max. 7	ł	ł	ł	1	max. 7	1	I	ł	I
IBA	v/v %	max. 7	ł	I	I	I	тах. 7	I	I	1	I
Oxygen content	m/m %	max. 2.0	I	I	I	I	max. 2.0	1	1	ł	I
Aromatics											
Benzene	m/m %	1	1	I	I	1	1	1	1	1	
Toluene	m/m %	1	I	1	ł	l	I	I	I	I	ł
Xylene	m/m %	I	1	1	1	I	1	I	I	I	1
Total	m/m %	1	I	I	I	I	1	1	1	I	ł

Sweden

		-	Sunor		OWILECTIQUU	2		Sunar	Suner unleaded (98)	(98) 14	
لي العالي الم			Iadne	nilicaue	(ce) ns			Indino		() 20 1 20 1	
Property	Unit	Spec.	E	Min.	Max.	Average	Spec.	u	Min.	Max.	Average
Density 15°C	kg/m³	725 - 780	20	726.5	746.7	735.7	725 - 780	17	730.5	753.1	741.7
Lead content	l/gm	max. 13	20	< 2	< 2	< 2	max. 13	17	< 2	< 2	< 2 <
Distillation											
BP		1	20	31	35	33	I	17	31	35	33
5%		1	20	43	46	45	1	17	42	47	4
10%	ပ့	l	20	49	52	50	1	17	48	52	20
20%		1	20	54	63	58	I	17	49	64	60
30%		1	20	59	77	67	I	17	59	80	69
40%		1	20	66	92	17	1	17	67	96	80
50%]	20	77	107	06	I	17	76	108	92
60%		1	20	96	120	104	1	17	92	117	105
20%		l	20	110	132	117	l	17	112	127	611
80%		l	20	120	149	132	1	17	130	143	133
80%		1	20	139	169	153	1	17	146	161	153
95%		I	20	152	186	167	1	17	156	199	168
da1		max. 215	20	171	216	193	max. 215	17	180	202	191
Residue		max. 2	20	0.6		1.0	max. 2	17	0.8	1.1	6.0
Losses		1	20	0.4	÷	0.8	1	17	0.7	1.4	1.0
E70	% v/v	15 - 45	20	25.3	44.4	34.0	15 - 45	17	23.8	44.0	32.1
E100	V/V %	40 - 65	20	45.2	62.1	57.0	40 - 65	17	43.0	64.1	61.9
E150	V/V %	ł	1	1	1]	l	1	I	1	1
E180	% v/v	min. 85	20	93.6	98.9	96.9	min. 85	17	95.4	99.0	97.1
Suiphur content	mg/kg	max. 500	20	100	470	216	max. 500	17	80	230	161
Octane Quality											
RON	_	min. 95.0		95.1	96.7	95.8	min. 98.0	17	97.6	99.3	98.4
MON		min. 85.0	20	85.4	87.0	85.8	mín. 88.0	17	88.2	89.0	88.6
Reid Vanour Pressure	kPa	35-70	20	62	69	69	35 - 70	17	61	76	67
VLI (10*RVP + 7*E70)	I 	max. 950	20	824	950	906	max. 950	17	839	961	895
											1

Switzerland

23.5

78.0

1.0

1

I

19.5

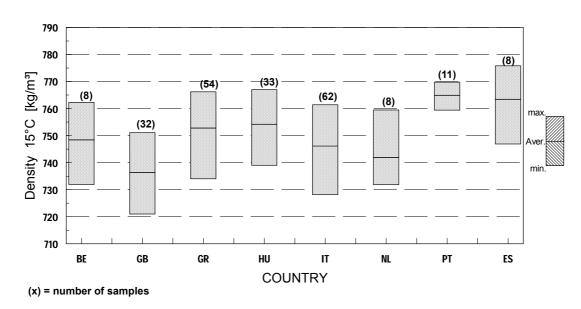
65.0

1.0

20

I

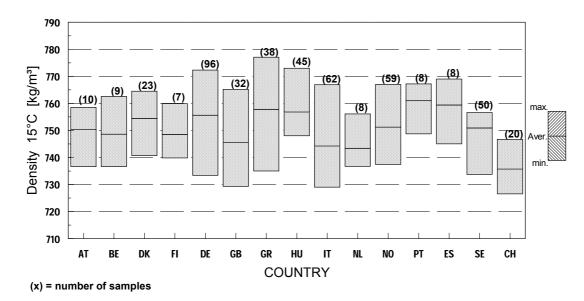
mg/100ml


Gum unwashed

						ŋ					
Quality			Super	Super unleaded (95)	d (95)			Super	Super unleaded (98)	(86) ba	
Property	Unit	Spec.	п	Min.	Max.	Average	Spec.	E	Min.	Max.	Average
FIA											
Aromatics	∿ v/v	1	20	22.1	36.3	28.6	I	17	21.5	38.2	30.9
Olefins	v/v %	1	20	0.3	15.6	9.3	1	17	0.6	10.6	4.4
Saturates	∿ v/v	ł	1	***	****			1	1	ł	1
GC-Analysis											
Benzene	۸/۸ %	тах. 5	20	1.0	2.9	2.0	max.5	17	0.6	3.0	1.6
Ether content		max. 15					max. 15				
MTBE	VIV %		20	< 0.1	5.9	2.5		17	< 0.1	12.0	10.4
ETBE	V/V %		I	1	1	I		1	1	I	I
Alcohol content											
MeOH	% v/v	max. 3	20	< 0.1	< 0.1	< 0.1	max. 3	47	< 0.1	< 0.1	< 0.1
EtOH	∧/∧ %	max. 5	1	I	1	ł	max. 5	ł	I	I	ł
TBA	N/N %	тах. 7	20	< 0.1	0.5	× 0.1	max. 7		< 0.1	0.4	× 0.1
IPA	v/v %	max. 5	1	I	1	1	max. 5	1	I	ł	1
NBA	V/V %	max. 7	I	ł	I	1	max. 7	1	I	I	I
IBA	∧/∧ %	max. 7	I	I	I	1	max. 7	I	I	I	1
Oxygen content	m/m %	max. 2.5	I	I	I	I	max, 2.5	1	I	ł	1
Aromatics											
Benzene	ш/ш %	ł	ł	1	ł	ł	1	1	1	I	ł
Toluene	m/m %	1	ł	ł	ł	I	ł	I	ł	I	ł
Xylene	m/m %	1	1	ł	I	I	I	1	ł	1	1
Total	m/m %	ł	1	1	I	1	I	ł	l	I	I

Switzerland

APPENDIX 5


KEY PARAMETERS

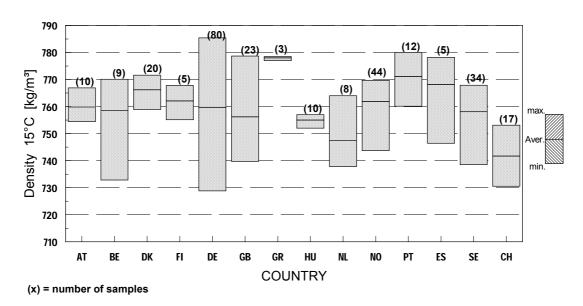
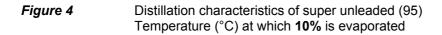
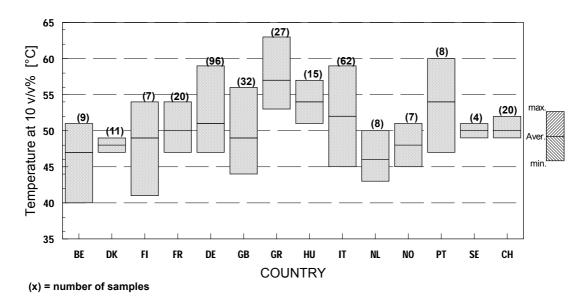
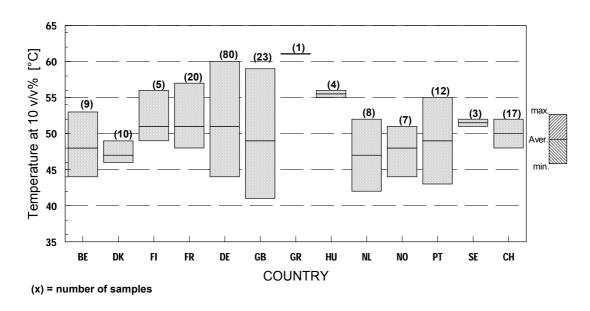
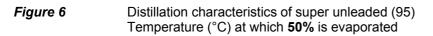


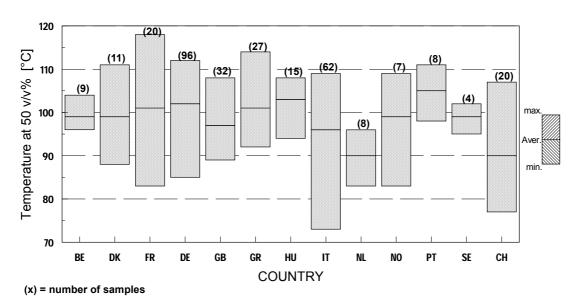
Figure 1 Density at 15°C of super leaded

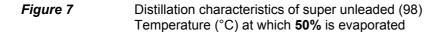


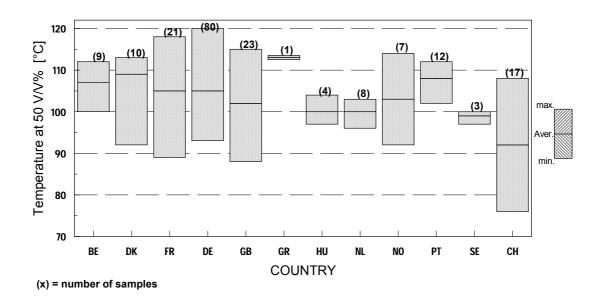

Density at 15°C of super unleaded (95)

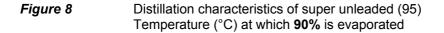


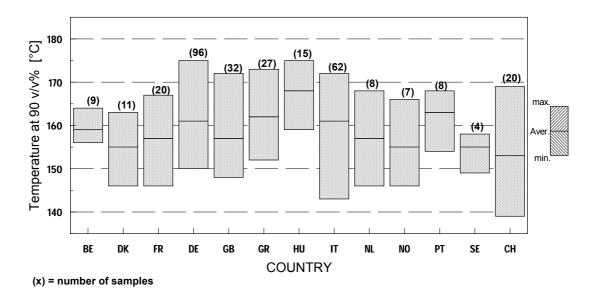

Figure 3 Density at 15°C of super unleaded (98)

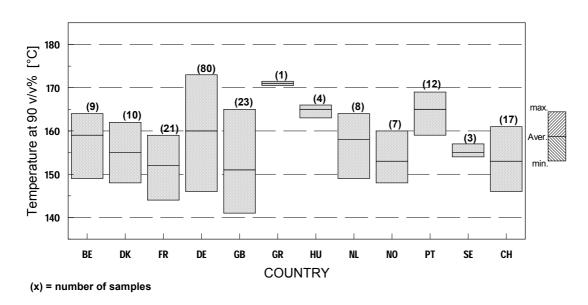


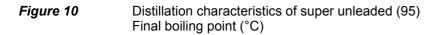


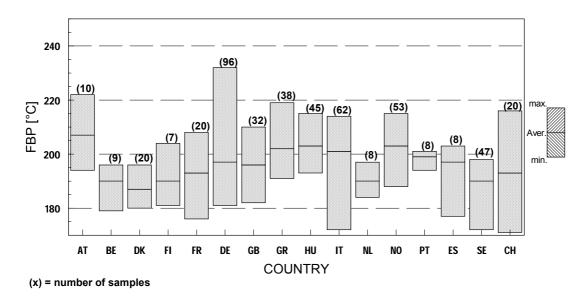


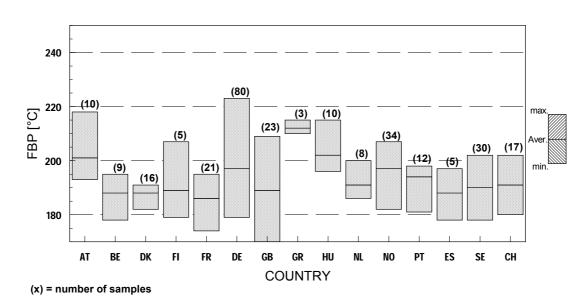

Figure 5 Distillation characteristics of super unleaded (98) Temperature (°C) at which **10%** is evaporated

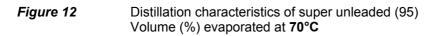


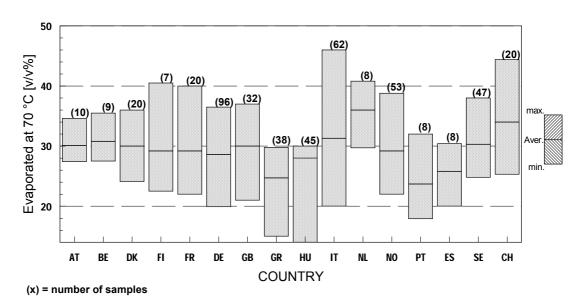









Figure 9 Distillation characteristics of super unleaded (98) Temperature (°C) at which **90%** is evaporated



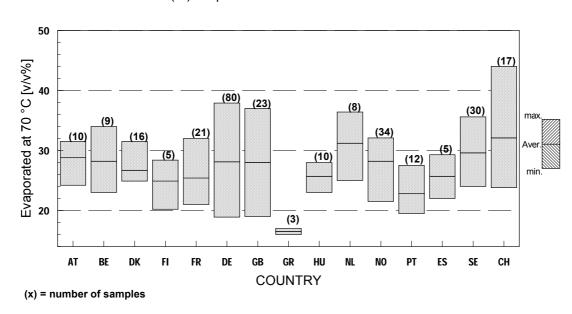
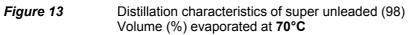
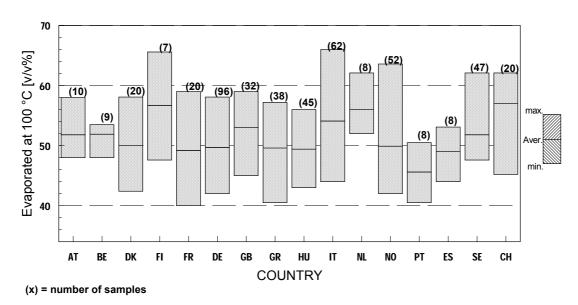
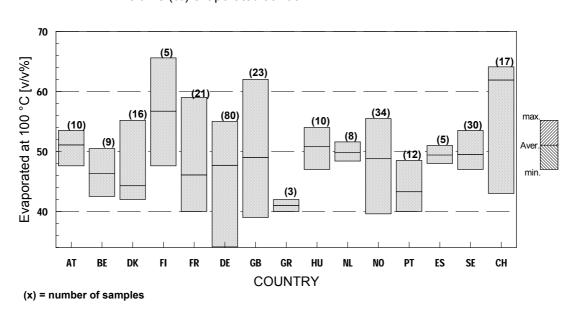
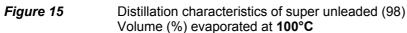
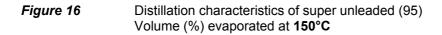
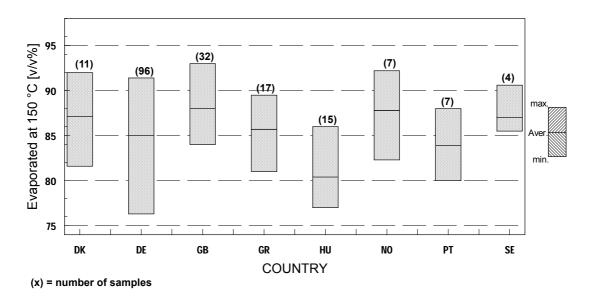
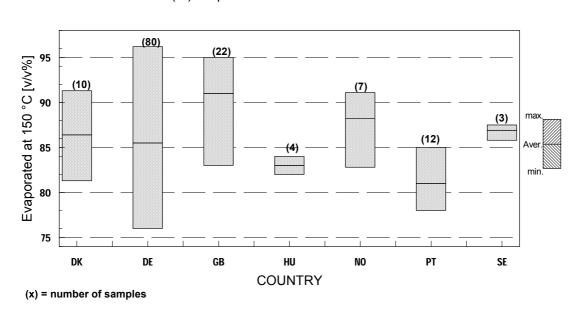
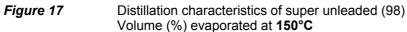
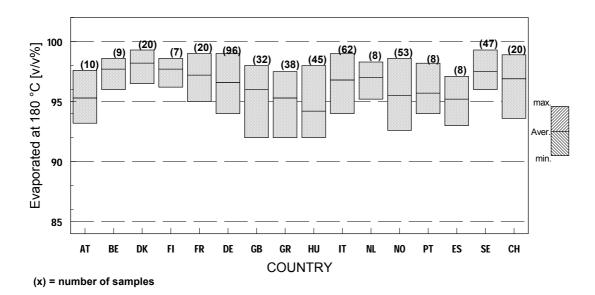
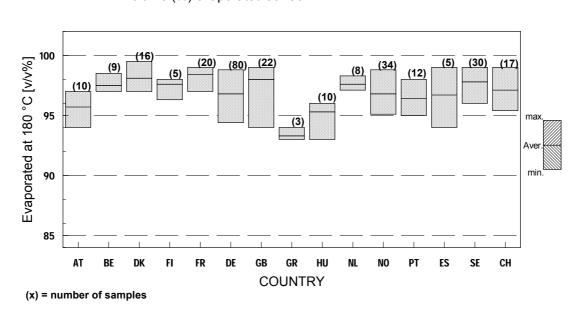
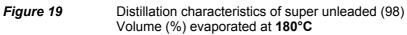


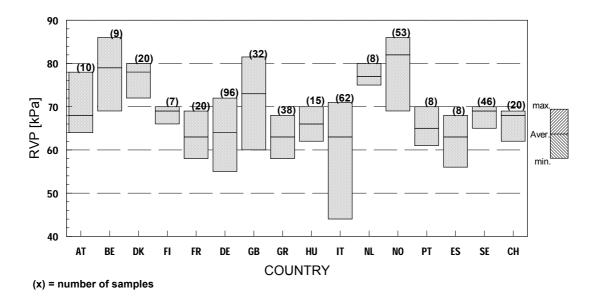
Figure 11 Distillation characteristics of super unleaded (98) Final boiling point (°C)

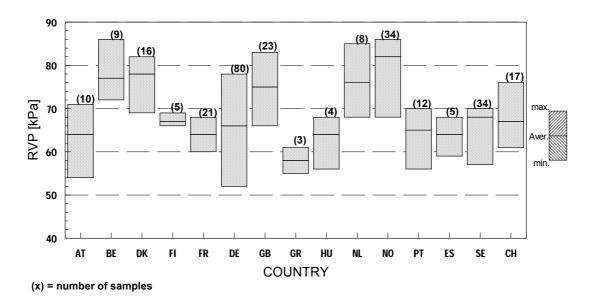






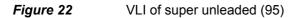

Figure 14 Distillation characteristics of super unleaded (95) Volume (%) evaporated at **100°C**

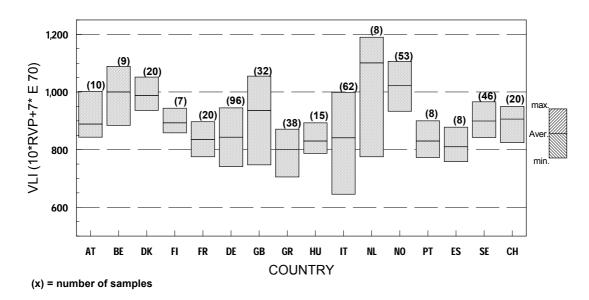


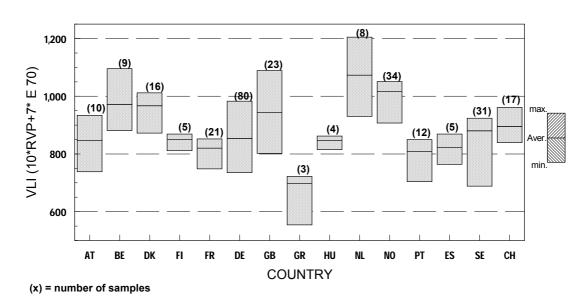





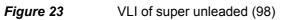

Figure 18Distillation characteristics of super unleaded (95)
Volume (%) evaporated at 180°C

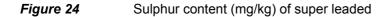


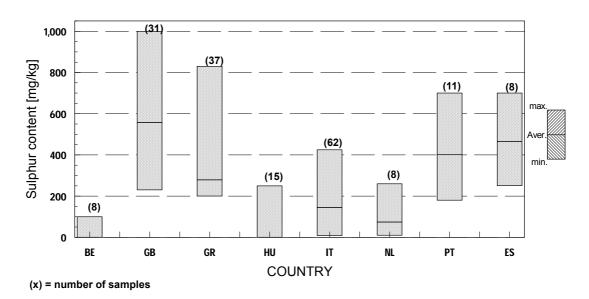


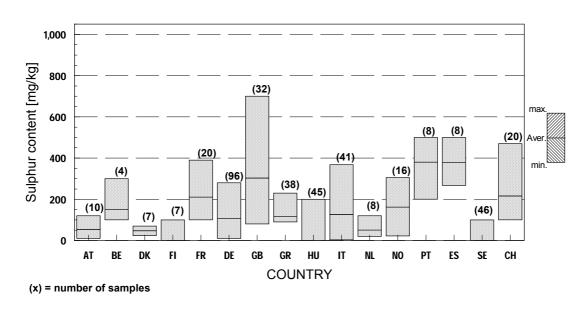


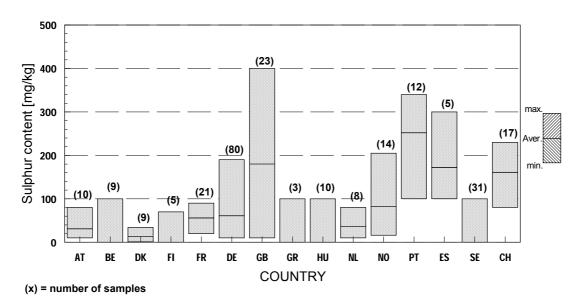


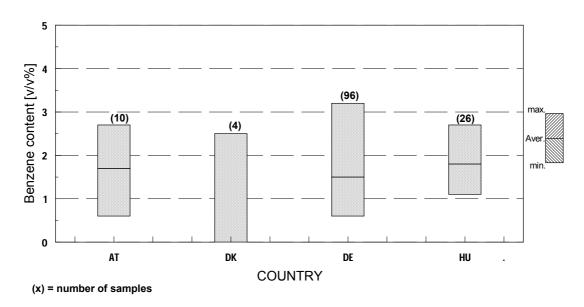


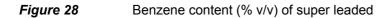


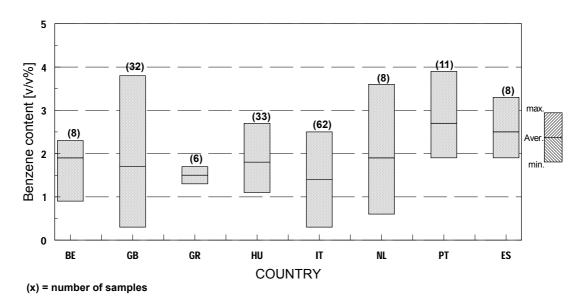


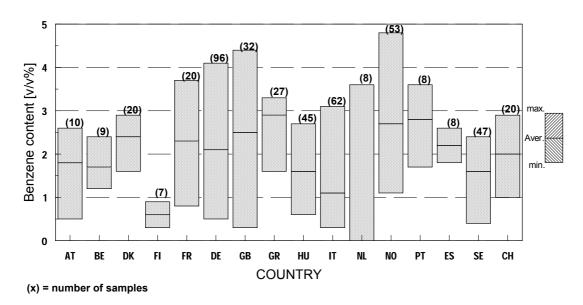


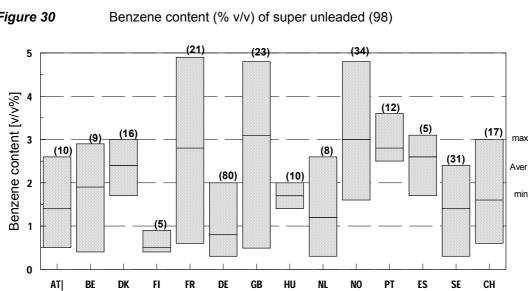


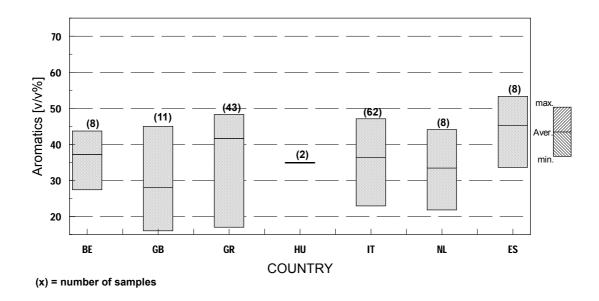


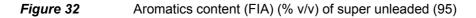

Figure 25 Sulphur (mg/kg) content of super unleaded (95)

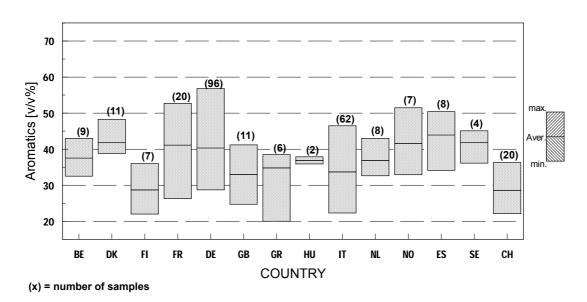





Figure 27 Benzene content (% v/v) of regular unleaded


Figure 29 Benzene content (% v/v) of super unleaded (95)


COUNTRY


Figure 30

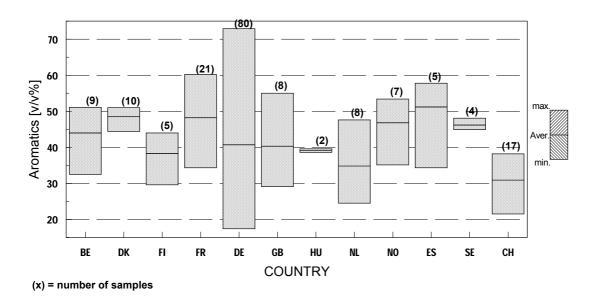
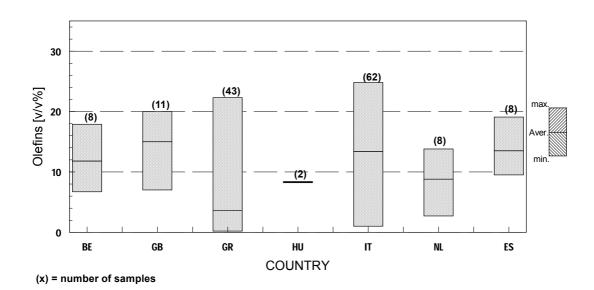

(x) = number of samples

Figure 31 Aromatics content (FIA) (% v/v) of super leaded



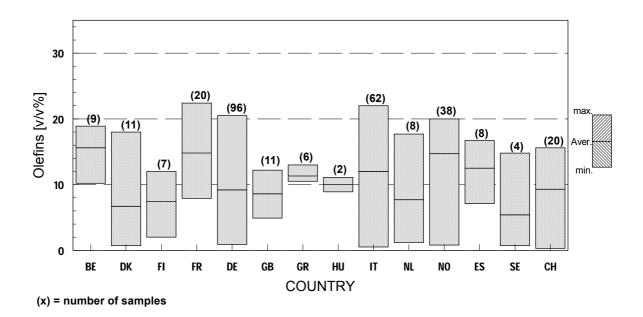


Figure 33 Aromatics content (FIA) (% v/v) of super unleaded (98)

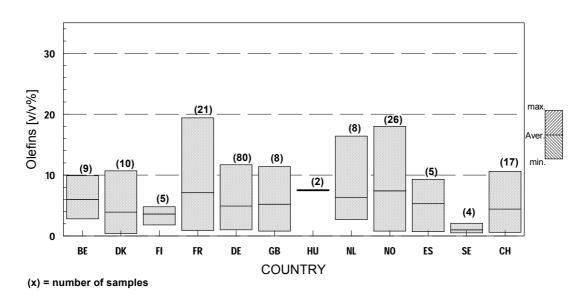


Figure 35 Olefins content (FIA) (% v/v) of super unleaded (95)

Olefins content (FIA) (% v/v) of super unleaded (98)

