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REVIEW ARTICLE

The shape of low-concentration dose–response functions for benzene:
implications for human health risk assessment

Louis A. Cox Jr.a,b, Hans B. Ketelslegersc and R. Jeffrey Lewisc,d

aCox Associates LLC, Denver, CO, USA; bDepartment of Business Analytics, University of Colorado, Denver, CO, USA; cConcawe Division,
European Petroleum Refiners Association, Brussels, Belgium; dExxonMobil Biomedical Sciences, Inc, Clinton, NJ, USA

ABSTRACT
Are dose–response relationships for benzene and health effects such as myelodysplastic syndrome (MDS)
and acute myeloid leukemia (AML) supra-linear, with disproportionately high risks at low concentrations,
e.g. below 1ppm? To investigate this hypothesis, we apply recent mode of action (MoA) and mechanistic
information and modern data science techniques to quantify air benzene-urinary metabolite relationships
in a previously studied data set for Tianjin, China factory workers. We find that physiologically based
pharmacokinetics (PBPK) models and data for Tianjin workers show approximately linear production of
benzene metabolites for air benzene (AB) concentrations below about 15ppm, with modest sublinearity at
low concentrations (e.g. below 5ppm). Analysis of the Tianjin worker data using partial dependence plots
reveals that production of metabolites increases disproportionately with increases in air benzene (AB) con-
centrations above 10ppm, exhibiting steep sublinearity (J shape) before becoming saturated. As a conse-
quence, estimated cumulative exposure is not an adequate basis for predicting risk. Risk assessments must
consider the variability of exposure concentrations around estimated exposure concentrations to avoid
over-estimating risks at low concentrations. The same average concentration for a specified duration is dis-
proportionately risky if it has higher variance. Conversely, if chronic inflammation via activation of inflam-
masomes is a critical event for induction of MDS and other health effects, then sufficiently low
concentrations of benzene are predicted not to cause increased risks of inflammasome-mediated diseases,
no matter how long the duration of exposure. Thus, we find no evidence that the dose–response relation-
ship is supra-linear at low doses; instead sublinear or zero excess risk at low concentrations is more con-
sistent with the data. A combination of physiologically based pharmacokinetic (PBPK) modeling, Bayesian
network (BN) analysis and inference, and partial dependence plots appears a promising and practical
approach for applying current data science methods to advance benzene risk assessment.
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Introduction: are low-concentration benzene
dose–response functions supralinear?

Supralinear dose–response functions – that is, dose–response

functions in which low doses are disproportionately potent in

causing harm – have sometimes been proposed as describing

the risks from many well-studied public and occupational
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hazards. Examples include asbestos, benzene, lead, particu-
late air pollution, and ionizing radiation. A suggested risk
management implication is that exposure concentrations
must be driven to zero, or close to it, to adequately protect
human health (Hornung and Lanphear 2014; Lanphear 2017).
Some of these concerns have been challenged as statistically
flawed or as biologically unrealistic (Waddell 2006; Hornung
and Lanphear 2014). For example, studies that identify supra-
linear dose–response relationships can be questioned if they
fail to control fully for important potential confounders, such
as misclassified smoking (Hamling et al. 2019). Omitted and
residual confounding by smoking can create significant asso-
ciations between some common exposure metrics (e.g. blood
lead levels) and adverse health effects (e.g. cardiovascular
mortality and morbidity) whether or not the former affect
the latter. Misattributing risk caused by a confounder to
exposure creates the appearance of a supra-linear dose–res-
ponse function since risk fails to decline as exposure
decreases, in effect spreading the same risk over fewer units
of exposure.

For many other agents, including asbestos, mineral dusts
and particulate matter, and ionizing radiation, it has recently
been discovered that major exposure-associated adverse
health effects are mediated by chronic inflammation and acti-
vation of a specific signaling complex (the NLRP3 inflamma-
some) with an activation threshold, such that low exposure
concentrations do not trigger inflammasome assembly and
activation and resulting increases in disease risks (Bogen
2019; Cox 2019; Du et al. 2019; Wei et al. 2019). For other
chemicals, causal mechanisms of adverse outcomes and
modes of action are less clear. For these chemicals, careful
review is needed to assess the biological plausibility of supra-
linear dose–response function for low exposure concentra-
tions. The purpose of this paper is to provide such an
assessment for benzene, focusing specifically on whether pro-
duction of putative harmful metabolites of benzene is supra-
linear at low concentrations.

The suggestion that low-dose metabolism of benzene is
supralinear has been advanced using data from factory work-
ers in Tianjin, China (Rappaport et al. 2009, 2010). Applying
nonlinear parametric regression models that take a ratio Y/X
as the dependent variable and X as the independent variable,
where Y ¼ measured quantity of a benzene metabolite and X
¼ estimated concentration of benzene in inhaled air to data
for factory workers in Tianjin revealed that the ratio Y/X
increases as X decreases, for various metabolites Y
(Rappaport et al. 2010). This observation was interpreted as
strong evidence for a supralinear dose–response explained
by an unknown enzyme that becomes saturated at concen-
trations below the detection limit for benzene, in preference
to an alternative explanation that the apparent supralinearity
reflects unrealistic assumptions about unmeasured back-
ground levels of benzene exposure (since the supralinearity
finding disappears if “background” concentrations are defined
as those for workers without occupational exposures)
(Rappaport et al. 2013). More recent work applying nonpara-
metric statistical and machine learning techniques to the
Tianjin data to avoid potential biases from parametric regres-
sion modeling found no departures from linear metabolism

at low exposure concentrations, but clarified that a ratio Y/X
can increase as X approaches zero even if metabolism is lin-
ear, if estimated values are measured with error variance, as
in the Tianjin data (McNally et al. 2017; Cox et al. 2017). In
effect, the probability of having estimated X value near zero
and estimated Y values well above 0 is sufficient to make
their ratio increase as the estimated X value approaches zero,
even if the ratio of their true values remains constant.

To further advance understanding of the shapes of ben-
zene metabolism and dose–response relationships at low
exposure concentrations in air, the following sections address
the following five related research questions:

1. Which metabolites and markers best predict human
health risks from low levels of benzene exposure
(and why)?

2. How do levels of metabolites and markers change with
levels of benzene in inhaled air, and with levels of other
factors (e.g. diet, alcohol consumption, cigar-
ette smoking)?

3. How much do inter-individual heterogeneity and vari-
ability affect benzene metabolism?

4. How much intra-individual variability is there in ben-
zene metabolism?

5. At what levels do different metabolites and relevant
markers predict increased risk of adverse health effects
from benzene exposure?

Questions 1 and 5 are addressed based on existing litera-
ture. To obtain new insights into questions 2–4, we also
apply current data science techniques to identify and quan-
tify potential causal relationships between inhaled benzene
and levels of relevant benzene metabolites in the Tianjin fac-
tory worker data.

Benzene markers and metabolites relevant for
human health

Benzene metabolism and pharmacokinetics

Human metabolism of benzene has been intensively studied
and elucidated. Figure 1(a,b) shows major benzene metabolic
pathways, both as sequences of molecular structures (Figure
1(a)) and as a pathway schematic (Figure 1(b)) with metabo-
lites (blue) and metabolizing enzymes (black); these can be
explored via the interactive WikiPathway (Slenter et al. 2018)
from which Figure 1(b) is taken. Physiologically based phar-
macokinetic (PBPK) models have been developed and vali-
dated for benzene metabolism in humans, mice, rats, and
other species (Knutsen et al. 2013). Metabolism and distribu-
tion of benzene in liver, bone marrow, and other tissue
groups have been compared across species and their interin-
dividual and intraindividual variability in human populations
have been studied and modeled quantitatively in population
PBPK models (Yokley et al. 2006). In discussing benzene
metabolism, different authors focus on trans, trans-muconal-
dehyde (ttM), E,E-muconaldehyde, or trans, trans-muconic
acid (t,t-MA or simply MA) (i.e. the diene dialdehyde and its
dicarboxylic acid metabolite, respectively) as indicators of
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open-ring products formed by cytochrome P4502E1 (CYP)
metabolism. We follow this mixed usage in summarizing rele-
vant results from the literature.

Figure 2 shows the compartmental structure of a recent
benzene PBPK model for humans (Knutsen et al. 2013).

Figure 3 compares model predictions to observations of
metabolites in data not used in building the model. (The
scales in Figure 3 are logarithmic, so predictions and data are
compared across estimated exposure concentrations that dif-
fer by several orders of magnitude.) Estimated rates of

Figure 1. (a) Chemical structures of human metabolites of benzene. Source: Rappaport et al. (2010). (b) Pathway schematic showing major metabolites (blue) and
metabolizing enzymes (black) [muconic acid (MA) not shown]. Right side: side pathway schematic is from: https://www.wikipathways.org/index.php/
Pathway:WP3891#nogo2.
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human conversion of benzene to muconic acid (MA) and
phenylmercapturic acid (PMA), phenol (PH), catechol (CA),
hydroquinone (HQ), and benzenetriol (BT) in the model were
validated using urinary benzene metabolite data from
Chinese benzene workers. Although there is substantial inter-
individual variability, as reflected in the large vertical scatter
in Figure 3, the PBPK model predictions pass through the
observed data clouds, and in this sense roughly describe the
data. Other PBPK models for benzene have been developed
over the past 30 years and at least partially validated by com-
paring their predictions to observations in data sets not used
in developing them, although most do not show bone

marrow as a separate compartment. Similar to Figure 3, these
PBPK models predict linear or sublinear (upward-curving, as
detoxifying pathways begin to saturate) production of
metabolites as a function of air benzene concentrations, for
air benzene concentrations below about 10 ppm. We defer to
the references for details of these PBPK models, but note
that the approximate linearity of metabolite production as
exposure concentration approaches zero is a property of a
broad class of classical (compartmental) pharmacokinetic and
PBPK models at low doses (Cox 1995). Saturation of metabol-
ite production begins at air benzene concentrations between
about 10 ppm and about 100 ppm.

Benzene health effects and hypothesized causal
biological mechanisms

Major health effects of concern for benzene-exposed workers
are acute myeloid leukemia (AML) and myelodysplastic syn-
drome (MDS), although high concentrations (especially >

100 ppm) can also damage bone marrow and kill hematopoi-
etic progenitor cells, causing bone marrow failure and aplas-
tic anemia (Smith 1996; Das et al. 2012; Schnatter et al. 2012;
Rushton et al. 2014). Some epidemiological data sets and
statistical models have also identified associations between
benzene exposure and other illnesses, especially non-
Hodgkin’s lymphomas, although the evidence is mixed and
causality is uncertain (Galbraith et al. 2010; Teras et al. 2019).

A central challenge for dose–response modeling of ben-
zene health effects at relatively low concentrations of air ben-
zene is that the specific metabolites and biological
mechanisms involved in causing MDS and AML and other
effects have not yet been definitively identified, although

Figure 2. Compartmental structure of a recent PBPK model for human metabol-
ism of benzene. (Source: Knutsen et al. 2013).

Figure 3. Comparison of benzene PBPK model predictions (solid lines) and uncertainty bands (dashed lines, representing ±2 standard deviations) to data (points)
not used in building the model. MA: muconic acid; PMA: phenylmercapturic acid; PH: phenol; CAT: catechol; HQ: hydroquinone; BT: benzenetriol. (Source: Knutsen
et al. 2013).
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several theories and supporting evidence have been
advanced (Arnold et al. 2013). Some papers interpret the fact
that benzene and its reactive metabolites react with a variety
of proteins and DNA in a variety of test systems as mechanis-
tic evidence that occupational levels of benzene cause AML.
For example, Grigoryan et al. (2018) state that “The fact that
these diverse human serum albumin modifications differed
between benzene-exposed and control workers suggests that
benzene can increase leukemia risks via multiple pathways
involving a constellation of reactive molecules.” However,
most of the changes discussed (e.g. formation of albumin
adducts in blood serum in this example, or induction of
micronuclei in peripheral blood lymphocytes in other papers)
have no clear causal relevance for health risks, as they are
not validated markers for increased risk of MDS, AML or other
adverse health effects caused by benzene (Hack et al. 2010).
We focus on health-relevant markers, i.e. observable changes
that act through identified causal pathways or modes of
action to increase MDS and AML risks.

Most current research accepts that benzene acts by forming
myelotoxic metabolites that concentrate in the bone marrow,
where they damage early hematopoietic stem cells (HSCs),
myeloid progenitor cells, and the stromal microenvironment,
increasing the rate of cell death and replacement. However,
there are diverse theories about how these events increase
risk of MDS and AML. Among them are the following.

� Two-stage clonal expansion (TSCE) mode of action for ben-
zene carcinogenesis. A proposed traditional mode of
action (MoA) for benzene-induced AML begins with
enzyme-dependent metabolism, mainly via cytochrome
P450-2E1 (Figure 1). The resulting toxic metabolites
might interact with HSCs or other target cells in the
bone marrow to create mutated (“initiated”) target cells;
alternatively, it might increase the clonal proliferation (i.e.
expansion) rate of such initiated cells (“promotion”).
Proliferation of initiated cells (perhaps stimulated by cell
death due to poisoning by toxic benzene metabolites)
then increases the risk of transformation of at least one
of them to AML (“progression”) (Meek and Klaunig 2010).
This MoA is consistent with the general two-stage clonal
expansion (TSCE) models of carcinogenesis. Richardson
(2009) reports that a TSCE model in which benzene
increases clonal expansion fits exposure–response data
for leukemia in rubber hydrochloride production workers
well, with little evidence that it increases initiation; thus,
quantitative TSCE modeling suggests that benzene acts
as a promoter, increasing the risk of AML by increasing
the rate of proliferation of initiated cells (Richardson
2009). Such promotion is typically a threshold phenom-
enon (Neumann 2009).

� HSC damage, genomic instability, and reduced immune sur-
veillance. Alternatively, it has been proposed that key
events in development of benzene-induced leukemia
include exposure-related increases in intracellular oxida-
tive stress in HSCs or hematopoietic progenitor cells, dys-
regulation of the aryl hydrocarbon receptor (AhR), and
reduced immune surveillance of HSCs in the bone mar-
row (Hirabayashi and Inoue 2010; McHale et al. 2012;

Snyder 2012; Wang et al. 2012; Kerzic and Irons 2017).
McHale et al. (2012) further postulate that benzene
metabolites interact with critical genes and pathways in
the HSC, leading to genotoxic, chromosomal or epigen-
etic abnormalities and genomic instability; stromal cell
dysregulation; increased rate of death (via apoptosis) of
affected HSCs and stromal cells; and proliferation of
altered HSCs with unrepaired damage and chromosomal
aberrations, culminating in creation of leukemic stem
cells and subsequent leukemia. Others have proposed
that benzene metabolites (especially 1,4-benzoquinone,
i.e. p-benzoquinone) cause MDS and AML by increasing
chromosomal instability and unrepaired DNA damage
and AML-causing chromosomal rearrangements in HSCs
(e.g. via interference with topoisomerase-mediated DNA
ligation and nicking) (Son et al. 2016). However, Kerzic
and Irons (2017) note that such hypotheses, which pre-
dict that cytogenetic damage in benzene-induced leu-
kemogenesis should be similar to that in chemotherapy-
induced leukemogenesis, are not consistent with cyto-
genetic data from benzene-exposed workers with hem-
atopoietic diseases showing that benzene-induced AML
is much more similar to de novo AML than to therapy-
related AML.

� Chronic inflammation MoA. In Chinese worker data, chronic
inflammation followed by an immune-mediated inflamma-
tory response, rather than cytogenetic abnormalities per se,
appears to drive initiation and progression of benzene-
induced MDS and AML (Gross and Paustenbach 2018). This
may help to explain earlier observations that rheumatoid
arthritis and other autoimmune conditions (Anderson et al.
2009), as well as respiratory infections and other common
infections (Titmarsh et al. 2014), are significantly associated
with increased MDS and AML risk. The inflammatory MoA
is also consistent with often-noted associations between
increased reactive oxygen species (ROS) and oxidative stress
in affected cells and increased risk of MDS and AML. It has
recently been discovered that inflammation mediated by a
specific intracellular signaling platform (the NLRP3 inflam-
masome) that self-assembles in the cytosol of immune cells
in response to exposures above an activation threshold
(Cox 2019) drives the pathogenesis of MDS (Sallman and
List 2019). Recent findings that benzene induces inflamma-
tory programmed cell death (pyroptosis) (Sallman et al.
2016; Guo et al. 2019) and autophagy (Qian et al. 2019)
underscore the importance of inflammatory responses in
benzene-induced pathogenesis. Although inflammation
increases ROS and oxidative stress and cell turnover, thus
potentially increasing formation and proliferation of HSCs
with unrepaired cytogenetic damage and chromosomal
aberrations, the inflammatory MoA suggests that it is the
underlying inflammation that drives health risks.

The TSCE and the inflammatory MoAs raise the possibility
of exposure concentration thresholds below which inhaled
benzene does not increase disease risks. Promotion is typic-
ally a threshold phenomenon (Neumann 2009), e.g. because
concentrations must be high enough to cause toxic damage
and resulting compensating proliferation of damaged HSCs.
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Inflammatory responses have activation thresholds or thresh-
old-like steep nonlinearities (e.g. ultrasensitive switches) in their
dose–response functions, so that tissues are not continually
being inflamed by low-level exposures; the mechanisms of
these activation thresholds have been substantially elucidated
(Cox 2019). (Inflammation might also play a role in clonal
expansion of damaged stem cells due to continuing hyperplasia
acting as a co-initiator of carcinogenesis, but this also implies a
threshold (or threshold-like nonlinearity) in the dose–response
function (Bogen 2019).) Thus, MoA theories for benzene-induced
MDS and AML in which benzene metabolites cause chronic
inflammation and resulting proliferation of damaged HSCs sug-
gest highly sub-linear (threshold or threshold-like) dose–res-
ponse functions, rather than supra-linear ones. If this is correct,
then benzene exposures increase risks of MDS and AML only if
concentrations and durations of exposure raise concentrations
of toxic metabolites in bone marrow microenvironments suffi-
ciently high and/or long to activate inflammasomes and cause
pyroptosis and other inflammatory responses. This shifts atten-
tion back to PBPK considerations.

Relevance and use of biomarkers in predicting health
effects and benzene exposures: BN models

Biomarkers are potentially useful for estimating unobserved ben-
zene exposures (or improving estimates of concentrations meas-
ured with error) and for predicting health risks caused by
exposures. The predictive value of a biomarker depends on how
well it can be measured and on by how much conditioning on
its measured value reduces uncertainty (e.g. the average entropy
of the conditional probability distribution) of the dependent vari-
able being predicted. For example, Figure 4 shows the structure
of a Bayesian network (BN) model for quantifying conditional

probabilities of some variables (e.g. various metabolites, markers
and AML (the Leukemia node at the lower right)), given
observed or assumed values of others. The conditional probabil-
ity distribution of each variable (node in the network) depends
on the values of the variables that point into it. This BN, from
Hack et al. (2010), was constructed manually based on a detailed
literature review of candidate markers and outcomes and verifi-
able, usefully accurate predictive relationships among them,
given limitations in measurement techniques.

Other potentially causally relevant variables (e.g. p-benzo-
quinone, NLRP3 inflammasome activation, age of patient, co-
exposures and co-morbidities, and so forth) are “marginalized
out” of the BN model in Figure 4, meaning that they can still
implicitly affect the probability of leukemia, but are not expli-
citly shown or conditioned on. Other investigators (or auto-
mated machine-learning programs for learning BNs directly
from data) might select different markers and develop other
BN models and perhaps get narrower uncertainty bands. For
example, previous studies have identified urinary concentra-
tions of SPMA (S-phenylmercapturic acid) and benzene itself
as reliable indicators of recent benzene exposures, even at
relatively low concentrations (e.g. 0.1 ppm for SPMA),
whereas urinary tt-MA, used in Figure 4, has inadequate spe-
cificity for benzene exposures below about 1 ppm when diet-
ary sources of sorbic acid are also present (Qu et al. 2003;
Fustinoni et al. 2011; Campagna et al. 2012; Arnold et al.
2013). It might therefore be advantageous to develop a BN
with SPMA and urinary benzene (UB) included as variables
that can be used (i.e. conditioned on) to help predict the
conditional probability distributions for other variables.

Unlike benzene PBPK modeling, which has been developed,
tested and refined for decades, benzene BN modeling of ben-
zene dose–response relationships is relatively new. Future ben-
zene BN models may well improve on the seminal work of Hack
et al. summarized in Figure 4, both by including more (and per-
haps different) variables and by distinguishing between estimated
and true values of benzene concentrations (and other variables
measured with substantial error). The most predictively useful
combinations of measurements for predicting MDS as well as
AML and air benzene exposure levels have yet to be identified
for such multi-variable BN models. Additional markers of chronic
inflammation may be needed to complement the information
already captured by the BN in Figure 4 (e.g. 8-OHdG). However,
despite these limitations compared to possible future BN models,
J-shaped dose–response curves for the BN model, shown in Hack
et al. (2010), make clear that the BN model does not suggest
supralinearity. Rather, the estimated conditional probability of
AML as a function of cumulative dose is consistent with a thresh-
old or very sublinear (J-shaped) dose–response function.

Dependence of metabolites and markers on inhaled
air benzene (AB) and other factors

Simple (univariate) regression models

A well-developed literature documents increases in various
markers of benzene exposure and activity with increasing air
benzene (AB) concentrations, even at low doses. For example:

Figure 4. Proposed Bayesian network (BN) model structure. (Source: Hack et al.
2010). 8-OHdG: 8-hydroxyguanosine (a biomarker of oxidative stress); CFU-
GEMM: colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte
(a precursor to RBCs and WBCs); BFU-E: burst-forming unit-erythroid (a RBC pre-
cursor cell type); CFU-GM: colony forming unit – granulocyte-macrophage (a
WBC precursor); RBC: red blood cell count; ttMA: trans, trans muconic acid;
WBC: white blood cell count.
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� Urinary benzene (UB) levels have been observed to be
linearly related to work shift AB concentrations over a
wide range of exposures, down to <0.2 ppm, providing a
useful biomarker of benzene exposure over approxi-
mately the previous day (Weisel 2010).

� Urinary S-phenylmercapturic acid (SPMA) levels increase
approximately linearly with AB concentrations between 0
and 80ppm (Lin et al. 2008, Figure 2; see also Knutsen
et al. 2013).

� tt-MA is a less specific marker for low-level benzene expos-
ure. The problem of dietary sources for tt-MA at low expos-
ure concentrations has already been mentioned.

� S-phenylcysteine (SPC) in albumin in human workers
increased linearly with average occupational benzene
exposures ranging from 0 to 23ppm (for 8 h/d, 5 d/wk)
(Bechtold and Henderson 1993).

Turning from literature review to data analysis, Figure 5
shows how average urinary metabolite quantities (curves)
increase with air benzene (AB) concentrations among Tianjin,
China factory workers (Rappaport et al. 2010; Price et al.
2012; Cox et al. 2017). Figure 5 shows non-parametric (lowess
smoothing) regression curves fit to scatter plots of urinary
metabolite levels (normalized by dividing by their mean val-
ues, so that 1 on the vertical axis represents the mean value,
for each metabolite) against AB concentrations from 1 to
3ppm on the horizontal axis. (The data points shown are for
UB vs. AB for workers with exposure concentrations in this
range, with the vertical axis truncated at 3 to avoid scale
compression due to outliers.) All curves are approximately lin-
ear for AB concentrations below 1ppm.

Exploratory multivariate modeling: correlations

Univariate regression curves, with AB as the sole explanatory
variable, do not explicitly account for the effects of other
variables, such as age, sex, or co-exposures to toluene, in
quantifying how metabolite amounts vary with AB. To bet-
ter understand the interrelationships among variables, we
apply the Causal Analytics Toolkit (CAT) software and meth-
ods described in Cox et al. (2017) to the Tianjin data for 177
workers with AB exposure concentrations of no more than
5 ppm and without missing data on AB or metabolites.
Figure 6 shows traditional linear (Pearson’s product-
moment) correlations between pairs of variables, along with
frequency histograms (main diagonal) and scatter plots.
These are not ideal for binary variables or for highly nonlin-
ear relationships, but allow for quick visual exploration of
the association between pairs of variables. Interpretively,
the histograms on the diagonal in Figure 6 show that air
benzene (AB) and its urinary metabolites are right-skewed,
with long right tails indicating that a small fraction of
metabolite measurements are much higher than the rest.
Other entries in the table refer to pairs of variables: for each
cell in the table, the variables identified on the diagonal for
the row and column that intersect at the cell identify the
relevant pair of variables. There are clear positive correla-
tions in the scatterplots for some pairs of variables, such as
between MA (top row and left-most column) and both UB
and SPMA (bottom two rows, right-most two columns), with
correlations between MA and SPMA of 0.61 and between
MA and UB of 0.43 (shown in the upper right). (For ease of
reference, the abbreviations of urinary metabolites of ben-
zene are listed in the caption of Figure 5.) Likewise, Figure 7

 Metabolites vs. air benzene (AB).  Scatter plot shows data points for AB and UB

 UB normalized
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 SPMA normalized
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 HQ normalized
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Figure 5. Uriinary metabolite levels vs. air benzene (AB) at AB concentrations below 3 ppm. (Metabolites are scaled so that 1¼mean value of each metabolite in
the worker population.) Curves are non-parametric (smoothing) regression curves. Data points are for urinary benzene (UB). UB: urinary benzene; MA: E, E muconic
acid; SPMA: S-phenylmercapturic acid; PH: urinary phenol; CA: urinary catechol; HQ: urinary hydroquinone. Data are from Price et al. (2012).
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visualizes the linear correlations in Figure 6 as a corrgram
(heat map diagram at the upper left) and as a network
(lower left) with stronger correlations indicated by closer
distances and thicker arcs (green¼positive correlation,
red¼ negative) between variables. The upper right panel of
Figure 7 provides analogous information for partial linear
correlations, in which the association between each pair of
variables is adjusted for levels of other variables via multiple
linear regression; and the lower right presents network visu-
alization when polychloric correlations are used instead of
linear correlations for the binary variables (factory, sex, and
smoking). (Only data from the 2 factories with occupational
benzene exposures are included.) Again, correlations are not

ideal measures for binary variables, but provide for a quick
exploration.

We do not base any final conclusions on the pairwise cor-
relations in Figures 5–7, but note that age, gender, height,
weight, and smoking cluster together (i.e. they are in close
proximity and are joined by heavy links in Figure 7), and that
air benzene (AB) and benzene metabolites often proposed as
markers of benzene exposure (MA, UB, and SPMA) also clus-
ter together (and apart from the demographic variables and
the toluene variables, AT and UT). At these low concentra-
tions, AT and UT have no significant correlations with AB and
UB. This pattern is consistent with previous studies indicating
that MA, UB, and SPMA are useful predictors of AB.

Figure 6. Frequency histograms (main diagonal), scatter plots with kernel smoothing regression curves (below diagonal) and linear (Pearson’s product moment)
correlations and significance asterisks (above diagonal) (�0.05, ��0.01, ���0.001). AT: air toluene; UT: urinary toluene; Creat: creatinine.
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Partial dependence plots (PDPs)

A more thorough analysis examines how concentrations of
urinary metabolites increase with increasing AB, similar to
Figure 5, while controlling for (i.e. conditioning on) the values
of all other variables. Such an analysis can be performed
using ensembles of non-parametric models to minimize
dependency on modeling assumptions (using the
randomForest package in R). The top row of Figure 8 shows
the resulting partial dependency plots (PDPs) for dependency
of SPMA and UB, the two metabolites identified as the best
markers for low-level benzene exposures, on air benzene
concentration (AB) in ppm, holding other variables (Gender,
Age, Smoke, Factory, Weight, Height, AT, Creat) fixed at their
recorded levels for each worker. A PDP is found by averaging
the predicted values of a dependent variable (benzene
metabolites in Figure 8) for different values of an independ-
ent variable (AB in Figure 8), holding values of all other varia-
bles fixed. The predictions that are averaged for each value
of the independent variable are made by an ensemble of
machine learning predictive models or algorithms (e.g. 500
non-parametric regression trees, for the PDPs in Figure 8).
For further details, see Friedman (2001). The bottom row

shows PDPs for MA and HQ. (Spikes at around 3.25 ppm in
the PDPs for SPMA and UB reflect outliers, i.e. exceptionally
high levels of these metabolites recorded for workers with
that estimated exposure concentration; this is discussed fur-
ther for Figure 11.) All four PDPs show significant ordinal
associations between AB and levels of each metabolite in
urine (p< 0.0001 in Spearman’s rank correlation test). UB con-
centrations appear to increase approximately linearly with AB
for AB values below 3ppm. None of these PDPs reveals a
supralinear relationship between AB levels and levels of these
metabolites at low AB concentrations.

Different metabolites are best for predicting different out-
comes. For example, SPMA is the best single predictor for
UB, but MA is the best single predictor for AB (as measured
by increase in mean squared prediction error in randomForest
if each variable is omitted). Unsurprisingly, better predictions
than for any single predictor can usually be achieved by
using sets of several other variables to predict a dependent
variable of interest. For example, for the specific task of esti-
mating AB concentration from urinary metabolites, the pair
of metabolites MA and UB is much more informative than
the pair MA and SPMA, as illustrated in Figure 9.

Figure 7. Visualizations of correlations. Upper left: Linear (Pearson’s) correlation corrgram (in color version, blue¼ positive correlation, red¼ negative, stronger cor-
relations are darker). Upper right: Partial linear correlation corrgram. Lower left: Network visualization of linear correlations. In color version, green arcs represent
positive correlations, red¼ negative, and thicker arcs and closer distances indicate stronger correlations. Lower right: Network visualization with polychloric correla-
tions for binary variables.
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The left side of Figure 9 shows contours of equal AB (increas-
ing from lower left to upper right) for different pairs of MA and
SPMA values, and the right side shows a similar contour plot for
AB given values of MA and UB. (For ease of comparison, we use
the normalized values of SPMA, MA, and UB, i.e. axes are scaled
so that 1 is the mean value of the corresponding variable.) The
color keys show that the right-side diagram (MA and UB) has
double the resolution of the left-side diagram (MA and SPMA),
with contours ranging from 0.5 to 4 instead of 0 to 2 for AB
concentrations. However, these diagrams show that, at low MA
values, UB has little predictive power (the AB contours are nearly
vertical, indicating that AB is almost independent of UB at these
low AB concentrations, perhaps because UB at these low levels
of AB comes mainly from other sources), whereas SPMA has bet-
ter predictive power at lower MA values.

Bayesian network (BN) analysis

To obtain the best possible prediction of a variable, of
course, it is necessary to condition on information from

multiple variables that are informative about it. This can be
done conveniently using Bayesian network (BN) methods.
Figure 10 shows the structure of a BN model learned from
the Tianjin data (with the knowledge-based constraint that
AB should be an input). (This BN can be replicated using the
CAT software at http://cox-associates.com:8899/ or the under-
lying bnlearn package in R using the default (hill-climbing)
learning algorithm.) In this BN, two variables are informative
about each other (i.e. not conditionally independent of each
other, given the values of other variables, at least as far as
the BN-learning can determine via statistical tests for condi-
tional independence) if and only if they are joined by an
arrow. The conditional probability distribution of each vari-
able is determined by the values of the variables to which it
is directly connected, and, given their values, is conditionally
independent of the values of all other variables.

Unlike the exploratory correlation networks in Figure 7,
the BN is fully non-parametric (with no assumptions of linear
or ordered relations or normally distributed error terms) and
multivariate (the conditional probability distribution of each

Figure 8. Partial dependence plots (PDPs) for urinary metabolites vs. air benzene (AB) concentration (ppm), controlling for Gender, Age, Smoke, Factory, Weight,
Height, AT, Creatinine. PDPs were generated by the CAT software (http://cox-associates.com:8899/), which uses the randomForest package in R. (https://cran.r-pro-
ject.org/web/packages/randomForest/randomForest.pdf).
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variable can be conditioned on the observed or assumed val-
ues of any number of other variables). Although Gender,
Height, Age, and Weight are still clustered in the BN, as are
the metabolites, the BN summarizes the joint distribution of
all the variables, and thus contains far more information than
the corresponding pairwise correlations. It reveals patterns
not obvious from correlations alone, such as a slight positive
relation between UT and UB, holding AB and other variables
fixed. It can be used to automatically compute the subsets of
variables (“adjustment sets”) that should be conditioned on
to estimate direct causal impacts of changes in one variable,
such as AB, on changes in another, such as SPMA, MA, or UB
(Cox 2018). For example, to estimate the causal PDP for the
direct effect of AB on SPMA, any of the three adjustment sets

{Gender, UB}, {AT, Factory, UB}, or {UB, UT} can be condi-
tioned on to remove potential confounding. Any of these
choices produces an estimated causal PDP very similar to the
one in the upper left of Figure 8. For each of the metabolites
SPMA, UB, MA, and HQ, the causal PDPs calculated from the
BN are very similar to the PDPs in Figure 8, with no indica-
tion of supralinearity at low doses.

Inter-individual heterogeneity in
benzene metabolism

Figure 1 shows that metabolism of benzene depends on sev-
eral enzymes. Inter-individual differences in enzyme activity
levels – possibly due to differences in genetic

Figure 9. Air benzene contours show that air benzene can be predicted better from MA and UB (right side) than from MA and SPMA (left side).

Figure 10. A Bayesian Network (BN) model learned from the Tianjin data. Arrows connect pairs of variables that are identified as being informative about (i.e. help
to predict) each other.
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polymorphisms, lifestyle factors (e.g. alcohol consumption), or
other causes – can lead to substantial differences in benzene
metabolism across individuals, as reflected in the very wide
variability of metabolite production across workers exposed
to the same levels of air benzene (AB) (Figure 5). The poten-
tial roles of gene polymorphisms (especially those affecting
NQO1 (NADPH quinone oxidoreductase), CYP2E1, MPO,
GSTM1, and GSTT1 genes and activity levels) have been
much discussed in literatures on inter-individual variability in
susceptibility to benzene exposures in humans and rodents.
Although polymorphism data are often notoriously difficult
to interpret reliably, due in part to multiple testing biases
and latent (unobserved) covariates, both animal and human
data have been interpreted as suggesting increased produc-
tion of toxic metabolites associated with specific polymor-
phisms (Carbonari et al. 2016; Carrieri et al. 2018). For
example, mouse data have led to the conclusion that NQO1
deficiency results in sex-specific increases in benzene toxicity,
as assessed by induction of micronuclei in peripheral blood
cells (Bauer et al. 2003). For human data, SPMA levels of men
working in a chemical plant who had GSTT1-positive geno-
type were reported to be significantly higher than those of
subjects with GSTT1-deficient genotype (p¼ 0.041) (Lin et al.

2008). Petrochemical plant employees with null GSTT1 or
both null STT1 and GSTM1 genotypes had significantly
reduced platelets, higher leukocyte (white blood cell) counts,
and higher risks of hematological disorders than other
employees (Nourozi et al. 2018).

Our data set for the Tianjin factory workers lacks poly-
morphism information, precluding a direct examination of
how they might affect benzene metabolism. Yet, the extent
of inter-individual heterogeneity in benzene metabolism
among Tianjin factory workers exposed to low concentrations
(<5 ppm) can be illuminated by statistical analyses.
Clustering can be used to identify distinct “types” (clusters)
of workers, defined by different patterns of metabolite pro-
duction in response to AB, even though we cannot identify
specific underlying polymorphisms or other unmeasured fac-
tors that determine these types. Figure 11 shows Individual
Conditional Expectation (ICE) plots (Goldstein et al. 2015) for
the production of SPMA, MA, UB, and HQ by workers as func-
tions of AB concentration (as predicted by a randomForest
analysis). Each of these ICE plots characterizes inter-individual
heterogeneity by partitioning workers into 3 clusters based
on their predicted AB-metabolite production functions. In
contrast to PDPs showing how the average value of a

Figure 11. Individual Conditional Expectation (ICE) Plots for Production of Urinary Metabolites from Low Levels of Air Benzene Exposure (AB). Fraction of worker
population in each cluster is given by “Prop.” (proportion) key in the upper left of each diagram. Vertical axes are scaled to show deviations from the overall popula-
tion mean value. (Plots were generated by the CAT software using the ICEbox package in R (Goldstein et al. 2015). Plots control for individual Gender, Age, Smoke,
Factory, Weight, Height, and AT by conditioning on their values in random forest analysis.
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dependent variable (e.g. quantity of a urinary metabolite)
varies with an explanatory variable (e.g. AB in ppm), holding
other variables at fixed values, an ICE plot disaggregates the
average response by considering individual worker-level pre-
dictions, and then reaggregating them into distinct clusters
for purposes of visualization (Goldstein et al. 2011). Figure 11
shows ICE plots for the four metabolites (SPMA, UB, MA, HQ)
in Figure 8, using (by default) 3 clusters in each plot to
explore potential heterogeneity. The proportion of workers in
each cluster is indicated in the “Prop.” box in the upper left
of each plot. The clusters in Figure 3 suggest that a relatively
small proportion (4%) of workers produces more UB and MA
on average (light green lines) than do other workers when
exposed to higher AB concentrations (e.g. at AB ¼ 4 ppm).

Although ICE plots are useful for exploring potential inter-
individual variability in exposure–response relationships, they
can be sensitive to random anomalies in the data, and care is
needed to obtain stable, useful clusters, e.g. by trying out dif-
ferent numbers of clusters and comparing how well they sep-
arate individuals (Rousseeuw 1987). We use 3 clusters
throughout for exploration, without trying to further optimize
clusters or filter out data anomalies. For example, the con-
spicuous spike in SPMA in all three clusters in the upper left

panel of Figure 8 reflects the coincidence of three separate
individuals with relatively high SPMA levels at around the
same value of AB (3.2 to 3.4 ppm), together with the fact that
regression trees discretize continuous variables and estimated
values of dependent variables, leading to artificially sharp
peaks around clusters of outliers compared to methods that
smooth by averaging over many nearby values (e.g. spline
and kernel regression methods). However, despite such arti-
facts, the main finding from Figure 11 is that none of the
clusters for any of the metabolites exhibits supralinearity at
low concentrations; thus, exploring inter-individual variability
via ICE plots does not call into question the finding from the
average partial dependence plots (PDPs) in Figure 8 that, for
the Tianjin workers, there is no evidence of low-concentra-
tion supralinearity in production of any of the measured urin-
ary metabolites.

Figure 12 provides a more direct description of observed
heterogeneity, without attempting to hold other factors fixed.
In this plot, benzene exposure concentrations are rounded to
the nearest whole number of ppm (0–5). For each of these 6
groups of AB concentrations, mean metabolite levels (dots)
and standard deviations (1 sd for the boxes, 2 sd for the
whiskers) are displayed. Although this visualization does not
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 Mean 
 Mean±SE 
 Mean±1.96*SE 

0 1 2 3 4 5

AB rounded

0

1

2

3

4

5

6

S
P

M
A

 n
or

m
al

iz
ed

Categ. Box & Whisker Plot: UB normalized
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Categ. Box & Whisker Plot: MA normalized
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Categ. Box & Whisker Plot: HQ normalized

 Mean 
 Mean±SE 
 Mean±1.96*SE 

0 1 2 3 4 5

AB rounded

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

H
Q

 n
or

m
al

iz
ed

Figure 12. Categorized box-and-whisker plots show substantial interindividual variability in production of urinary metabolites (clockwise from upper left: normal-
ized SPMA, UB, MA, HQ values, scaled so that population mean ¼ 1 for each metabolite). Metabolite production is sub-linear at low doses (AB < 3 ppm) (i.e. succes-
sive increases in AB by 1 unit generate larger increases in metabolites).
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capture the skewness of the underlying metabolite distribu-
tions (see histograms in Figure 6), it does show that there is
substantial inter-individual variability in metabolites produced
by different individuals from approximately the same ben-
zene exposure concentrations. The shapes of the plots at the
lowest concentrations also show sub-linearity, i.e. the
increases in metabolites produced are greater when AB
increases from 1 to 2 than when it increases from 0 to 1.

Figure 13 depicts the joint values of multiple urinary
metabolites (UB and SPMA on the left, with a quadratic
regression model (solid curve) and 95% normal confidence
intervals shown as dashed curves superimposed on the scat-
terplot to give a heuristic visual impression of how these var-
iables co-vary, although either could be chosen as the
dependent variable for this purpose; and with UB, SPMA, and
MA on the right), for workers exposed to 1 ppm of AM
(rounded to the nearest ppm). These scatterplots not only
illustrate the inter-individual variability in metabolite levels
for approximately the same AB exposure, but they also show
that a few individuals have much higher levels of benzene
metabolites than others. This interindividual variability is too
great to be well modeled by a regression curve with a nor-
mally distributed, exposure-independent, additive error term.
This highlights the value of using non-parametric methods,
as in Figures 8–11, to understand the conditional distribu-
tions of metabolites given AB levels.

Consistent with earlier studies (Tranfo et al. 2018), Figure
14 shows that women produce slightly more SPMA than men
at low benzene concentrations; this explains the arrow from
Gender to SPMA in the BN in Figure 10. However, the effect
of gender on metabolism is small compared to other inter-
individual differences, as reflected in the wide vertical spread
of metabolite levels for approximately the same AB concen-
trations (Figure 12).

Intra-individual variability in benzene metabolism

The Tianjin factory worker contains repeated measurements
of benzene exposure concentrations and urinary metabolite

levels for some individual workers, with 263 data records for
177 individual workers. There were 4 measurement days
(records in the data set) for 2 of the workers with low AB
concentrations (<5ppm); 3 records for each of another 11 of
these workers; 2 records for 58 workers; and a single record
for each of the remaining 106 workers. The repeated meas-
urements provide an opportunity to study within-individual
variability in exposure and metabolism. The previous analyses
treated each measurement of metabolites in an individual on
a day as a data point, without attempting to model possible
correlations among data points from the same individual on
different days. (Dropping repeated measurements on the
same individuals does not change the conclusions we have
drawn, for reasons explained next, but reduces the number
of data points in plots from 263 5o 177.) Our nonparametric
analyses have avoided making assumptions that data points
or errors are independent, in part to avoid the complexity of
modeling intra-individual variability and serial correlations,
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Figure 13. Joint scatter plots for SPMA and UB (left) and MA, UB, and SPMA (right) for workers exposed to 1 ppm (rounded to the nearest ppm) of benzene in air
(AB ¼ 1).
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Figure 14. Women (upper curve) produce more SPMA than men at low concen-
trations (AB < 3 ppm) Vertical bars indicate approximate 95% confi-
dence intervals.
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but we now examine the stability of repeated measurements
in individuals over time.

Figure 15 plots the levels of SPMA, UB, and MA (top, mid-
dle, and bottom rows, respectively) at different AB levels, for
the 2 individuals with 4 measurements each. (Note the very
different vertical scales for metabolites in these plots.)
Worker 2 (right side) has close to twice the peak metabolite
levels of Worker 1 (left side) for each metabolite, even
though Worker 1 has a higher maximum benzene exposure

concentration (2.4 ppm instead of less than 1 ppm). However,
neither individual has uniformly higher levels of metabolites
than the other across all four repeated measurements and
AB levels (although Worker 2 does have higher levels of UB
than Worker 1, even at lower AB exposures). While a study of
only 2 individual workers with 4 repeated measurements
each does not permit confident generalizations about intra-
individual variability in benzene metabolism, the types of
variability illustrated in Figure 15 (including some curves in
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Figure 15. Urinary metabolites vs. AB (ppm) for 2 Individual Workers, each with 4 Repeated Measurements. (Top row SPMA; middle row UB; bottom row MA).
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which metabolites decrease as AB increases, as in the slight
decrease in MA shown in the lower left of Figure 15) also
occur for the 11 workers with 3 repeated measurements
each. However, the effects of intra-individual variability in
metabolism are difficult to discern, since the workers received
different air benzene concentrations on different days.
Despite these limitations, Figure 14 suggests that, for the
worker with relatively high metabolite formation (Worker 2),
the levels of all three metabolites were much more than
twice as great at AB concentrations between 0.8 ppm and
1ppm (two right-most points in each plot) as at AB concen-
trations of about 0.35 ppm (leftmost point in each plot).

Levels of benzene metabolites and markers in
relation to increased health risks

Average levels of urinary benzene metabolites increase with
increasing AB exposure in the population of Chinese factory
workers exposed to relatively low concentrations of benzene
in air (AB < 5 ppm), even though there is considerable inter-
individual variability in the quantity of metabolites formed
for any given level of AB (Figure 12). The question of what
levels of metabolites (or of other markers with which they
are correlated, such as 8-OHdG, various adducts, or micronu-
clei induction in peripheral blood lymphocytes) correspond
to increased risk of MDS and AML has been much debated,
with substantial differences in conclusions. For example:

� Vlaanderen et al. (2010) fit non-parametric (spline)
smooth curves to heterogeneous data from 9 human
studies of estimated cumulative benzene exposures and
leukemia. They concluded that the best-fitting curves
were linear or super-linear at low exposures, and that
there was significantly increased risk of leukemia [relative
risk (RR) ¼ 1.14; 95% confidence interval (CI), 1.04–1.26]
at estimated exposure levels as low as 10 ppm-years.
Although these analyses did not adjust for errors in
exposure estimates and did not address peak exposures,
they are generally consistent both with earlier studies
that found no threshold for estimated cumulative ben-
zene exposures associated with increased risk of AML
and other diseases (Glass et al. 2003) and also with sub-
sequent reviews that accept the plausibility of leukemo-
genic effects of benzene even at low cumulative
exposures, such as 0.5 ppm-years (Yoon et al. 2018).

� By contrast, Schnatter et al. (2012) combined data from 3
nested case–control studies of petroleum distribution
workers from Australia, Canada, and the United Kingdom,
and estimated that risk of MDS, but not of AML or other
leukemias or myeloproliferative disorders, increased sub-
stantially (estimated odds ratio in a conditional logistic
regression model was OR ¼ 4.33) for workers with esti-
mated cumulative benzene exposures >2.9 ppm-years
compared to workers with estimated cumulative benzene
exposures <0.35 ppm-years (highest vs. lowest tertiles,
respectively). MDS risk was increased specifically in work-
ers with estimated peak exposures >3 ppm. However,
this analysis also used reconstructed exposures with

unknown errors, and the error distributions were not
modeled, potentially leading to misestimates of the true
peak exposure concentrations that are associated with
increased MDS risk. The authors suggest that MDS, rather
than AML or other endpoints, may be the most relevant
health risk at relatively low exposure concentrations.

The analyses in this paper suggest a different perspective
from either of these on the human health risks caused by
low exposure concentrations of benzene, as follows.

� If risk of benzene-induced diseases depends on chronic
inflammation in the bone marrow (perhaps mediated by
activation of the NLRP3 inflammasome) (Sallman and List
2019), then cumulative exposure (ppm-years) is not an
adequate dose metric for predicting risk. Instead, risk over
a lifetime depends on when (i.e. at what age) chronic
inflammation is induced, which in turn depends on the
time pattern of exposure and of reactive metabolites
reaching the marrow at sufficiently high and prolonged
concentrations to cause inflammation. On the relatively
long time scale of a lifetime, the details of exposure time
patterns that lead to chronic inflammation of target tis-
sues may be relatively unimportant compared to the age
at which chronic inflammation begins.

� PBPK models imply that, for a steady administered con-
centration of air benzene (AB), concentrations of metabo-
lites in bone marrow increase over time until a dynamic
equilibrium level is reached at which the rate of each
metabolite’s removal equals the rate of its addition to
the marrow (via distribution from the liver and via local
metabolism in the marrow). If exposure concentration of
benzene in inhaled air is low enough, then the dynamic
equilibrium concentration will be below the inflamma-
some activation threshold (or the smallest such thresh-
old, if values are heterogeneous). Inflammation, and
resulting inflammation-mediated increases in MDS and
other disease risks, will not be triggered, and extending
the duration of such a low-level exposure increases
cumulative exposure (ppm-years) without increasing risk.
It is not necessary to know which toxic metabolite(s) are
involved in the pathogenesis of MDS and AML to reach
this qualitative conclusion.

� Conversely, if the PBPK dynamic equilibrium for a given
AB concentration is only slightly below the activation
threshold, then twice this concentration administered for
half as many years might quickly trigger inflammation,
even though the original exposure (with the same ppm-
years) did not. Cumulative exposure received after
chronic inflammation starts may be nearly irrelevant if
the chronic inflammation itself dominates subse-
quent risk.

� Even if inflammation is not the rate-limiting key event
for increasing risk of MDS and AML, cumulative expos-
ure is still a highly misleading metric for realistic past
exposures involving AB concentrations in excess of
about 20 ppm. Although we have focused so far on
workers exposed to <5 ppm, Figure 16 shows a wider
perspective by plotting UB (in nM) and SPMA (lM)
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against AB for each of three clusters of workers in an
individual conditional expectation (ICE) plot. The differ-
ences in metabolite production that we have been
examining for AB < 5 ppm are almost negligible, on this
expanded scale, compared to the main pattern of
approximately linear metabolism at AB concentrations
below about 15 ppm and a steep increase in production
per unit of AB above that level, for all three clusters
(light, medium, and heavy metabolizers). (As in Figure
11, these ICE plots also use 3 clusters by default, and no
effort was made to further optimize the default cluster-
ing, but the major pattern of approximately linear
metabolite production at low concentrations is robust
and holds also for the aggregate data without cluster-
ing, analogous to Figure 8.) The S-shaped pattern
shown for urinary benzene (top left of Figure 16) invites
speculation about possible pharmacokinetic and meta-
bolic mechanisms, such as saturation of different path-
ways for forming and removing metabolites, but the
PBPK models we have reviewed lack high resolution at
these relatively low concentrations (Figure 3), and we

leave more detailed investigation and explanation of
the empirically observed patterns for future research.

� The bottom panel of Figure 16 shows that SPMA can
also be predicted from UB instead of AB. If UB is used
instead of AB as a predictor of SPMA (along with the
other variables in Figure 16) in random forest analysis,
the percentage of variance in SPMA that is explained
increases from about 36% to about 41% (and to 47% if
UB and AB are both used). A possible explanation is that
urinary benzene (UB) reflects inter-individual variability in
metabolism or in other exposure routes (e.g. dermal) that
air benzene (AB) measurements do not address; differen-
ces in measurement error variances between UB and AB
might also play a role.

� The steeply sub-linear (hockey-stick) functions for metab-
olism in the top panels of Figure 16 imply that a worker
exposed to an average of 10 ppm-years consisting of 3
months a year of 40 ppm and 9 months per year of
0 ppm would have far higher average concentrations of
metabolites (averaged over the year) than a similar
worker exposed to 10 ppm throughout the year.

Figure 16. Top: Sub-linear production of benzene metabolites (UB on left; SPMA on right) by workers (partitioned into three clusters to indicate inter-individual het-
erogeneity), given AB. Bottom: Prediction of SPMA from UB. (Plots control for individual Gender, Age, Smoke, Factory, Weight, Height, and AT by conditioning on
their values in random forest analysis.).
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Cumulative exposure and peak exposure both fail to cap-
ture the most relevant information for risk prediction,
which is how long the worker spends exposed to AB
concentrations sufficient to produce harmful (risk-increas-
ing) concentrations of metabolites in the bone marrow.

From this perspective, mixed and contradictory results are
to be expected from past studies and reviews that use cumu-
lative exposure to benzene as a predictor of risk. The same
cumulative exposure may be harmful or harmless, depending
on how it is distributed over time.

The same reasoning implies that errors in exposure esti-
mates can play a key role in determining the risk attributed
to a given average exposure concentration. For example, the
data and BN model predictions of Hack et al. (2010) indicate
that AML risk increases for benzene concentrations above a
level estimated as between 1 ppm and 10 ppm. For workers
with occasional exposures to concentrations above 25 ppm,
but estimated average exposures between 1 and 10ppm, the
risk may be dominated by metabolites formed during occa-
sional exposures to higher concentrations (Figure 16),
although it is attributed to the lower average exposure con-
centrations. These considerations, if correct, imply that many
previous analyses of benzene dose–response that use esti-
mated cumulative exposure (ppm-years) to predict AML or
MDS risk, without characterizing variability of exposure con-
centrations around their estimated values, lose essential
information on which risk depends. Figure 16 suggests that a
better understanding of benzene-associated risk can be
achieved by considering the fraction of a worker’s time spent
exposed to relatively high concentrations (e.g. AB > 15 ppm),
as this may dominate the contribution of exposure to forma-
tion of toxic metabolites.

How much practical difference does the claimed
supralinearity make for benzene risk analysis?

This review of aspects of benzene metabolism and health
risks reviewed was motivated by a concern that supralinear

exposure–response relationships for benzene, if they are real,
could suggest that regulatory approaches to protecting work-
ers by limiting exposure concentrations and durations might
be inadequate: “The policy implications of these studies are
staggering. In theory, they indicate that regulatory agencies
should strive to achieve near-zero exposures… to protect
people’s health” (Lanphear 2017). Our main conclusion is that
none of the evidence we have reviewed suggests supralinear-
ity, and some suggests that there are exposure concentra-
tions below which health risks are not expected to occur. To
put this qualitative conclusion into a more quantitative per-
spective, Figure 17 reproduces the original figure from
Vlaanderen et al. (2010) supporting claims of supralinear
exposure–response relationships for benzene (Lanphear
2017). The vertical axis shows the natural logarithm of the
relative risk ratio (i.e. the ratio of estimated risk at each
cumulative exposure level, in ppm-years, to the risk with-
out exposure).

Thus, a value of 3 on the vertical axis corresponds to a
relative risk ratio of e3 ¼ 20. As the authors explain, “Natural
spline models… as well as linear models were fitted to the
data to investigate the shape of the exposure–response rela-
tion. To improve the statistical properties of the regression
models, we fitted all models to the natural logarithm of the
reported risk estimates.” They conclude that “The natural
spline showed a supralinear shape at cumulative exposures
less than 100 ppm-years, although this model fitted the data
only marginally better than a linear model (p¼ 0.06).” For a
risk manager, Figure 17 seems to suggest that model 2 (the
“supralinear” model) implies much steeper risk-reduction ben-
efits from reducing ppm-years of benzene exposure to zero
than does model 1 (linear). However, this apparent implica-
tion reflects an algebraic illusion created by use of a log-
transformed relative risk ratio: such a transformation creates
a “supralinear” curve (for lnRR) even if the exposure–response
relationship for absolute risk is linear, as our review suggests
is the case. To clarify this algebraic point, Figure 18 plots
both a hypothetical linear exposure–response relationship,
Risk¼ 0.01þ 0.0001�(ppm-years), and the corresponding log-
transformed relative risk ratio, on the same axes. The latter

Figure 17. Comparison of linear and supralinear (spline) curves for lnRR vs.
ppm-years of exposure, from Vlaanderen et al. (2010).
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Figure 18. “Supralinearity” for lnRR is compatible with a linear exposure–res-
ponse function.
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curve is “supralinear” even though absolute risk is known to
increase linearly with cumulative exposure. Such a trans-
formed curve provides no evidence of “staggering” policy impli-
cations that reducing cumulative exposure creates
disproportionately large risk-reduction benefits at low exposure
concentrations. Such a misinterpretation confuses an algebraic
transformation with a real-world effect. As a practical matter,
the linear and “supralinear” models in Figure 1 fit the data
approximately equally well, and neither implies a departure
from linearity of the estimated absolute risk-vs.-cumulative
exposure curve at low concentrations.

Conclusions

Recent literature has raised the question of whether
dose–response relationships for benzene are supra-linear, cre-
ating disproportionately high risks per ppm-year of exposure
for exposure concentrations below 1ppm (Rappaport et al.
2010; Lanphear 2017). We have examined this hypothesis
using findings from recent literature on mode of action
(MoA) and mechanistic considerations for benzene-induced
myelodysplastic syndrome (MDS) and acute myeloid leukemia
(AML) and by applying modern data science techniques to
quantify and visualize relationships between air benzene and
production of toxic metabolites in previously studied data for
Tianjin factory workers. Our main conclusions from these
analyses are as follows:

a. Physiologically based pharmacokinetics (PBPK) modeling
predicts that production of toxic metabolites, and their
levels in both circulating blood and in urine, are approxi-
mately linear (i.e. proportional to benzene concentration
in inhaled air), or mildly sublinear, at low exposure con-
centrations (Figure 3). These models and the data sets
used to build and validate them provide no evidence of
supralinearity.

b. Bayesian network (BN) modeling also suggests a sublin-
ear (J-shaped) relationship between estimated air ben-
zene (AB) concentrations and AML risk (Hack et al. 2010).

c. Data for Tianjin workers shows approximately linear
metabolism at low concentrations (AB < 5 ppm), i.e. pro-
duction of urinary metabolites is approximately propor-
tional to concentration of benzene in inhaled air (Figure
5). This linearity holds over nearly 2 orders of magnitude,
from the lowest measured concentrations (about
0.2 ppm) to well over 10 ppm. At concentrations below
3ppm, the production of metabolites is mildly sublinear
(Figure 12). This is not inconsistent with previous claims
of supralinear relationships in meta-analyses that have
considered the logarithm of relative risk (lnRR) as the
dependent variable (Vlaanderen et al. 2010; Lanphear
2017), since a linear exposure–response relationship
implies a supralinear exposure-lnRR relationship
(Figure 18).

d. The production of metabolites at higher AB concentra-
tions increases disproportionately before becoming satu-
rated (Figure 16). This implies that cumulative exposure
(ppm-years) is not a sufficient summary of exposure

from which to predict risk, which may help to explain
conflicting conclusions in the literature.

e. The steeply sublinear shape (“elbow”) at the left end of
the metabolite-vs. AB curve (Figure 16) also makes it
important for risk assessments to consider the variability
of exposure concentrations around estimated exposure
concentrations. Analyses in which a mix of relatively
high (e.g. AB > 15ppm) and low (e.g. AB < 10 ppm)
concentrations are summarized in a single cumulative
exposure (ppm-year) estimate for each worker are likely
to over-estimate low-concentration risk, by attributing to
them adverse effects that are created primarily by the
high concentrations.

f. Although there is substantial interindividual variability in
levels of urinary metabolites of benzene produced at air
benzene concentrations above about 3 ppm, the variabil-
ity is much less at lower concentrations (Figure 12). For
example, an air benzene concentration that does not
exceed 1 ppm would keep even the upper ends of the
worker population distribution of metabolite levels (the
top “whiskers” in the box- and-whisker plots in Figure
12) below current mean levels (normalized to 1 in Figure
12). If adverse health effects occur primarily among peo-
ple with above-average levels of some of these metabo-
lites, then it would be practical to protect this
population by keeping measured AB < 1ppm, even tak-
ing into account interindividual variability in benzene
metabolism. However, our dataset does not contain
adverse outcome endpoints, so we cannot estimate
health-protective time-weighted averages and short-term
exposure limits more precisely from these data.

g. If chronic inflammation via activation of the NLRP3
inflammasome is a critical event for induction of MDS by
benzene (Sallman and List 2019), then PBPK considera-
tions imply that sufficiently low AB concentrations will
not create concentrations of toxic metabolites that
exceed the NLRP3 inflammasome activation threshold,
and hence they will not increase the risk of MDS, no
matter how long the exposure duration is. This illustrates
why ppm-years is not adequate as a predictor of risk:
twice the ppm for half as many years might cause MDS
even if lower concentrations for longer do not. More
generally, the same ppm-years number can be harmless
or harmful, depending on how AB concentrations are
distributed over time; this general point holds for a var-
iety of mechanisms involving tissue damage and repair,
whether or not they involve inflammation (Rhomberg
2009). The hypothesis of a threshold below which no
excess risk occurs is consistent with plots of epidemio-
logical data from multiple studies showing no clear
upward trend in leukemia risk with exposures below
20 ppm-years (Vlaanderen et al. 2010, Figure 1(b)), but
the limitations we have noted for ppm-years as an
exposure metric make it difficult to interpret such data
or to identify clear concentration thresholds that might
be tied to NLRP3 inflammasome activation, depletion of
antioxidant pools, or other threshold mechanisms; this
appears to be a worthwhile area for future research.
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h. If MDS is the most sensitive adverse health effect end-
point at relatively low exposure concentrations
(Schnatter et al. 2012), then an exposure concentration
threshold may exist for increases in risk due to benzene
exposure. However, the use of cumulative exposures and
reconstructed (uncertain) exposure estimates would
obscure any such threshold. In addition, the substantial
inter-individual variability in benzene metabolism
(Figures 11–14) implies that any exposure concentration
threshold for AB has a distribution in a
worker population.

These points distinguish among three potential sources of
nonlinearity in estimated exposure–response relationships:
nonlinear biological mechanisms (such as an inflammasome
activation threshold or metabolic saturation); empirical pat-
terns in outcomes (observations of metabolites and bio-
markers in actual populations, with techniques such as
Bayesian network analysis applied to control for potential
confounding and extraneous factors); and mathematical mod-
eling assumptions and transformations used in statistical
curve-fitting (Figures 17 and 18). Previous sections have illus-
trated how reported pharmacokinetic and pharmacodynamic
mechanisms, Bayesian networks, and empirical exposure–res-
ponse models can be viewed and at least partly integrated
and understood from these three perspectives. The main
insight from these different perspectives is that if a dose–res-
ponse relationship is truly supralinear, then there should be
causal biological mechanisms in the pharmacokinetics (PK) or
pharmacodynamics (PD) that explain it, and plotting data on
untransformed axes (i.e. plotting absolute risk or its causal
predecessors, such as reactive metabolites, against exposure)
should show the supralinear pattern. The PK and PD mecha-
nisms and data we have reviewed for benzene support lin-
earity or sublinearity at low exposure concentrations, with
quantitative risks and metabolite levels at low concentrations
no higher (but possibly considerably lower) than would be
expected by extrapolating risks measured at higher expo-
sures linearly down to zero (Figure 8, Hack et al. 2010). These
conclusions are consistent with previous general conceptual
frameworks and models of the effects of time patterns of
administered concentrations of inhaled toxicants on the
amounts of time that target tissue concentrations spend
above thresholds needed to induce damage
(Rhomberg 2009).

Although the data and MoA literature we have examined
do not support a hypothesis of supralinearity of risks at low
benzene concentrations, they do suggest opportunities to
improve benzene risk assessments by focusing on the pro-
portion and timing of low and high exposure concentrations
in each worker’s exposure history, rather than combining
these into a single cumulative exposure metric, consistent
with some previous recommendations for modeling inhaled
toxicants in general (Rhomberg 2009). For practical methods,
pharmacokinetic (PBPK) modeling or PDP curves (such as
Figure 16) can be used to convert time series of approximate
exposure concentrations to corresponding time series of cor-
responding benzene metabolites. Identifying the time until
inflammation is triggered, and using Bayesian networks

developed from data (Figure 10) to estimate increases in risk
during periods of increased inflammatory markers, while con-
trolling for other observed variables (e.g. age, sex, smoking,
diet, polymorphisms, and other markers if available) appears
to be a promising and practical approach for using current
data science methods to advance benzene risk modeling. A
potentially important risk management implication is that
maintaining blood concentrations of benzene and its metab-
olites below levels that cause inflammation or other damage
can protect workers against adverse effects of benzene. In
this case, smaller concentrations (and durations) are expected
to be disproportionately safe rather than disproportionately
dangerous (Rhomberg 2009).
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