

Pipeline Theft: Determine High Risk Areas

Concawe COPEX 2022

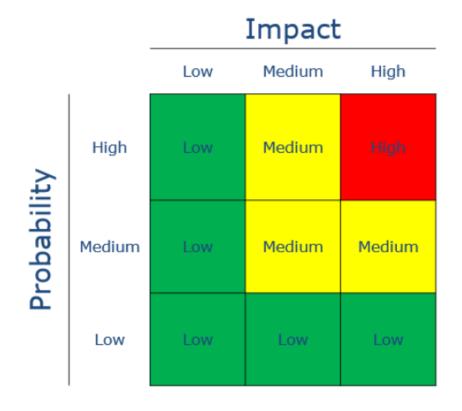
Rob Claassen

20 October 2022

Introduction

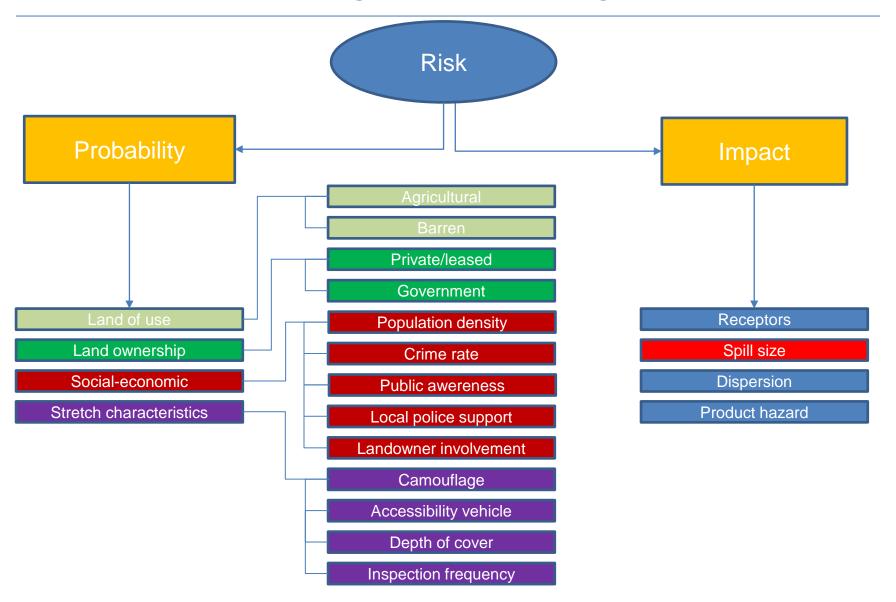
- Oil pipelines often run through remote areas, are easily accessible and contain valuable products which make them attractive targets for criminels to sabotage.
- Loss of containment has a big impact on the safety conditions for humans and environment
- Illegal hottapping introduces a risk which is difficult to mitigate.

Aim of the study


 Establish a quantitative and consistent model to assess the risk of illegal hottaps along the pipeline

Risk assessment

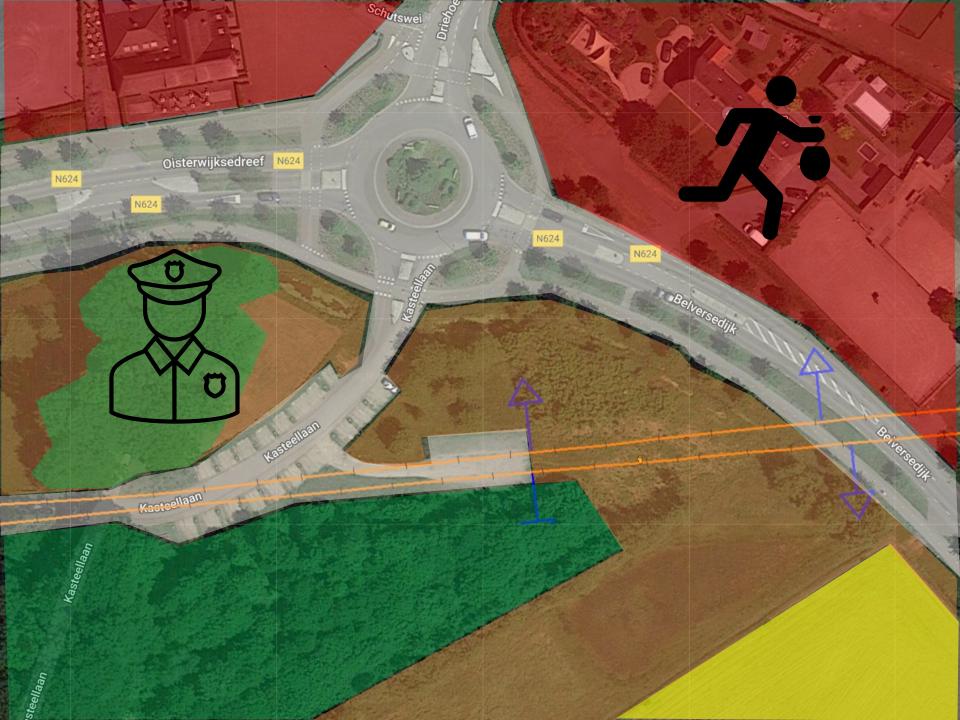
Risk events are assessed in terms of probabilility and impact.



How to determine theft risk areas?

- Investigate which riskfactors contribute to the possibility and consequences of illegal hottapping
- Calculate the importance distribution of the riskfactors using Analytical Hierarchy Process (AHP)
- Investigate to what extent the factors contribute to the risk of illegal hottapping using statistical data
- Calculate the riskvalue using the multicretria Technique for Order of Preference by Similarity (TOPSIS)

Riskfactors of illegal hottapping



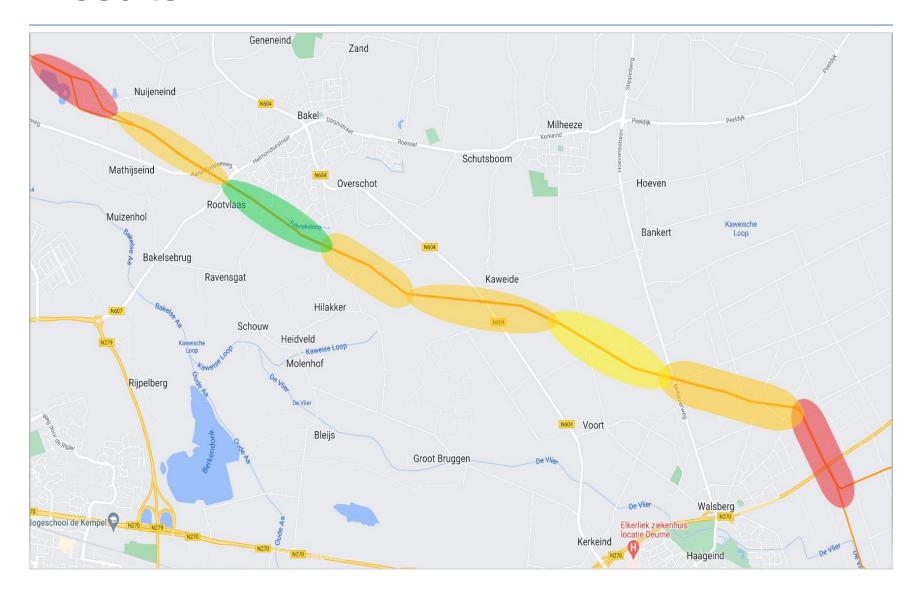
Analytical Hierarchy Proces

Intensity of importance	Definition							
1	The fact	or is equally important			TD.			
2	The fact	or is slightly important		$\omega = (\omega,$	$\omega = (\omega_1, \omega_2, \dots, \omega_n)^{\mathrm{T}}$			
3	The factor is obviously important			$\omega - (\omega_1$	$\omega = (\omega_1, \omega_2, \dots, \omega_n)$			
4	The factor is strongly important							
5	The factor is extremely important							
	Agricultural	Population Density	Crime rate	Depth of cover	Accessibility vehicle	Camouflage		
Agricultural	1	1/2	1/3	1	1/4	1/5		
Population Density	2	1	1	2	1/2	1/3		
Crime rate	3	1	1	2	1	1/2		
Depth of cover	1	1/2	1/2	1	1	1/3		
Accessibility vehicle	4	2	1	1	1	1/2		
Camouflage	5	3	2	3	2	1		

Riskfactor	Index	
"Camouflage"	0.2	
"Landowner involvement"	0.16	
"Remote police station"	0.15	
"Barren/Forrest"	0.08	
"Government/Leased"	0.08	
"Involvement locals"	0.08	
"Vehicle access"	0.08	
"Sparsely populated"	0.04	
"High crime rate"	0.04	
"Depth of cover"	0.03	
"Cultivated"	0.02	
"Private land"	0.02	
"Negligence patrol guard"	0.02	

TOPSIS

	Agricultural (%)	Population Density (a/A)	Crime rate (a/P)	Depth of cover (m)	Accessibility vehicle(%)	Camouflage (%)
Area 1	0,6	0,0	71,0	1,8	5,3	3,4
Area 2	2,2	4,0	4,3	1,8	9,7	5,0
Area 3	24,8	96,0	0,0	1,7	1,8	65,5
Area 4	49,7	1167,0	0,1	2,0	7,4	17,2
Area 5	28,6	264,0	0,6	2,2	9,5	0,0
Area 6	91,8	288,0	0,0	1,8	8,2	0,0


$$n_{ij} = p_{ij} / \sqrt{\sum_{i=1}^{m} p_{ij}^2}$$
 $(i = 1, 2, ..., m; j = 1, 2, ..., n)$

$$d_i^+ = \sqrt{\sum_{j=1}^n \left(v_{ij} - v_j^+\right)^2} \quad (i = 1, 2, \dots, m; j = 1, 2, \dots, n)$$

$$d_i^- = \sqrt{\sum_{j=1}^n \left(v_{ij} - v_j^-\right)^2} \quad (i = 1, 2, \dots, m; j = 1, 2, \dots, n)$$

Results

End of Presentation

