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1. Background
Joint collaboration Concawe & Aramco, and LBST & E4tech as consultants

Scope:

• Timeframe: 2020 / 2030 / 2050

• Pathways: e-hydrogen, e-methane, e-methanol, e-OMEx, e-methanol-to-gasoline, 

e-methanol-to-kerosene, e-ammonia, e-Fischer-Tropsch kerosene & diesel

• Regions:

• Domestic production in North EU (Norway), Central EU (Germany) and South EU (Spain)

• Production in Middle East (Saudi Arabia) and import into EU

• Sensitivities to production in Morocco, Chile & Australia, and import to EU

• Full fuel supply cycle:

• Energy production

• Conversion

• Storage

• Transport/distribution

• Dispensing

9 base cases for 4 geographies + sensitivities => >100 pathways assessed

Joint collaboration between: 

• Concawe & Aramco: Technical assessment and GHG impact

• LBST & E4tech: Economic assessment

• OGCI & Concawe Member Companies experts: Steering Committee
Refinery 2050

E-fuels literature review

E-fuels Concawe Review

Previous Concawe reports on e-fuels:

https://www.concawe.eu/publication/refinery-2050-conceptual-assessment-exploring-opportunities-and-challenges-for-the-eu-refining-industry-to-transition-towards-a-low-co2-intensive-economy/
https://www.concawe.eu/wp-content/uploads/Rpt_19-14.pdf
https://www.concawe.eu/wp-content/uploads/E-fuels-article.pdf
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2. Technical assessment
Key assumptions

2020 2030 2050

Electrolysis efficiency 66.5% 68% 75%

Source of CO2 Concentrated source Concentrated source 
Concentrated source 

and DAC(1)

CO2 concentration (%) 45 45
45% (Conc. source)

0.04% (DAC)

Electrolysis efficiency and CO2 source

Full load hours (h/yr)

Note: Curtailed overlap estimated at 5% [Fasihi et al 2017]

(1) EU: Mix (33% concentrated source, 33% average source and 33% DAC) 

North Africa: 100% DAC. Middle East: 50% Concentrated source, 50% DAC). DAC: Direct air capture
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2. Technical assessment
Results: Energy balance – North EU, 2050

Not shown is e-OMEx with 34% (DAC) and 28% (concentrated source) efficiency due to high processing needs

Lower energy efficiency linked to higher processing fuel routes: routes with higher drop-in 

fossil replacement in existing fleet

Increase of ~10% points in efficiency if concentrated CO2 source vs DAC

Legend:

MTG: Methanol-to-gasoline

MTK: Methanol-to-kero

FTK: Fischer-Tropsch kero

FTD: Fischer-Tropsch diesel
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2. Technical assessment
Results: GHG emissions – North EU, 2050

CtG

M&R

WtW

Well-to-Wheel: 

Close to zero

except for 

distribution (grid

electricity)

+ Cradle-to-grave: 

Infrastructure 

(construction and 

end-of-life)

E-fuels achieve up to 94-97% GHG reduction vs fossil alternatives

-96%Reduction vs fossil →

Fossil reference* → 113.0

-97%

121.4

-94%

67.6

-96%

100.6

-95%

90.4

-94%

83.0

-94%

83.0

-95%

92.1 *Source: JEC WtT Study v5, GaBi Database

**Additional reduction if RED II fossil fuel 

comparator (94 gCO2eq/MJ) is used

** ** ** **

+ Maintenance and 

replacements

Cradle-to-Grave (CtG) emissions are similar for all the pathways: The ones less energy-

intensive to produce are more energy-intensive to transport

Excluding e-OMEx with 10.6 g CO2eq/MJ due to the higher processing due to the complexity of the molecule



10

2. Technical assessment
Sensitivities: Impact of geography & time (example: e-kerosene) 
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By geography By time horizon

CtG emissions decrease by 18% between 2020 and 2050 due to improvement of electrolysis

efficiency & use of e-fuels for transport, despite lower availability of CO2 concentrated sources

2050

E-fuels produced in North EU show the lowest emissions, followed by MENA(1), South and Central

EU due to source types and full load hours of renewable electricity available

* E-fuels produced in MENA and imported to EU
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3. Economic assessment
Approach & key assumptions

• Comparison of 9 e-fuels and 4+ geographies via >100 different e-fuel supply pathways requires a ‘helicopter view’

• Full cost assessment, i.e. no business case/cashflow analysis, no NPV

• Costs comprise CAPEX (annualized via Excel ‘PMT’ function) and OPEX (all nominal, no accounting for inflation)

• All costs are expressed in real terms in constant euros (2020)

• Depreciation time = process-specific lifetime, typically 20-25 years

• Discount rate: 8% (baseline), 4% (sensitivity low) and 12% (sensitivity high)

• New plants (renewables, conversion, upgrading) are assumed for each time horizon (2020, 2030, 2050)

• Technology learning is taken into account

• Electricity costs(1): The CAPEX and OPEX of renewable electricity are based on real plants and extrapolated to the 

future via technology learning curves. 

• Electricity mix: 50%/50% installed capacity of wind/PV plants (EU North: offshore wind); region-specific capacity factor

• Electrolyser cost (proxy: alkaline): 
• CAPEX decreases from 1027 €/kWe in 2020 to 393 €/kWe in 2050 based on [Zauner et al. 2019] (component costs) and [H2A

2018] (indirect costs)

• OPEX including stack replacement are assumed to be 2% of CAPEX without indirect costs base on [Zauner et al. 2019]

• DAC capex: 940 M€ for a capacity of 433 t CO2/h

(1) Sources: [BET et al. 2019], [Collgar Wind Farm 2021], [Cossu et al. 2021], [CWP 2021], [Deutsche WindGuard 2015], [Deutsche WindGuard & ZSW 2018], [Edify 2021a[, [Edify 2021b], [Enel 2021a], [Enel 

2021b], [Enel 2021c], [Fasihi et al. 2016], [IRENA 2019a], [IRENA 2019b], [ISE 2018], [IWES 2017], [Masen 2019], [NAREVA 2021a], [NAREVA 2021b], [NEOEN 2021], [Power Technology 2014], [Power Technology 

2017], [REN21 2021], [Renewables Now 2021], [REVE 01/2020], [REVE 04/2021], [REVE 10/2020], [The Wind Power 2017], [Wind Energy – The Facts 2021], [Windpower Monthly 2020]
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3. Economic assessment
Key assumptions: Electricity supply costs (€ct/kWhe) for baseline assessments*

* 5% overlap (curtailed) analogous to [Fasihi et al. 2016] for PV/wind hybrid and including HVDC in regions outside Europe

The spread in renewable electricity supply costs may be greater within a single country than across 

countries with similar geographies
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EU-Central 2020 0.055 0.069 0.067*

EU-Central 2050 0.037 0.061 0.053*
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3. Economic assessment
Results: Costs of fuel supply – Example (EU Central, 2050)

E-fuels that are less energy-intensive generally lead to lower costs of fuel supply
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1/3rd flue gas from power plants

1/3rd direct air capture (DAC)

Note

Passenger vehicle 2020: 

Diesel ICE: 1.455 MJ/km

H2 FCEV: 0.697 MJ/km

=> Factor 2.09 [JEC WTW 2020]
Note

(1) Diesel price: 0.3 €/l (2020) – 0.8 €/l (2050), with crude-oil prices (40 €/bbl (2020)–110 €/bbl (2050) taken from the EU Commission Impact Assessment

(2) e-OMEx production cost: 2.67 €/l

(2)

Fossil Diesel (1)
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3. Economic assessment
Results: Impact of geography & time (example: e-kerosene)
E-fuels produced in South EU shows the lowest fuel costs, followed by MENA(1), Central and North EU

E-fuels costs are reduced with time (24%) due to decreasing CAPEX for wind & PV plants, electrolysis,

and improvement of electrolysis efficiency despite lower availability of CO2 concentrated sources
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3. Economic assessment
Sensitivities – A sub-set of 2050 pathways has been sensitivity-tested

Electricity costs and discount rate have a significant impact on overall fuel supply costs

-40%-30%-20%-10% 0% 10% 20% 30% 40%

Larger e-fuel plant

Smaller e-fuel plant

Transport distance inside Europe +100%

Other transport types inside Europe

Discount rate 12 %

Discount rate 4 %

Renewable electricity cost +50 %

Renewable electricity cost -50 %

2050

FTKME
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H2 transport via 

CGH2 trailer instead 

of pipeline

Smaller/larger e-fuel 

plant has a small 

impact only

Base case assumptions:

• Electricity EU-N: 7.8 €ct/kWh

• Electricity MENA: 4.4 €ct/kWh

• Discount rate: 8%

• Transport inside Europe: 

• Liquid fuels: 150 km pipeline/FT plant + 150 km truck

• Hydrogen: ~5.5 km pipeline/refuelling station

• Capacity e-fuel plant: 1 Mt diesel equivalent/yr (114 t/h)

(e-FT kerosene from MENA)

(e-FT kerosene in North Europe)

(e-H2 from MENA via LH2)

(e-H2 in North Europe)

Note: The choice of 50% just implies a “symmetrical” range of probability, is hypothetical and does not reflect a real probability. 

Ditto for the discount rate 4-12% range which actually associates with different countries; the range for a single country is smaller.
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4. Conclusions
Key results

2 Across geographies, excluding outlier OMEx with 2.6-5.4 and 1.9-3.5 €/l respectively

* E-fuels produced in MENA and imported to EU. Import terminal: South of EU

• 9 base cases for 4 geographies + other sensitivities => >100 pathways assessed

• Based on the assumptions taken, this techno-environmental-economic assessment of e-fuels towards 2050 shows that:

• E-fuels efficiency

• Lower energy efficiency linked to higher processing fuel routes (routes with higher drop-in fossil

replacement in existing fleet, that would require new fleet and infrastructure, such as e-H2 or e-NH3)

• Increase of ~10% points in efficiency if concentrated CO2 source vs DAC

• E-fuels GHG emissions

• E-fuels CtG emissions are similar for all the pathways analysed and achieve reductions up to 93-96% vs fossil

alternatives (North EU 2050)

• E-fuels produced in North EU show the lowest emissions, followed by MENA(1), South and Central EU

• Decrease of CtG emissions of ~18% expected between 2020 and 2050

• E-fuels production costs

• Fuel supply costs of 1.5 – 4.1 €/l of diesel-equiv. in 2020 and 1.0 – 2.6 €/l in 2050(2), mainly influenced by

electricity costs assumptions

• E-fuels produced in South EU shows the lowest fuel costs, followed by MENA(1), Central and North EU

• Key sensitivities: 50% change of electricity supply costs or discount rate assumptions resulted in 25%

supply cost
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4. Conclusions 

• The full techno-economic assessment will also include (work-in progress):

• An optimization of the intermittency of the renewable electricity source vs storage capacity and conversion

plant size

• A comparison of an e-fuel plant integrated into a refinery vs. a stand-alone plant

We invite you to have a look to the final publication!

Report to be published by end 2021!

Thank you!
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your attention

Alba Soler (Concawe): alba.soler@concawe.eu

Patrick Schmidt (LBST): Patrick.Schmidt@lbst.de

Victor Gordillo (Aramco): 

victor.gordillo@aramcooverseas.com
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2. Technical assessment
E-fuels pathways – Fischer-Tropsch via DAC

Mass and energy balances

Energy Sankey diagram


