Biomass-To-Liquid technologies: status of recent developments & challenges

datum: 27/09/2021 jméno: Jiří Hájek, CEO and chairman of BoD, ORLEN UniCRE

Fuels production vision 2050

Biofuels production

Ambition:

- ✓ RED II (III) compliance;
- ✓ Reduction of carbon footprint related to automotive, marine and aviation fuels utilization;

Focus:

□ Forest and agriculture residuum, municipal waste;

Key challenges:

- \blacktriangleright Waste biogenic feedstock provision \rightarrow effective collection, storage, analysis, pretreatment;
- Co-processing vs stand alone installation;
- > Blending potential with existing fuels \rightarrow RON, CI, stability, oxygen content;

COMSYN process concept

Main Targets :

 Concept: decentralized primary conversion of biomass in 30 – 150 MW units.

- Target: reduction of biofuel production cost up to 35% compared to alternative routes → production cost for diesel lower than 0.80 €/I.
- ➢ GHG savings: 80 %

ORLEN UniCRE

 Overall efficiency to FT biocrude + heat: 80%

FT products characteristaion

GAS CHROMATRORAPHY

• FT Liquid product - Oil

FT fraction 36-180°C (Gasoline fraction)

• FT Wax

COMPARISON OF FT DIESEL FRACTION TO EN 590 AND EN 15940

		Diesel EN 590		Paraff. diesel EN 15940		FT diesel	
Parameter	unit	min.	max.	min.	max.	1st S.	2nd S.
Density at 15 °C	kg.m ⁻³	820	845	765	800	774.6	769.2
Kinematic viscosity at 40°C	mm ² .s ⁻¹	2	4.5	2	4.5	2.3	2.1
Flash point	°C	>55	-	>55	-	93	84
CFPP, mild climate (grade A-F)*	°C	5	-20	5	-20	-6	-8
Cloud point	°C					-1.5	-1.7
Cetane index	-	46	-	65	-	86.7	82.8
Water content	mg.kg ⁻¹	-	200	-	200	93.6	87.4
Sulphur content	mg.kg ⁻¹	-	10	-	5	0.72	0.68

15.04. – 30.9. grade B (CFPP max. 0 °C) 01.10. – 15.11. grade D (CFPP max. -10°C) 16.11. – 28.02. grade F (CFPP max. -20 °C) 01.03. – 14.04. grade D (CFPP max. -10°C)

Hydroisomerisation step needed

Sample of FT diesel

Simulation processing in existing refinery (CR)

RESULTS OF HYDROCRACKING EXPERIMENTS

Hydrocracking of FT VR in co-processing with VD Addition of FT Vacuum Residue (FT VR) 0, 10, 20, 30, 50 and 100 wt.% in the Vacuum Distillate (VD) feedstock

RESULTS OF STEAM CRACKING EXPERIMENTS

Main pyrolysis products of pure feedstocks

Pyrolysis conditions: 815 °C, 65 NmL min^{-1,} 400 kPa

Pyrolysis products of co-processing

Addition of FT Cr ($\blacktriangle \diamond \bullet \bullet$) and FT VR ($\Delta \Diamond \circ \Box$) of 0, 10, 20, 30, 50 and 100 wt.% in the HCVD feedstock

CONCLUSIONS

- Reduction of crude oil consumption.
- Double counting of CO₂ emissions via processing of Waste Renewable Materials.

- COMSYN technology and its products are valuable source of potential feed for already existing refinery.
- The addition of FT products to fossil feeds will not impair the quality of the offered fuels.

 Addition of FT products showed a positive influence on the conversion of the fraction boiling above 400 °C to lighter fractions consequently causing higher production of basic plastics (already with recycled biomaterial).

Processing and co-processing of waste materials in the existing refineries will help to preserve an employment in regions currently dependent on crude oil refining.

ACKNOWLEDGEMENT

VTT Technical Research Centre of Finland

INERATEC, Germany

ORLEN UniCRE, Czech Republic

VTT

C

GKN Sinter Metals Filters, Germany

DLR, German Aerospace Center, Germany

Wood, Italy

AFRY, Finland

GKN SINTER METALS

wood.

CONSORTIUM

- Industry: ORLEN UniCRE, Wood, GKN, AFRY
- SMEs: Ineratec
- Research organizations: VTT, DLR, UniCRE

11

Thank You for Your attention