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SUMMARY  

This study aims at estimating the CO2 intensity of petroleum products at the gate 

of an average EU refinery (refining step of the production process, excluding 

upstream and downstream emissions) using a novel approach, which reconciles 

economic relevance with accounting conventions in joint production industries. It 

revisits and finds a fair and logical way to distribute total CO2 emissions from the 

EU refineries over the most significant finished products, selected from the refinery 

slate. 

The refinery linear programming model of Concawe is used to generate randomly 

500 consistent production level data around the calibrated reference year 2019.  

Firstly, an innovative restricted regression methodology is applied to determine the 

linear coefficients which are equal to the CO2 intensities of the EU finished refined 

products (see column “CO2 intensities” in the table below).  

Then, this novel data-driven framework, based on supervised machine learning 

technics, enables, firstly, to assess causal-based, as it captures the interactions 

between the process units and the products (necessary for co-production process), 

and is extended via the restricted regression to provide positive dataset. Secondly 

the figures are statistically valid (highly robust results) in the area of analysis (+- 

5% of the demand). Lastly, similar to results derived from applying an LCA 

methodology (both attributional and consequential), this method gives positive CO2 

intensities for all products. Therefore, the last column in the table below is labled 

as “LCA compliant, Positive CO2 intensities”.  

The final set of CO2 intensities is summarized in the table below:  

CO2 Intensities 

(Concawe LP model & 
OLS regression) 

Base 
production 

Mt / a 

CO2 
Intensities 

t CO2 / t 

LCA 
compliant 

Positive CO2 
intensities 

t CO2 / t 

1 LPG 24.3 0.3731 0.3501 

2 NAPHTHA 37.4 0.2218 0.2082 

3 GASOLINE 127.5 0.2687 0.2522 

4 KEROSENE 51.9 0.2718 0.2551 

5 DIESEL 174.5 0.3012 0.2827 

6 HO MARINE DSL 80.6 0.2026 0.1901 

7 DMF RMF 0.5%S 35.6 0.0116 0.0705 

8 HSFO 30.3 -0.1905 0.0182 

9 OTHERS 37.4 0.0602 0.0565 

TOTAL CO2 calculated from CO2 
intensities and Base production, Mt / a 

131.5 131.5 

 

Various statistical hypotheses are verified to ensure the credibility and robustness 
of the results.  

It can be noted that the high sulphur fuel oil (HSFO) shows negative CO2 intensity 
(2nd column). In a refinery, if the production of high sulphur fuel oil has to be 
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reduced, it would be converted into lighter products, through CO2 intensive process 
units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In LCA world, it is common to report the CO2 intensities in grams of CO2 per 
megajoule of product. The table below shows the same CO2 intensities as above, 
but in g CO2/MJ. 

CO2 Intensities from 
OLS regression 

CO2 
Intensities 

g CO2 / MJ 

LCA 
compliant  

Positive CO2 
intensities 

g CO2 / MJ 

1 LPG 8.14 7.64 

2 NAPHTHA 4.96 4.66 

3 GASOLINE 6.33 5.94 

4 KEROSENE 6.23 5.85 

5 DIESEL 6.95 6.52 

6 HO MARINE DSL 4.70 4.41 

7 DMF RMF 0.5%S 0.27 1.67 

8 HSFO -4.70 0.45 

9 OTHERS 1.64 1.54 

The estimated CO2 intensities, as well as their confidence intervals, confirm that 
diesel is more CO2 intensive than kerosene and gasoline. These marginal CO2 
intensities are causal-based and, therefore, relevant for policy making such defining 
the fossil fuel comparators for GHG saving computations.  

Oil refining is a complex interactive production system for which allocation-based 
average data are both meaningless and misleading. In this report, we reconciliate, 
for the first time, the causal relevance with the accounting conventions such as 
additivity and nonnegativity. The computation principles are transparent and 
readily replicable by all stakeholders.   

 

As described in the Concawe report n° 1/17 “Estimating the marginal CO2 
intensities of EU refinery products”, this Generalized Marginal approach captures 
crucial interactions between processes and products. 

The results of this report cannot be applied to individual refineries and are only 
valid for the EU refining on its global average. Refineries in Europe are all 
different in their process unit’s configuration and level of complexity, and 
consequently in their emission intensity and in the product mix they produce. 

Furthermore, the innovative methodology presented in this report is adapted to 
generated positive numbers for carbon intensity of the refinery products.  These 
“LCA compliant Positive CO2 intensities can be used as part of the “Eco-profiles” 
dataset for the carbon footprint of the selected refined finished products (Eco-
profiles assess the environmental impacts along the production chain from 
«cradle-to-gate»). 
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1.  BACKGROUND 

One of the key characteristics of refineries is its structure with process units 
organized in parallel and series leading to the co-production of a wide range of 
products. In other words, estimating the CO2 emissions associated with production 
of individual oil products is challenging inasmuch as they are produced 
simultaneously through a combination of interrelated processes. Allocation 
methods, although providing for a mostly straightforward set of calculations, often 
fail to capture crucial interactions between processes and products and can lead to 
unrealistic or misleading results. 

Utilizing the specific features of the Linear Programming (LP) techniques (tool 
widely used to model refineries) enables to produce a consistent set of CO2 
intensities for all refinery products (Tehrani Nejad, 2007 [1]). Concawe has applied 
this methodology (referred to as Generalized Marginal Approach) on its LP model 
(Concawe, report n°1/17, “Estimating the marginal CO2 intensities of EU refinery 
products”), so as to generate a full set of refinery product CO2 intensities for a study 
case representing 2010 EU refining system. Results of this study are summarized in 
the following table. 

Table 1  2010 EU refinery product CO2 intensities (Concawe, 2017, [2]) 
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Products Mt / a t CO2 / t t CO2 / t t CO2 / t g CO2 / MJ 

Chemicals 54.6 1.46 -0.10 1.36 31.1 

LPG 13.0 0.28 -0.04 0.24 5.2 

Gasoline 126.3 0.27 -0.03 0.24 5.5 

Kerosene 56.6 0.31 -0.05 0.26 6.1 

Diesel Fuel 207.1 0.35 -0.04 0.31 7.2 

Heating Oil 72.5 0.26 -0.06 0.20 4.7 

Marine Gasoil 7.0 0.20 -0.08 0.13 2.9 

Heavy Fuel Oil 88.6 -0.24 0.09 -0.15 -3.7 

Bitumen 19.2 -0.45 0.05 -0.40 -10.1 

Petroleum Coke 5.0 -0.89 0.01 -0.88 -25.0 

Lubes & Wax 5.1 0.39 0.21 0.60 14.1 

Sulphur 3.2 - -0.02 -0.02 -1.3 

Fuel & Losses 60.5 - - - - 

 

Main results of the Concawe publication have been integrated in JRC comparison of 
refining CO2 allocation methods (JRC, 2017, [4]) and JEC Well-To-Wheels report v5 
(JEC 2020, p23). 
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1.1 OBJECTIVE 

The new method developed in this report is primarily motivated by the desire to 

update Concawe’ s results and to define an easier way to assess the CO2 intensities 

of refining products. It also demonstrates the relevance and necessity of a Linear 

Programming Model in the assessment of carbon intensity for products originated 

from co-production processes. 

In order to comply with LCA standards and to further develop the potential of this 

innovative methodology, further developments have been carried out to generate 

only positive CO2 intensities. 

Being easier to understand and a higher enabeler to reproduce results than the 

Concawe Generalized Marginal Approach, the new method is more likely to be 

accepted in the Life Cycle Analysis (LCA) community. 

1.2 LIMITATIONS OF THE GENERALIZED MARGINAL APPROACH 

1.2.1  Identified limitations of Generalized Marginal Approach 

Tehrani Nejad’s (2007) [1] theory was applied to Concawe LP model (Concawe, 

2017, [2]). However, as Concawe model is a lot more complex than the example 

presented in the article, the implementation of the Generalized Marginal Approach 

required a specific post LP program, which had to be developed on purpose. 

Developing and maintaining such tool involves a high-level of expertise in LP 

modelling. This expertise is available within Concawe and its Member Companies, 

but outside the refining industry, for the other stakeholders involved in LCA, this is 

not generally the case. Consequently, the major challenge is to ensure that the 

methodology is correctly applied and understood by the potential users. 

The Generalized Marginal Approach being based on marginal results of a LP model 

solution, generated CO2 intensities that can be negative. A typical example is heavy 

fuel oil. If the production of heavy fuel oil had to be reduced, it would be converted 

into more valuable products through CO2 intensive process units. Consequently, in 

a marginal approach, heavy fuel oil is granted for saving this CO2, hence given a 

negative CO2 intensity. For the LCA specialists, this is invalid as they assume 

negative values only for CO2 which is actually removed from the atmosphere. 

In addition, the marginal values of a LP solution can be very sensitive to modelling 

assumptions. Furthermore, sensitivity analysis on input parameters (e.g. product 

demand, product pattern, refining system configuration) can be difficult to 

perform. 

However, it has to be acknowledged that the Generalized Marginal Approach 

developed by Concawe is additive (i.e. the total refining CO2 emissions are 

described by the individual products CO2 intensities), as requested by LCA 

standards, which is not always the case with marginally based methodologies (in 

this report, we are proposing a method to address this issue). For this type of model 

that predicts total emissions of a refinery, in which the products are produced 

simultaneously through a combination of interrelated processes, it is key to capture 

crucial interactions between processes and products. The link between total 

emissions and product related emission is demonstrated via the regression and the 

statistical robustness of the coefficients. The Design of Experiment (DOE) defines 

the space (incremental variation of the products) in which the solution is valid. 
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1.2.2 Main challenges identified by external stakeholders 

The main challenges received when the Concawe 2017 study [2] was published 

confirm the limitations listed in the previous section: 

 Results come from a “black box” and require LP expert knowledge 

 Difficulty to reproduce the results 

 Negative CO2 intensities values (though being “somehow” understood) are 

not compatible with LCA standard methodology, which aim at providing so-

called “average” values and negative values meaning CO2 extracted from 

the atmosphere. 

Though some of these challenges are subject to discussion, it appears that 

clarification and improvement of the Generalized Marginal Approach are required 

to gain confidence of the potential users. The new methodology presented in this 

report addresses all the questions above. 

1.3 LIFE CYCLE ASSESSMENT METHODOLOGY 

Life Cycle Assessment (LCA) is the broadly accepted scientific approach to quantify 

potential environmental impacts of products during their life cycle. Some elements 

of the LCA results, or called as well “cradle-to-grave”, can be reported for Well-to-

Wheel (WTW) analysis, which is composed of Well-to-Tank (WTT) and Tank-to-

Wheel (TTW). The lifecycle of WTT includes the crude oil extraction, 

transportation, and petroleum refining up to the final fuel use in vehicles. TTW 

evaluates the final combustion in vehicle. This report addresses only carbon 

footprint of the oil refining production step which is the main responsible for 

controversial data in the literature1. 

There are two main approaches depending on the type of questions we want to 

answer: attributional and consequential CO2 intensity. 

 The attributional CO2 intensity of a refined product accounts for all flows 

physically linked to its production within the given state of the examined 

refinery irrespective of economic or policy context. It tends to estimate 

what share of the global CO2 emissions of the refinery belongs to that 

product according to some normative rules. 

 The consequential CO2 intensities are context-specific and capture impacts 

beyond direct physical relationships assessed by the attributional approach. 

They include the expected impacts of a change in the product system on 

other economic sectors. 

Consequential WTT uses marginal data whereas attributional WTT requires average 

data resulting from normative allocation methods. 

The LCA researchers usually recommend using the consequential approach for 

decision-making and the attributional approach for normative analyses where no 

decision is to be made based on the results. One argument in favor of this 

recommendation is that decision making must rely on causal mechanism. In an oil 

refinery, allocating the total emissions over the individual refined products in 

                                                 
1 JRC publication, 2017, [12]: 
https://www.sciencedirect.com/science/article/pii/S0306261917312102?via%3Dihub 

https://www.sciencedirect.com/science/article/pii/S0306261917312102?via%3Dihub
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proportion to their mass or energy content suffer from the absence of any causal 

connections. Within refineries, the high degree of interactions among process units 

and final products is creating this causal connection. 

In joint production industry, allocation based on causal relationships is possible if 
and only if the internally production function is marginally affected. A suitable 
analytical framework for performing marginal analysis is Linear Programming (LP). 
Within some adjustments, LP models can become a powerful tool for computing the 
CO2 footprints of refined products. It has been demonstrated (Tehrani Nejad’s 
(2007) [1]) how LP models can depict causality between physical flows and assign 
accordingly the CO2 emissions to refined products on a marginal basis. This fits well 
into the framework of a WTT methodology that is designed to quantify the GHG 
intensity of fossil fuels on a physical basis (representing real plant operation). 

In general, short-run LP models do not respect the accounting convention that 
requires the sum of the allocated emissions to be equal to the total emissions of 
the refinery. This is a valid objection to LP as a support tool to contribute to the 
computation of fossil fuel comparators (in this report, we are proposing a method 
to address this issue as well). By extending the simplex mechanism, Tehrani Nejad 
(2007) [1] proposed an additive CO2 intensity pattern based on a generalized 
marginal analysis. This method was officially used by Concawe to estimate the CO2 
intensity of the European refinery products (Concawe, 2017, [2]). The results were 
integrated in the JEC WTW version 5 (JEC, 2020). DG Climate (2020) reported that 
its refining footprints were in line with Concawe model used in JEC for conventional 
crude chains. The JRC considered Concawe’ s results as reference values for 
decision-making (Moretti et al., 2017, [4]). 

1.4 AVERAGE VERSUS MARGINAL CO2 FOOTPRINTS 

The concept of average CO2 footprint is controversial in a multiproduct industry, as 

the refining industry. This is a well-known issue and some economists already 

demonstrated the lack of relevance in the use of average data for policy analysis 

(Baumol et al., 1962, [13]). Our investigations over the years concluded that the 

use of a modelling tool representing as closely as possible the interactions and 

interconnections between the different products, integrating a marginal 

component, is the best proxy for the CO2 intensities of the refinery products. 

Before discussing the appropriate emissions measure, it will be of value to recall 

the following fundamentals.  

First, in a multifunctional process, marginal and average data are both results of a 

change variation. Second, the change variation required to properly compute 

average data is generally inexistent for a joint production process. To make this 

clear, and without tedious mathematical notations, let y = y(b1,b2) denote the total 

emissions function of a refinery that jointly produces b1 and b2. This means, the 

production of b1 (say gasoline) simultaneously and necessarily involves the 

production of b2 (say diesel) in a causally coupled manner. This situation is simply 

presented in the figure below where the subsystem of process units contributing to 

the life cycle of joint products is highlighted in grey. 
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Figure 1 A refining joint production system 

 

All process units and their respective CO2 emissions are affected by the totality of 

products. Figure 1 shows that increasing the production of b2 would also increase 

the production of b1 even if there are no clients for the extra produced volumes of 

b1. The process unit R corresponds to the Reformer, the main gasoline process unit 

in a refinery, which produces 3 to 4% of hydrogen necessary to produce diesel (b2). 

The feed of Reformer is connected to the process units that jointly produce for 
gasoline and diesel blends. These complex interactions lead to the non-separability 

of the total emissions even after subdividing the refinery into individual process 

units. To estimate what share of total emissions truly belongs to b1 one should 

isolate the contribution of b1 from the total emissions as, 

S = [ y(b1,b2) - y(0,b2) ] / b1    (1) 

Where S is the average CO2 footprint of b1, y(b1,b2) the total emissions related to 

the production of b1 and b2 and y(0,b2) the emission related to the production of b2 

without producing b1. 

The critical point to this change variation requirement is the impossibility to 

calculate the numerator. In effect, the stand-alone emissions for the first product, 

i.e., y(0,b2) where only b2 is produced, does not exist neither in theory nor in 

practice. Since total emissions y(b1,b2) are not traceable to individual products, any 

allocation measure which attempts to approximate the inexistent S, such as 

y(b1,b2) / b1, is groundless by construction. The meaningless of this partitioning, 

which is systematically calculated in attributional approach, is less about the 

arbitrary selection of the allocation keys, e.g., mass, energy, economic value, etc. 

It is essentially due to the absence of any casual effects between total emissions 

and individual products. The greater the degree of non-traceable emissions, the 

more inappropriate is the use of such allocation rules as a guide for policy making. 

As argued by Baumol et al. (1962) [13], “The obvious stumbling block is that a 

multiproduct possesses no natural scalar quantity over which (emissions) may be 

averaged (…) without committing the sin of adding apples and oranges”. 

In a recent publication, Johnson and Vadenbo (2020) [14] gathered the CO2 intensity 

for refined products from multiple databases and publications. The following table 

summarizes the CO2 intensity values that are computed based on attributional 

allocation rules. 
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Table 2 Carbon footprints of refined petroleum products, grams of CO2 
equivalent per MJ LHV 

Source Allocation key Gasoline Jet Fuel Diesel Fuel Oil 

Ecoinvent Energy 7.7 4.7 4.7 2.4 

Sphera / 
Thinkstep 

Energy 9.6 2.5 3.4 4.1 

EU JRC2 Added Value 6 7.9 10.3 -29.8 

EU JRC Energy 5.8 6.1 7.2 -4.3 

 

The authors observed that the reported CO2 intensities for the main products vary 
by a factor of three. This range of variation, within the same attributional 
framework, makes the results useless for policy decisions. Besides, half of the 
values concludes that gasoline is more CO2 intensive than diesel. The other half 
contradicts. The reasonableness of the basis of allocation makes absolutely no 
difference except to the success of the advocates of the figures in deluding others, 
and perhaps themselves, about the defensibility of the results. 

In decision science3, relevance relies on mechanisms of causality. In an oil refinery, 
allocation based on causal relationships is possible, if and only if, the production 
function is marginally impacted by the variation of one product. In our previous 
example, the marginal contribution of b1 to the total emissions is, 

M = [ y(∆b1,b2) - y(b1,b2) ] / ∆b1    ( eq 2) 

Where M is the marginal emission linked to the production of the last ton of b1, ∆b1 
the variation of the product b1 (could also be written b1+ɛ) and  y(∆b1,b2) the 
total emissions for different productions of b1. 

Equation (2) is simply the difference between two LCAs. Within a given crude slate 
(not a single crude barrel), it is possible to vary the output of one individual product, 
within some ranges, without impacting the level of the other products. Hence, 
y(∆b1,b2) and M are computable in a causal manner. If the production variation tends 
to be very small (ɛ), then the marginal CO2 intensity would be equal to the partial 
derivative at the optimal point of operation. Relation (2) includes the CO2 emissions 
of all the processes that are identified to truly contribute to the production of the 
last tons of the first product.  

Two concluding remarks are in order. First, relations (1) and (2) have the same 
cradle-to-grave boundary, i.e., the refinery gate-to-gate process (excluding 
upstream and downstream emissions). Second, the change step variation used for 
the marginal intensity is very small: it doesn’t correspond neither to new production 
plants nor to large scale-effects on the production system. Therefore, the marginal 
CO2 data from relation (2), can be used as the best proxy for attributional studies. 

 

                                                 
2 https://www.sciencedirect.com/science/article/pii/S0306261917312102?via%3Dihub 
3 Decision Sciences is an interdisciplinary field that draws on economics, machine learning, 
statistical decision theory, operations research, forecasting, behavioral decision theory and 
cognitive psychology. It is the collection of quantitative techniques used to inform decision-
making at the individual and population levels. 

https://www.sciencedirect.com/science/article/pii/S0306261917312102?via%3Dihub
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1.5 MAIN MODELING ASSUMPTIONS 

This section presents the main assumptions that are most likely to affect the LP 

modelling results. More detailed information can be found in Appendix 1. 

The refining system data for 2020 are not relevant due to the perturbations of the 

oil market linked to the Covid-19 pandemic. However, the introduction of the 

Marine fuel specification change (maximum Sulphur content down from 3.5% to 

0.5%S) applied from January 2020 onwards, is an important element to consider. 

Consequently, 2019 reference year data is selected for this study, but with 2020 

Marine Fuel specifications implemented. This mix of assumptions is referred as to 

“2019 adjusted” reference year. 

 

1.5.1 Crude Slate 

The crude slate is derived from EU Commission data4 (EU crude supply data are 

available per country). First, EU crude slate (composed of around 60 crude types) 

from EU Commission data is matched with crude assays from Concawe database, so 

as to estimate the main properties of the average EU crude slate (API gravity, 

Sulphur content, main products yield). Then a combination of the LP model crude 

assays (6 crudes and 2 residues) is determined to match the average EU crude slate 

properties. Final LP model crude slate for reference year 2019 can be found in 

Appendix 1. 

1.5.2 Other Refinery feedstocks 

Refinery feedstocks other than crude oil can be imported in the LP model, as in 

actual refining operation. Eurostat also provides global data on these feedstocks, 

which are reworked to match LP model environment. 

Eurostat ‘Refinery feedstocks’ category amount is considered to be Heating Oil 
type and/or Russian M100 type (ratio being a result from the LP model 
optimization). This amount is set as a maximum availability for the LP model, hence 
giving some flexibility on the refinery supply. This Refinery feedstocks category 
originally contains returns from Petrochemical plants, but for simplification the 
amount of Petrochemical returns is deduced from the Chemical Naphtha demand. 

Biofuels and oxygenates are considered for Gasoline, but not for Diesel and Jet. 
So, for Diesel and Jet, demand is related to fossil demand only, the biofuels having 
very little impact on the optimization, and added directly to the finished products. 
For Gasoline, several types of oxygenates are considered: Ethanol and ETBE are 
used to represent bio oxygenates and MTBE to represent non-bio oxygenates. These 
oxygenates imports are driven by the bio energy and oxygenate content of the 
gasoline grades (refer to 0 section below) and for ethanol, also by ETBE/TAEE 
production within refineries. 

Natural gas amount imported by the EU refineries (as energy) is also available in 
Eurostat and is implemented as a maximum availability in the LP model. 

 

                                                 
4 https://energy.ec.europa.eu/data-and-analysis/eu-crude-oil-imports-and-supply-cost_en 
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1.5.3 Refining finished products demand 

Historical products demand is extracted from Eurostat database. More specifically 
for the LP model, EU refining production is considered to be equal to the products 
demand because it corresponds to the actual constraint supported by the refining 
system. On one hand this means that finished products imports are not accounted 
because they have no impact on the refining system. On the other hand, finished 
products net exports are accounted because they are actually produced by the EU 
refining system. 

As mentioned at the top of this chapter, the definition of 2019 adjusted demand is 
based on 2019 actual demand data and corrected to consider the 2020 IMO Marine 
Fuel specification change (from 3.5% to 0.5 wt.% Sulphur content). Final LP model 
demand is available in Appendix 1. 

1.5.4 Finished product specifications 

Standard finished products specifications are used for the main products. However, 
for some specific grades, some assumptions and intermediate calculations are 
required. 

Oxygenates and bio components in Gasoline 

Several oxygenates are available in Concawe LP model: MTBE, ETBE, ethanol and 
TAEE. MTBE is used to represent the non-bio oxygenates, ethanol is considered 100% 
bio, ETBE 37% bio (according to RED directive) and TAEE bio content is calculated 
based on the ethanol content. 

According to Fuels Quality Monitoring report (EU Commission, 2021), 2019 bio 
ethanol equivalent content of the gasoline consumed in Europe is around 6.1 vol%. 
Bioenergy content of the gasoline is derived from this figure and fixed to 4.1 % in 
the LP model for the year 2019. From Concawe market survey (Concawe, 2017, 
[11]), an ETBE / ethanol ratio in the gasoline pool is assumed (approximately 
30/70 vol%), allowing to estimate the ethanol content in the pool. This ethanol 
content (5.4 wt.% or 5.1 vol%) is fixed in the LP model and the ETBE is floating, but 
indirectly fixed by the bio energy content of the gasoline pool. 

From Concawe market survey (Concawe, 2017, [11]), 2015 average EU gasoline 
oxygen content is estimated to be around 2.4 wt.%. For this study based on 2019 
data, it is assumed to be around 2.6 wt.%. Knowing the oxygen brought by bio 
ethanol and bio ETBE, MTBE content of the gasoline pool is estimated to be around 
2 wt.% (2 vol%). 

These average calculations are applied to both 95 and 98 gasoline grades. 
Oxygenates are not allowed in export gasoline grades (gasoline specification for 
exports to US or Africa do not contain oxygenates). 

Bio components in Road Diesel and Jet 

Bio-components in Road Diesel and Jet are not available in Concawe LP model. 
Consequently, any demand or production data related to these products correspond 
to the fossil part. 

Marine Fuels 
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As mentioned above, 2019 is taken as reference year for the demand, but the IMO 
Marine Fuel specification change occurred in 2020. Therefore, the following 
assumption has been taken: Eurostat “International maritime bunkers” demand is 
assumed to be at 0.5 wt.% Sulphur content, 50%/50% of the demand to be supplied 
by Distillate/Residual Marine Fuels (Concawe report 21/205, “Producing low Sulphur 
marine fuels in Europe – 2020-2025 vision”). 

Diesel Marine fuel is a separate category in Eurostat, which is assumed to have a 
Sulphur content of 0.1 wt.%. 

Heavy fuels 

Eurostat high/low Sulphur content fuel oils are assumed to have respectively 
3.5/1 wt.% of Sulphur content. 

A summary of Finished products specifications is presented in Appendix 1. 

1.5.5 Process unit capacities 

Concawe owns a detailed database on process units’ types and capacities of 
European refineries (including expansion projects and closures). These capacities 
are aggregated to determine the LP model process unit capacities. Main capacities 
considered in the LP model are summarized in Appendix 1. 

1.5.6 Pricing 

Feed and product pricing are mainly based on Wood Mackenzie data (Concawe 
subscription). For some specific quotations not available (natural gas for example), 
public sources are used. 2019 average yearly prices are used. 

CO2 pricing has an impact on the LP optimization, as it drives the effort of the 
optimization to produce the demand with minimum CO2 emitted. For this study, 
49 USD/t CO2 (44 EUR/t) has been used, being the CO2 price used in the ‘MIX’ 
scenario of EU Commission 2030 Climate Target Plan Impact Assessment (European 
Union, 2020, [8]). A sensitivity test has been performed with 100 USD/t CO2. 

1.6 LP MODEL 

The purpose of an oil refinery is to turn crude oil into marketable products in the 
most efficient and economical way. A particular refinery generally serves a 
particular market which sets the quality of the products to be supplied and to an 
extent the amount of each grade. Depending on the geographical location of the 
refinery, there can also be opportunities to export to other markets. The refinery 
has access to certain crude oils and other feedstocks, the range of which is a 
function of its location and the way it is supplied (e.g. ships or pipelines). Finally, 
the refinery features a certain combination of process units (generally referred to 
as its configuration). 

Refinery operation is thus characterized by multiple real constraints arising from 
feedstock supply, product demand (quantity and quality) and process unit 
limitations. Yet there are many ways of operating within these constraints and 
refiners have always strived to optimize their operation in order to maximize profit 
or minimize costs to supply a given market demand within a given set of product 
prices and input costs. The tool used to that end by refiners worldwide is known as 

                                                 
5 https://www.concawe.eu/wp-content/uploads/Rpt_20-21.pdf 
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Linear Programming (LP), a mathematical technique which, given a quantity to be 
optimized, aims at identifying the optimum solution amongst the myriad of possible 
solutions to a complex problem. 

In an LP model the refinery constraints are represented by a system of linear 
equations linking the different variables. Because there are more degrees of 
freedom (or variables) than there are constraints, the system has an infinite number 
of possible solutions. Provided that appropriate cost factors are defined as model 
inputs (i.e. cost of feedstocks, energy, additional plant capacity, price of products 
etc.), a so-called “objective function” can be derived, describing the quantity to 
be optimized (maximum profit or minimum cost). The LP solver then provides a 
pathway towards the optimum solution. 

For a given set of desired products, the LP solution tells the refiner how much of 
each available feedstock should be processed, the level at which each refinery 
process units will be utilized and, more generally, which amongst all the constraints 
will actually be binding. Crucially it also provides information on the impact on the 
objective function of a marginal change in each of the binding constraints (the so-
called “marginal values”). This last property of an LP solution was used to assess 
the CO2 intensities of refining products in the Concawe 2017 study [2]. 

1.6.1 Concawe LP model main features 

Since the mid-90s Concawe has operated a refinery LP model representing the 
combination of all refineries operating in the EU. This model was originally 
developed to estimate the cost to EU refiners of EU legislation (mostly affecting 
product quality) and of expected changes in EU market demands. 

Model structure 

The model features a full library of refinery process units represented by a number 
of operating modes including feedstock type, product yield structure and all 
relevant quality parameters. From this a refinery can be modelled with any 
combination of process units. 

A range of crude oils is available, representing the diversity of grades available to 
EU refiners. 

A blending module allows finished products to be prepared according to the 
required quality specifications from selected intermediate streams. 

In the Concawe master LP model, the EU is divided into 9 regions, each represented 
by a single refinery having the aggregated capacity, crude intake, process 
configuration and product demand of all physical refineries in that region. Due to 
the specific requirements of the methodology (marginal values extraction for 
additivity) developed to generate product CO2 intensities in the Concawe 2017 study 
[2], a single-region model has been derived from the original 9-region model. This 
model then consists of a single refinery representing the aggregation of all European 
refineries (capacities, crude intakes, process configurations and product demands). 
Countries accounted for in the LP model, are listed in Appendix 1. 

The single region LP model used for this study has approximately 2500 rows 
(equations) and 10 000 columns (variables), which is a rather large model for the 
industry. 
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CO2 emissions modelling 

In response to the CO2 emissions challenge, the model was adapted in the early 
years of the last decade so that it could estimate the CO2 emissions associated with 
a particular operating case. This primarily requires CO2 emission factors for 
combustion of refinery fuels (t of CO2 emitted per GJ of fuel burnt), combined with 
fixed unit-specific energy consumption factors (GJ per t unit feed). It must also 
consider structural emissions arising from specific chemical reactions (notably the 
production of hydrogen by reforming or partial oxidation of hydrocarbons), 
expressed in ton of CO2 per ton of each feedstock type processed. 

Because a refinery generally uses its own feeds or products for a proportion of its 
fuel needs the carbon contained in the input to the refinery is apportioned between 
products and fuels. In order to avoid any spurious carbon gain or loss as a result, it 
is therefore essential that the model be strictly carbon-balanced (i.e. that the 
amount of carbon entering the refinery in the form of feedstocks and possibly fuels 
equals the amount that leaves the refinery in the form of CO2 and products). In 
order to achieve this, the model is actually carbon, hydrogen, nitrogen, oxygen and 
Sulphur balanced across each process unit, from the crude oil to the finished 
products. 

In order for the model to optimize CO2 emissions, these must have an impact on the 
objective function. In other words, CO2 emissions must be assigned a monetary 
value. Although the actual number used is not crucial to the outcome, it must be 
sufficiently high to ensure small changes have a discernible impact on the objective 
function. As mentioned in the 0. 1.5.6 Pricing section, 49 USD/t CO2 has been 
used (‘MIX’ scenario of EU Commission 2030 Climate Target Plan Impact Assessment, 
[8]). 

LP model main variables for optimization 

Crude oil throughput: total amount processed in the EU refining system is free, but 
the crude oil ratios are fixed to match average EU feedstock quality (refer to section 
0. 1.5.1 Crude Slate). 

Oxygenates (ETBE, MTBE, and Ethanol): total amount of imported oxygenates is 
open, but is indirectly limited by gasoline pool specifications (refer to section 0. 
1.5.2 Other Refinery feedstocks). 

Other intermediate product imports as Kerosene or Gasoil: as for crude oils, total 
amount processed is free, but ratios compared to crude oils are fixed to match 
actual EU imports level (refer to section 0. 1.5.2 Other Refinery feedstocks). 

Refining operations: routings of intermediate streams, severities and utilizations of 
process units are the major optimization variables of the LP model. They represent 
the flexibility of the refineries to respond to market demands and constraints. 

1.6.2 Calibration 

This type of model, where individual refinery data is aggregated into one single 
large refinery model, is subject to over-optimization (under-constrained system), 
because all process unit capacities are available simultaneously, significantly 
increasing the degrees of freedom of the refining system. To mitigate this risk of 
over-optimization, a calibration run is performed at the beginning of each Concawe 
study where LP is involved. 
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A reference year is selected, 2019 for this study, for which all the input data are 
publicly available (Eurostat). 2019 product demand is then corrected to consider 
IMO 2020 (Marine Fuel new Sulphur specification at 0.5 wt.%). The year 2020 has 
not been chosen, as deemed not representative because of the atypical demand 
and refinery operation due to the Covid-19 pandemic. 

The main LP model inputs required for the calibration include the European average 
crude oils slate, the other imported products, the finished products demand (and 
qualities) and the exported products amounts. In addition, the energy efficiency of 
the process units is tuned to match the overall CO2 emissions of the refining system 
as measured for the reference year. 

A calibration run is performed with the LP model to ensure that the optimization 
can meet the demand pattern with similar amounts and types of refinery feedstocks 
as observed in real operation. In addition, it is essential that the optimization faces 
the same constraints as the actual refineries to achieve the products demand. For 
this purpose, marginal values associated to demand constraints have been tuned to 
reflect the actual market. For example, the European market is a net importer of 
middle distillates because the actual refining system is not designed to meet that 
demand, this should be reflected in the optimization results (i.e. marginal values 
associated to middle distillates demand should be higher than the products prices). 
Tuning the marginal values is performed through tuning of the process units’ 
capacities. More constrained/relaxed specific process units capacities result in 
more constrained/relaxed specific finished products production, hence impacting 
the marginal values of these specific finished products demand in both direction 
(increase or reduction). 

This artificial way of tuning process unit’s availability allows to reduce the over-
optimization inherent to aggregated models. This can be seen as a conservative 
approach, as it may imply that the refining assets would not adapt to the future 
constraints. Decades of experience in regional LP modelling showed us that it 
remains the best way to proceed to get results as realistic as possible. Refer to 
Appendix 1 for further details on the calibrated capacities. 
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2.  NEW METHOD 

2.1 BENEFITS 

The new method described below overcomes the drawbacks listed in section 0. Here 
are the main advantages of this approach compared to the original methodology 
(Concawe, 2017). 

Implementation 

The Generalized Marginal Approach (Concawe 2017, [2]) requires a LP model 
specifically designed for this method, so as to be able to generate and extract 
numerous marginal coefficients from the LP solution. The additivity is ensured 
through a rigorous, but complex reallocation process, involving manipulation of 
marginal rates of technical substitution (Concawe, 2017, [2]). 

The new method requires a refining model (Linear Programming is advised but not 
mandatory) and the capability to generate a consistent Design Of Experiment (DOE) 
for the Demand data (model inputs). This DOE and the ability of the LP model to 
react accurately to demand changes will then ensure robustness of the regression 
applied on the results. The regression allowing to compute the CO2 intensities 
requires a statistical software (Microsoft® Excel® can be sufficient for basic 
results), but is independent from the refining model used. 

Confidence 

The new method can be understood by a larger audience than the Generalized 
Marginal Approach. It requires only generic knowledge in refinery modelling and 
statistics, whereas the original method requires to understand expert level LP 
optimization notions. The generic concepts of the new method help gaining 
confidence of the audience. 

Reproducibility 

In the Generalized Marginal Approach, extraction of marginal coefficients from the 
LP solution requires complex post-processing computation. This makes it difficult 
to reproduce the published results, even if a LP model is available for the 
experiment. With the new method, if the model results are provided, it is possible 
to exactly reproduce the calculations of finished products CO2 intensities. 

Validation of the Generalized Marginal Approach 

The new method shows similar results than the Generalized Marginal Approach in 
terms of CO2 intensity values and ranking of the finished products CO2 intensities. 
This is expected as it follows the same “marginal causal-related” approach, which 
is a key element when considering co-production processes (e.g. any change in a 
product quantity has an impact on the whole refining system). 

Like the Generalized Marginal Approach, the new method is also additive, meaning 
that all the emissions from the refinery are integrated in the CO2 intensities of the 
products. 

In addition, the new method provides confidence intervals directly from regression 
results, whereas in the original method additional cases are required. 
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2.2 BASIC PRINCIPLE 

From the LP theory and the settings of Concawe model, it has been shown that the 

total CO2 emissions can be expressed as a linear function of finished products 

amount and saturated process unit capacity constraints (Concawe 2017, [2]): 

 

Where CIi is the CO2 intensity of Product i (equal to Mi in the theoretical equation 2 

detailled in paragraph 1.4) and CIj the CO2 intensity associated to saturated capacity 

constraint of Process Unit j. 

The non-product CO2 emissions can be regarded as residuals of the above equation 

(Tehrani Nejad, 2007, [1]): 

 

These residuals follow the requirements for an Ordinary Least Square (OLS) 

statistical regression (as non-systematic pattern, orthogonality versus explanatory 

variables, no autocorrelative pattern). The OLS regression resolution leads to 

Residual(ɛ) minimization and consequently resulting CO2 intensities (regression 

coefficients) contain the Process unit capacity constraints impact. The Residual(ɛ) 

minimization replaces the complex reallocation procedure of CO2 associated to 

process unit capacity constraints used in the Generalized Marginal Approach. 

 

2.3 IMPLEMENTATION 

2.3.1 Data driven approach 

The data used for the statistical regression are generated by the LP model (meta-

modelling). A high number of cases (500 runs done with the LP Model) is generated 

by varying the finished products demand. Each case provides the optimal quantity 

of CO2 that needs to be emitted to satisfy a given demand of finished products. The 

cases results (CO2 emitted corresponding to a specific products demand) can then 

be used as inputs for a multi-linear regression described in section 0. In addition, 

the high number of generated cases allow to explore a large range of solutions and 

consequently to depict the underlying technical pattern of the LP model.  

Concawe’ s carbon balanced LP model (refer to section 0) is a clear motivation for 

such a data-driven approach, as it ensures that product demand impact on refining 

CO2 emissions is accurately captured in each of the cases. 

It could be argued that historical time series could be used instead of generated 

cases. However, such an approach is not recommended, as historical time series 

contain major structural changes that lead to confusion in the definition of the 

products and the refining system itself. For example, gasoline specifications have 

changed over time, hence gasoline in 1990 cannot be considered to be the same 

product as of today. Similarly refining system has evolved by step changes 

(shutdown of units or entire plants, addition of new process units and/or revamping 

existing process units). These multiple structural changes require adopting 

adequate statistical technics in regression model that may jeopardize the additivity 

of the method. In addition, a major advantage of the generated data is that they 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2 = ∑(𝐶𝐼𝑖 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖)

𝑖

+ ∑(𝐶𝐼𝑗 × 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑈𝑛𝑖𝑡𝑗)

𝑗

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2 = ∑(𝐶𝐼𝑖 × 𝑃𝑟𝑜𝑑𝑖)

𝑖

+ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(ɛ) 
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are nearly orthogonal by design, thereby overcoming the inevitable 

multicollinearity issue caused by the joint production times series data. 

 

2.3.2 Design Of Experiment (DOE) 

In order to generate the high number of cases mentioned in the previous section, a 

design of experiment (DOE) is prepared (definition in Appendix 4). For this 

objective, 500 cases are generated using the Latin Hypercube Sampling (LHS) 

method described in the next section. Cases are centered around 2019 adjusted 

reference year products demand, within a ±5 % range. This arbitrary range variation 

is a compromise between expected validity of the results and ensuring that the 

refining system response remains representative of the given period. 

 

2.3.3 Latin Hypercube Sampling (LHS) 

The design of experiment for the production demand is a crucial step. Among the 

existing literature, it has been selected to use the well-known Latin Hypercube 

Sampling (LHS). Its basic idea is to cover evenly and consistently the range of the 

production distribution (more details in Appendix 4). The figure below illustrates 

the difference of random sampling versus Latin Hypercube sampling for a 2-

dimensional problem. By definition, in LHS there is 1 (and only 1) random point per 

row or column, allowing a more distributed sampling than with a random sampling, 

which can have empty rows and/or columns and/or multiple random points per row 

and/or column. 

Figure 2 Latin Hypercube Sampling (LHS) vs. random sampling 

 

LHS algorithm is thus used to generate different combinations of demand levels, 

within the ±5 % range around 2019 adjusted reference year, as stated in the previous 

section. For each case generated, the sum of the finished products demand is 

constant (equal to 2019 adjusted reference year value), so as to ensure that only 

variation in the products pattern is evaluated. It has been decided to generate 500 

cases in order to assess the robustness of the results. 

The next step is then to solve each of the cases with the LP model in order to get 

the optimal refining CO2 emissions corresponding to each case. 
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2.3.4 Ordinary Least Squares regression (OLS) 

Ordinary Least Squares (OLS) is a type of linear least squares method for estimating 

the unknown parameters in a linear regression model (more details in Appendix 4). 

This method is used here to determine the following relation between the finished 

products demand and the related refining CO2 emissions: 

, 

Which can be expressed in more generic terms as: 

 

Where Y is the vector of CO2 emissions, Z is the product matrix defined by the LHS 

design of experiment,  is the vector of unknown CO2 intensities to be 

estimated by the Ordinary Least Squares method (OLS), and û is the vector of error 

term. 

An additional constraint is added to the OLS regression: residual has to be zero for 

the 2019 reference year demand (required to satisfy the additivity of the CO2 

allocation). The method is therefor called “Restricted Ordinary Least Square” 

regression. 

This type of regression can be implemented in generic tools as Microsoft® Excel® 

for example, or with more dedicated statistical tools. It has to be noted that several 

statistical tests are required to assess the validity of the regression: linearity of the 

relation, normality and homoscedasticity of û. They are developed in the numerical 

application presented in the next section. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2 = ∑(𝐶𝐼𝑖 × 𝑃𝑟𝑜𝑑𝑖)

𝑖

+ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(ɛ) 

𝑌 = 𝑍�̂�𝑂𝐿𝑆 + �̂� 

�̂�𝑂𝐿𝑆 
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3.  NUMERICAL APPLICATION 

This section describes the implementation of the new method to determine the CO2 
intensities of EU refining products for the 2019 adjusted reference year. 

3.1 STEP 1 – DOE USING LHS METHOD 

A DOE of 500 cases is generated using LHS sampling method. The table below 
presents an extract of the cases generated. The Base row shows the 2019 adjusted 
reference year production. 

It can be observed that the17 finished products of the LP model have been 
distributed to 9 main categories. Each category contains similar finished products 
in terms of refining components, except category OTHERS, which contains various 
specialty products (Bitumen, Lubes, Waxes, Coke and Sulphur). The modelling of 
these products would require specific development (due of the low product demand 
and specific production routes should be isolated) to appear individually in the DOE. 
Composition of categories are presented in Appendix 2. 

Table 3  DOE – Product demand 2020, Million tons per annum 
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Base 24.3 37.4 127.5 51.9 174.5 80.6 35.6 30.3 37.4 

1 23.9 36.6 128.6 51.4 177.1 79.1 35.6 29.6 37.7 

2 24.9 37.2 130.4 52.8 170.3 79.8 36.0 30.4 37.5 

3 23.9 37.3 129.6 51.4 172.8 81.6 35.7 29.9 37.5 

4 23.9 37.0 129.0 51.8 171.4 81.7 36.0 30.6 37.9 

5 24.5 37.2 127.9 52.3 170.6 83.3 36.7 29.0 38.1 

… … … … … … … … … … 

496 24.4 37.2 126.1 50.8 172.2 83.6 37.0 30.7 37.5 

497 24.7 36.4 128.0 51.8 174.0 79.6 37.5 29.9 37.6 

498 23.9 37.0 127.4 53.0 173.8 80.9 36.7 29.7 37.4 

499 24.0 36.6 128.2 52.3 174.0 81.3 35.4 30.1 37.5 

500 24.1 36.4 125.7 52.8 176.6 81.1 35.3 30.5 37.2 

 

Note that refinery fuel (auto-consumption) and losses are not represented in these 
mass balances as they are not products (outputs) of the refineries. 

3.2 STEP 2 – DOE RESULTS – REFINING CO2 EMISSIONS 

The 500 cases generated during step 1 are run sequentially in the calibrated 
Concawe LP model. The corresponding total refining CO2 emissions are extracted 
for each of the cases. The table below shows an extract of the results. 
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Table 4  DOE – Product demand 2019 and corresponding refining CO2 
emissions, Million tons per annum 
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Base 24.3 37.4 127.5 51.9 174.5 80.6 35.6 30.3 37.4 131.5 

1 23.9 36.6 128.6 51.4 177.1 79.1 35.6 29.6 37.7 132.1 

2 24.9 37.2 130.4 52.8 170.3 79.8 36.0 30.4 37.5 131.3 

3 23.9 37.3 129.6 51.4 172.8 81.6 35.7 29.9 37.5 131.5 

4 23.9 37.0 129.0 51.8 171.4 81.7 36.0 30.6 37.9 130.9 

5 24.5 37.2 127.9 52.3 170.6 83.3 36.7 29.0 38.1 131.6 

… … … … … … … … … … … 

496 24.4 37.2 126.1 50.8 172.2 83.6 37.0 30.7 37.5 130.8 

497 24.7 36.4 128.0 51.8 174.0 79.6 37.5 29.9 37.6 131.3 

498 23.9 37.0 127.4 53.0 173.8 80.9 36.7 29.7 37.4 131.5 

499 24.0 36.6 128.2 52.3 174.0 81.3 35.4 30.1 37.5 131.6 

500 24.1 36.4 125.7 52.8 176.6 81.1 35.3 30.5 37.2 131.7 

 

3.3 STEP 3 – RESTRICTED OLS REGRESSION – CO2 INTENSITIES 

3.3.1 CO2 Intensity results 

An OLS regression is applied to the data generated at the previous step. As a result, 
CO2 emissions are expressed as a linear function of the product demand. The 
regression coefficients are then the CO2 intensities of the products. 

 

With the additional constraint that Residual term equals zero for the 2019 adjusted 
reference year, the following CO2 intensities (Restricted OLS regression 
coefficients) are obtained. 

  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2 = ∑(𝐶𝐼𝑖 × 𝑃𝑟𝑜𝑑𝑖)

𝑖

+ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(ɛ) 
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Table 5 CO2 intensities of refining finished products, ton of CO2 per ton 
of product 

CO2 Intensities t CO2 / t 

1 LPG 0.3731 

2 NAPHTHA 0.2218 

3 GASOLINE 0.2687 

4 KEROSENE 0.2718 

5 DIESEL 0.3012 

6 HO MARINE DSL 0.2026 

7 DMF RMF 0.5%S 0.0116 

8 HSFO -0.1905 

9 OTHERS 0.0602 

 

This table can be read as: 

 

From a statistical perspective, the results of this Restricted OLS regression are very 
robust and stable as proved by the detailed statistical results available in section 0. 
and in Appendix 3. 

3.3.2 Industrial interpretation of the results 

From and industrial perspective, and focusing first on the main transport fuels 
(gasoline, Kerosene and Diesel), then ranking of the CI’s is explained as follows. 

Gasoline: the refining system having excess of gasoline (export parity product), the 
refining system is not constrained by gasoline production. The CI confirms this 
situation with a lower figure than Diesel and Kerosene. 

Diesel and Kerosene are on import parity and are the main driving force for the 
refining system (production maximized and on purpose). This constraint is reflected 
by high CI’s with Kerosene lower than Diesel as it requires less processing to meet 
the required specification. 

LPG: the smallest production (24.3 Mt/a), but the highest CI. It is caused by a high 
market demand relative to the production capability of the refining system. The 
model having less options than for other products to meet the demand, the 
constraints are stronger and logically reflected in the CI. 

Naphtha is similar to gasoline as export parity product, its CI is lower than gasoline 
as it is a straight run product requiring minimum processing to meet the final 
specification. 

The Marine fuel 0.50%S (DMF RMF 0.5%S) is positive as it requires a significant 
amount of fluxant and components that are desulphurised and produced on purpose. 
On the other hand, the HSFO is negative because its components require a minimum 
of processing (no cracking and minimum quality improvement). In practice, it means 
that the more a refiner is producing HSFO, the less it operates conversion and 
upgrading units, leading to a net reduction of total refinery CO2 emissions. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2 = 0.3731 × 𝑃𝑟𝑜𝑑𝐿𝑃𝐺 + 0.2218 × 𝑃𝑟𝑜𝑑𝑁𝑎𝑝ℎ𝑡ℎ𝑎 + ⋯ + 0.0602 × 𝑃𝑟𝑜𝑑𝑂𝑡ℎ𝑒𝑟𝑠 
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As mentioned in section 0, Others category contains various products and the 
average CI of this category does not necessarily reflect individual CI of its 
components (for example, it is most likely that Sulphur CI is a lot lower than Lubes 
CI, because Lubes production require more CO2 intensive processing than Sulphur 
production). It can be mentioned that for Bitumen, the trade Association published 
their assessment through a Life Cycle Inventory 6 (3rd edition published in 2020). 

It can easily be checked that the additivity of CO2 emissions is preserved: the 
summation of each product demand (Mt / a) times its CO2 intensity (t CO2 / t) gives 
131.5 Mt CO2 / a, which is the total refining CO2 emissions of the Base case (refer 
to the Table 4 above). 

Table 6 CO2 balance verification 

CO2 balance 

Base production 

Mt / a 

CO2 Intensities 

t CO2 / t 

CO2 Intensities x 
Base production 

Mt CO2 / a 

1 LPG 24.3 0.3731 9.1 

2 NAPHTHA 37.4 0.2218 8.3 

3 GASOLINE 127.5 0.2687 34.3 

4 KEROSENE 51.9 0.2718 14.1 

5 DIESEL 174.5 0.3012 52.6 

6 HO MARINE DSL 80.6 0.2026 16.3 

7 DMF RMF 0.5%S 35.6 0.0116 0.4 

8 HSFO 30.3 -0.1905 -5.8 

9 OTHERS 37.4 0.0602 2.3 

TOTAL CO2 calculated from OLS regression, Mt / a 131.5 

 

3.4 VERIFICATION OF REGRESSION ASSUMPTIONS 

Standard tests have been performed to assess the robustness of the data and the 
validity of the results. They confirm the ability of the LP model to generate results 
representative of the refining system and the reliability of the CO2 intensities 
calculated from the Restricted OLS regression. 

3.4.1 DOE cases 

The kernel density curves (definition in Appendix 4) in the figure below show that 
the 500 cases generated are reasonably normally distributed around the reference 
year levels. 

  

                                                 
6 Bitumen Life Cycle Inventory report: 
https://www.eurobitume.eu/fileadmin/Feature/LCI/EUB2975.001_LCI_Update_2020_01_LR_p
ages.pdf 

https://www.eurobitume.eu/fileadmin/Feature/LCI/EUB2975.001_LCI_Update_2020_01_LR_pages.pdf
https://www.eurobitume.eu/fileadmin/Feature/LCI/EUB2975.001_LCI_Update_2020_01_LR_pages.pdf


 
         report no. 15/22 
 
 

 
 
 

 21 

Figure 3 Kernel density curves of the DOE cases for the main products 

 

The following figure corresponds to the Pearson correlation coefficients (definition 
in Appendix 4) ranging between -1 and +1. Following the commonly accepted rule 
of thumb, the Pearson coefficients are all lower than |0,7| indicating the absence 
of linear correlation between any of the two variables. 
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Figure 4 Pearson correlation matrix of the DOE cases 

 

3.4.2 Regression results 

Several statistical tests on the Restricted OLS regression have been evaluated 
(definitions in Appendix 4). The following points can be highlighted: 

All p-values are lower than 0.05, meaning that all the estimated CO2 intensities are 
statistically significant at 95% (see Appendix 3). 

The coefficients standard errors are very small. This brings a very high confidence 
on the ranking of the CO2 intensities (see Appendix 3). 

The adjusted R-squared (0.99) and the p-value of the F-statistic (0.0) confirm that 
the joint effect of all the variables together is fully significant. The Durbin-Watson 
value (1.56, value below 2.0) also indicates the absence of any autocorrelation 
between residuals as it was theoretically expected. The figure below confirms this 
important feature, as there is no systematic pattern of the residuals, there is no 
autocorrelation. It can also be noted that the residuals values are very small, 
between -0.1 and +0.35 MTPY of CO2, below 0.3% of the reference year CO2 
emissions. 
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Figure 5 Behavior of the residuals of the Restricted OLS model 

 

The figure below illustrates that the residuals of the restricted regression are very 
close to a normal distribution. A violation of this hypothesis can inflate the 
confidence intervals. 

Figure 6 Residuals distribution 

 

The figure below doesn’t show any heteroscedasticity issue since the red line is far 
from a sharp V shape. The Breusch-Pagan statistical test also validates this 
observation. The violation of homoscedasticity can affect the significance of the 
CO2 intensities and their confidence intervals. 
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Figure 7  Homoscedasticity of residuals 
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4.  ADAPTATION TO LCA STANDARD REQUIREMENTS  

In LCA applications, it is generally admitted that a negative CO2 intensity value 
applies on processes actually removing CO2 from the atmosphere or achieving a 
potential net reduction versus a business as usual case (when a marginal or 
counterfactual approach is followed). As it is not the case for refinery products, CO2 
intensity values complying with LCA standard must be positive. 

This section describes a suggested methodology based on the Restricted OLS 
regression in order to generate LCA compliant positive CO2 intensities for refinery 
products. For this purpose, more granularity on bottom of the barrel categories is 
added. 

The numerical application is based on the results presented in section 3. 

4.1 STEP A – DECOMPOSITION OF BOTTOM OF THE BARREL PRODUCTS 

Bottom of the barrel finished products (heavy fuels) are blends of residues (e.g. 
residues from Crude distillation, Vacuum distillation, FCC and Visbreaking units) 
with lighter products in order to satisfy mainly the viscosity, density and Sulphur 
specifications (main constraints). Based on the results presented in section 0 and in 
Concawe 2017 study [2], it is anticipated that the lighter products (kerosene or 
gasoil types) would have positive CO2 intensities if they were considered as finished 
products. 

The objective of this first step “A” is then to split the bottom of the barrel 
categories (7 and 8) into fluxants (kerosene and gasoil types) and Residues, in order 
to segregate the negative CO2 intensity components from the positive ones. The 
table below presents the original finished products mass balance, for the 2019 
adjusted reference year. 

Table 7  Finished product mass balance, million tons per annum 

Categories Mt / a 

1 LPG 24.3 

2 NAPHTHA 37.4 

3 GASOLINE 127.5 

4 KEROSENE 51.9 

5 DIESEL 174.5 

6 HO MARINE DSL 80.6 

7 DMF RMF 0.5%S 35.6 

8 HSFO 30.3 

9 OTHERS 37.4 

TOTAL 599.5 

 

In the table below, categories 7 and 8 are split into 3 categories: 2 fluxants 
(Kerosene, Gasoil) and 1 residue (total Residues). 
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  Table 8  Categories 7 and 8 split, weight percent 

Composition, wt.% 
7 DMF RMF 

0.5%S 
8 HSFO TOTAL 

Fluxant - Kerosene 7% 7% 7% 

Fluxant - Gasoil 27% 1% 15% 

Residues 66% 92% 78% 

TOTAL 100% 100% 100% 

 

It is then assumed that because of their nature, Kerosene and Gasoil fluxants have 
positive CO2 intensities, respectively equal to categories 4 Kerosene and 6 HO 
Marine DSL. For LCA compliance, according the EU LCA community, Residues type 
is considered as “waste” and consequently a zero CO2 intensity is assigned to this 
category. Based on these assumptions, it is possible to calculate a positive CO2 
intensity for category 8 and to re-calculate the category 7. This “DMF-RMF 0.5%S” 
is originally positive but contain Residue with negative CO2 intensity, which needs 
to be corrected to zero (as for cat.7 “HSFO”). Results are shown in the table below. 

Table 9 Categories 7 and 8 positive CO2 intensity calculation, tons of 
CO2 per tons of product 

CO2 Intensity calculation 

7 DMF RMF 
0.5%S 

8 HSFO CO2 
Intensities 

t CO2 / t 

Fluxant - Kerosene 7% 7% 0.2718 

Fluxant - Gasoil 27% 1% 0.2026 

Residues 66% 92% 0 

CO2 Intensities, t CO2 / t 0.0751 0.0194  

 

4.2 STEP B – CO2 BALANCE 

From previous step, there is no more product categories having a negative CO2 
intensity. However, because the new method is additive, if the negative CO2 
intensities are set at zero, the CO2 balance is no longer ensured, as shown in the 
following table 
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 Table 10 CO2 balance 

CO2 Intensities from 
OLS regression 

Base 
production 

Mt / a 

CO2 
Intensities 

t CO2 / t 

Positive CO2 
Intensities 

t CO2 / t 

1 LPG 24.3 0.3731 0.3731 

2 NAPHTHA 37.4 0.2218 0.2218 

3 GASOLINE 127.5 0.2687 0.2687 

4 KEROSENE 51.9 0.2718 0.2718 

5 DIESEL 174.5 0.3012 0.3012 

6 HO MARINE DSL 80.6 0.2026 0.2026 

7 DMF RMF 0.5%S 35.6 0.0116 0.0751 

8 HSFO 30.3 -0.1905 0.0194 

9 OTHERS 37.4 0.0602 0.0602 

TOTAL CO2 calculated from CO2 
intensities and Base production, Mt / a 

131.5 140.1 

 

There are 8.6 Mt / a of CO2 imbalance. In the next step, we suggest a methodology 
to allocate this imbalance to the other categories, in order to satisfy the CO2 mass 
balance. 

4.3 STEP C – ALLOCATION OF CO2 IMBALANCE 

The CO2 imbalance resulting from Step B has to be allocated to product categories, 
so as to preserve the additivity of the CO2 intensities. 

The method “Weighted CO2 intensities” has been chosen. It consists in allocating 
the CO2 imbalance in proportion of the CO2 allocation (in tons) resulting from the 
Restricted OLS regression. This methodology has the major advantage of being 
consistent with the methodology used to generate the CO2 intensities, it does not 
require any additional data. 

In order to present the possibilities of reallocation, this methodology is compared 
with more common mass and energy allocations. Firstly, allocation keys are 
calculated: 

 In mass, the allocation keys are the percentages in mass of production. 

 In energy, the allocation keys are percentages in mass times lower heating 
value. 

 In mass of CO2 (“Weighted CO2 intensities”) the allocation keys are 
percentages in mass times CO2 intensities obtained by the Restricted OLS 
regression. 

The table below summarizes the allocation keys of the three different 
methodologies compared. 
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Table 11 Allocation keys of CO2 allocation methodologies – Weighted CO2 
 intensities, mass, and energy 

Allocation keys 

Weighted 
CO2 

intensities 

CO2 wt.% 

Mass 

wt.% 

Energy 

energy% 

1 LPG 6% 4% 4% 

2 NAPHTHA 6% 6% 7% 

3 GASOLINE 24% 21% 21% 

4 KEROSENE 10% 9% 9% 

5 DIESEL 38% 29% 30% 

6 HO MARINE DSL 12% 13% 14% 

7 DMF RMF 0.5%S 2% 6% 6% 

8 HSFO 0% 5% 5% 

9 OTHERS 2% 6% 5% 

TOTAL 100% 100% 100% 

 

The relevance of the “Weighted CO2 intensities” is demonstrated from the category 
“OTHERS”. With this methodology, these products (Bitumen, Waxes, Lubes, Coke 
and Sulphur) receive a lower re-allocation (2% versus 6% and 5%) of the CO2 
associated to Residues. From a refinery operation perspective, it makes more sense 
as their production modes are either fatal (Sulphur, Coke) or dedicated (Bitumen, 
Waxes, Lubes), hence not correlated to the CO2 emitted by the production phase of 
Residues (mainly components for Marine Fuels). 

The CO2 intensities obtained from these allocation keys are summarized in the table 
below. CO2 additivity is then recovered: in all cases, total CO2 recalculated from 
CO2 intensities give 131.5 Mt/a of CO2, which is the total refining CO2 emissions of 
the Base case (refer to the Table 4 above). 
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Table 12  CO2 intensities resulting from allocation methodologies, ton of 
CO2 per  ton of product 

CO2 Intensities from OLS 
regression 

Base 
production 

Mt / a 

Allocation methodology 

Weighted CI 

t CO2 / t 

Mass 

t CO2 / t 

Energy 

t CO2 / t 

1 LPG 24.3 0.3501 0.3587 0.3577 

2 NAPHTHA 37.4 0.2082 0.2074 0.2068 

3 GASOLINE 127.5 0.2522 0.2543 0.2544 

4 KEROSENE 51.9 0.2551 0.2574 0.2571 

5 DIESEL 174.5 0.2827 0.2868 0.2866 

6 HO MARINE DSL 80.6 0.1901 0.1882 0.1881 

7 DMF RMF 0.5%S 35.6 0.0705 0.0607 0.0609 

8 HSFO 30.3 0.0182 0.0051 0.0058 

9 OTHERS 37.4 0.0565 0.0458 0.0479 

TOTAL CO2 calculated from CO2 intensities 
and Base production, Mt / a 

131.5 131.5 131.5 

 

From this step, CO2 intensities are all positive and additivity of CO2 emissions is 
recovered. It can be noted that ranking of the CO2 intensities is preserved after 
adaptation to LCA standard requirements, except a switch between DMF RMF 0.5%S 
and OTHERS categories. This is not a concern at this stage, as OTHERS category CO2 
intensity should not be used for individual product composing the category (refer 
to sections 0 and 0). 
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4.4 STEP D – FINAL SET OF POSITIVE CO2 INTENSITIES 

The final set of CO2 intensities is summarized in the table below. 

Table 13 Positive CO2 intensities of refining finished product categories, 
ton of CO2 per ton of product 

CO2 Intensities from 
OLS regression 

Base 
production 

Mt / a 

CO2 
Intensities 

t CO2 / t 

LCA 
compliant 

Positive CO2 
intensities 

t CO2 / t 

1 LPG 24.3 0.3731 0.3501 

2 NAPHTHA 37.4 0.2218 0.2082 

3 GASOLINE 127.5 0.2687 0.2522 

4 KEROSENE 51.9 0.2718 0.2551 

5 DIESEL 174.5 0.3012 0.2827 

6 HO MARINE DSL 80.6 0.2026 0.1901 

7 DMF RMF 0.5%S 35.6 0.0116 0.0705 

8 HSFO 30.3 -0.1905 0.0182 

9 OTHERS 37.4 0.0602 0.0565 

TOTAL CO2 calculated from CO2 
intensities and Base production, Mt / a 

131.5 131.5 

 

In LCA world, it is common to report the CO2 intensities in grams of CO2 per 
megajoule of product. The table below shows the same CO2 intensities as above, 
but in g CO2/MJ. 
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Table 14 Positive CO2 intensities of refining finished product categories, 
grams of CO2 per megajoule of product 

CO2 Intensities from 
OLS regression 

CO2 
Intensities 

g CO2 / MJ 

LCA 
compliant 

Positive CO2 
intensities 

g CO2 / MJ 

1 LPG 8.14 7.64 

2 NAPHTHA 4.96 4.66 

3 GASOLINE 6.33 5.94 

4 KEROSENE 6.23 5.85 

5 DIESEL 6.95 6.52 

6 HO MARINE DSL 4.70 4.41 

7 DMF RMF 0.5%S 0.27 1.67 

8 HSFO -4.70 0.45 

9 OTHERS 1.64 1.54 
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5.  GASOLINE AND DIESEL WELL-TO-WHEELS LCA 

This report provides updated refining CO2 intensities for Gasoline and Diesel. These 
values can then be combined with reference upstream and downstream values to 
determine updated Well-to-Wheels (WTW) Gasoline and Diesel CO2 intensities. 

European Council Fuel Quality Directive (EU, 2015, [9]) shows a 2010 WTW fossil 
fuel baseline standard of 94.1 gCO2eq / MJ. More precisely it gives 
93.2 gCO2eq / MJ for Gasoline and 95.0 gCO2eq / MJ for Diesel (both based on 
conventional crude route). 

In their WTT and WTW reports (JEC, 2020, [5], [6]), JEC provides detailed 
calculations to determine the WTW CO2 intensities for Gasoline and Diesel (JEC 
COG1 and COD1 cases, “Crude oil from typical EU supply, transport by sea, refining 
in EU (marginal production), typical EU distribution and retail.”). These values are 
used in the table below, in order to calculate a WTW based on the refining values 
provided in this report. 

Table 15  Well-to-wheels CO2 intensities of Gasoline and Diesel, grams of 
CO2 equivalent per megajoule of product 

WTW CO2 Intensities 
Gasoline 

g CO2 / MJ 

Diesel 

g CO2 / MJ 

Crude Oil production 9.8 10.0 

Crude Oil transport 0.8 0.8 

Refining* 5.94 6.52 

Distribution 0.6 0.5 

Dispensing at retail site 0.4 0.4 

Combustion 73.4 73.2 

Total WTW* 90.9 91.4 

JEC WTW 90.4 92.1 

FQD WTW 93.2 95.0 

‘* Calculated in this study 
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CONCLUSIONS 

The key outcome from this innovative development is a unique combination of 
specific known tools (Linear Programming Model with statistical methods (LHS and 
OLS) and Restricted Regression) with the fundamental concept of refinery 
operation, from the process units to the blending composition of the finished 
products (composition of heavy fuel oils made of intermediate streams both positive 
and negative in terms of Carbon intensity). 

The new method suggested for estimating CO2 intensities of refining products is 
consistent with the Generalized Marginal Approach published by Concawe in Report 
1/17. A major advantage of this new method is its implementation. It is based on a 
multi-linear regression of refining CO2 emissions as a function of finished products 
quantity. Any entity having a refining model capable of calculating the refinery CO2 
emissions resulting from a finished products demand, can implement this new 
method. 

A numerical application is presented to detail the different steps of the new 
method. A DOE is generated using a LHS, then the cases are run with the model and 
finally a Restricted OLS regression is applied on the results. The validity of the CO2 
intensities generated are validated through rigorous statistical tests. 

An industrial significance of the results is provided to show the consistency of this 
new method with the actual constraints of the refining system. the figures are 
statistically valid (highly robust results) in the area of analysis (+- 5% of the demand) 

Finally, to comply with LCA standards, the new methodology has to be additive and 
must provide positive CO2 intensities for all products. Additivity is obtained through 
a Restricted OLS regression. However, as demonstrated in this report and the 2017 
Concawe report [2], negative CO2 intensities make sense for a joint production 
system as refining. To comply with LCA approach, a methodology is suggested to 
reallocate the negative CO2 emissions to other finished products, while keeping the 
additivity of the final set of positive CO2 intensities. 

The resulting datasets are relevant for both attributional and consequential 
considerations and meet the requirements for most LCA databases (see column “LCA 
compliant, Positive CO2 intensities”).  

The results of this report cannot be applied to individual refineries and are only 
valid for the EU refining on its global industry average. Refineries in Europe are all 
different in their process unit’s configuration and level of complexity, and 
consequently in their emission intensity and in the product mix they produce. 
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Based on this new methodology, the updated results for the “2019 adjusted” 
demand data and for the average EU refining industry are: 

CO2 Intensities from 
OLS regression 

CO2 
Intensities 

g CO2 / MJ 

LCA 
compliant 

Positive CO2 
intensities 

g CO2 / MJ 

1 LPG 8.14 7.64 

2 NAPHTHA 4.96 4.66 

3 GASOLINE 6.33 5.94 

4 KEROSENE 6.23 5.85 

5 DIESEL 6.95 6.52 

6 HO MARINE DSL 4.70 4.41 

7 DMF RMF 0.5%S 0.27 1.67 

8 HSFO -4.70 0.45 

9 OTHERS 1.64 1.54 
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 GLOSSARY 

CO2eq CO2 equivalent 

DMF Diesel Marine Fuel 

DOE Design of experiment 

DSL Diesel 

ETBE Ethyl Tert-Butyl Ether 

EU  European Union 

g  Gram 

HO  Heating Oil 

HSFO High Sulphur Fuel Oil 

JEC JRC-EUCAR-Concawe 

JRC Joint Research Centre of the European Commission 

kbbl Kilo barrel 

LCA Life Cycle Analysis 

LHS Latin Hypercube Sampling 

LP  Linear Programming 

LPG Liquefied Petroleum Gases 

LSFO Low Sulphur Fuel Oil 

MJ  Mega Joule 

Mt / a Millions tonnes per annum 

MTBE Methyl Tert-Butyl Ether 

OLS Ordinary Least Square 

RMF Residual Marine Fuel 

t  Metric tonne 

TAEE Tert-Amyl Ethyl Ether 

WT% Weight percent 

VOL% Volume percent 

WTT Well to Tank 

WTW Well to Wheels 
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APPENDIX 1 – DETAILED ASSUMPTIONS 

Countries included in the LP modelling 

 

Table 16 Countries included in the LP model 

European Union + 4  European Union + 4  European Union + 4 

Austria  Italy  Iceland 

Belgium  Latvia  Norway 

Bulgaria  Lithuania  Switzerland 

Croatia  Luxembourg  United Kingdom 

Cyprus  Malta   

Czechia  Netherlands   

Denmark  Poland   

Estonia  Portugal   

Finland  Romania   

France  Slovakia   

Germany  Slovenia   

Greece  Spain   

Hungary  Sweden   

Ireland     
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Simplified Block Flow Diagram of the LP model 

Table 17    Simplified BFD of the LP model 
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Crude slate 

The first table shows the EU Commission crude supply data. The second table is 

the LP model crude slate matching the EU average crude slate properties (API 

gravity, Sulphur content, main products yield). The third table gives the main 

crude slate properties. 

Table 18 Registration of Crude Oil Imports and Deliveries in the European 
Union, 2019 

Region Country of Origin Type of crude oil kbbl 

Africa Algeria Saharan Blend 124 283 

Africa Algeria Other Algeria Crude 11 833 

Africa Angola Cabinda 6 679 

Africa Angola Other Angola Crude 45 559 

Africa Cameroon Cameroon Crude 12 601 

Africa Congo Congo Crude 2 775 

Africa Congo (DR) Congo (DR) Crude 1 852 

Africa Egypt Medium/Light (30-40o) 34 521 

Africa Gabon Rabi/Rabi Kounga 621 

Africa Gabon Other Gabon Crude 5 252 

Africa Libya Medium (30-40o) 154 982 

Africa Libya Heavy (<30o API) 13 017 

Africa Libya Light (>40o) 78 861 

Africa Nigeria Medium (<33o) 125 516 

Africa Nigeria Light (33-45o) 176 646 

Africa Nigeria Condensate (>45o) 7 010 

Africa Other African Countries Other Africa Crude 36 414 

Africa Tunisia Tunisia Crude 3 939 

America Argentina Argentina Crude 935 

America Brazil Brazil Crude 32 650 

America Canada Canadian Heavy (<33° API) 15 574 

America Canada Light Sweet (>30o API) 15 691 

America Colombia Other Colombia Crude 8 808 

America Mexico Maya 69 460 

America Other Latin America countries Other Latin America Crude 773 

America United States Alaska 1 240 

America United States Other US Crude 282 570 

America Venezuela Medium (22-30o) 1 913 

America Venezuela Heavy (17-22o) 3 613 

America Venezuela Extra Heavy (<17o) 28 398 

Europe Denmark Denmark Crude 12 587 

Europe Norway Statfjord 21 416 

Europe Norway Ekofisk 62 915 

Europe Norway Other Norway Crude 235 938 

Europe Norway Oseberg 31 852 

Europe Norway Gullfaks 44 038 

Europe Other European countries Other Europe Crude 8 711 

Europe United Kingdom Flotta 18 374 

Europe United Kingdom Forties 16 186 



 
         report no. 15/22 
 
 

 
 
 

 41 

Region Country of Origin Type of crude oil kbbl 

Europe United Kingdom Brent Blend 26 946 

Europe United Kingdom Other UK Crude 126 615 

FSU Azerbaijan Azerbaijan Crude 163 506 

FSU Kazakhstan Kazakhstan Crude 292 236 

FSU Other FSU countries Other FSU Crude 21 909 

FSU Russian Federation Other Russian Fed. Crude 391 041 

FSU Russian Federation Urals 578 878 

FSU Ukraine Ukraine Crude 581 

Middle East Iraq Basrah Light 151 686 

Middle East Iraq Kirkuk 54 928 

Middle East Iraq Other Iraq Crude 127 004 

Middle East Kuwait Kuwait Blend 38 515 

Middle East Saudi Arabia Arab Light 208 988 

Middle East Saudi Arabia Arab Medium 3 288 

Middle East Saudi Arabia Other Saudi Arabia Crude 7 889 

Middle East Saudi Arabia Arab Heavy 42 905 

Middle East Saudi Arabia Berri (Extra Light) 24 759 

Middle East Syria Syria Light 107 

Middle East Yemen Other Yemen Crude 1 425 

TOTAL     4 019 210 

 

Table 19  LP Model crude slate 

Composition, wt% 
7 DMF RMF 

0.5%S 

Brent 24.1% 

Forcados 20.0% 

Russian Export 20.0% 

Iranian Light 20.0% 

Kuwait 12.5% 

Algerian Condensate 3.4% 

Russian Long Residue 0.0% 

Brent Short Residue 0.0% 

TOTAL 100% 
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Table 20 EU crude slate main properties (estimated) 

Property Value 

API gravity 34.2 

Specific Gravity 0.854 

Sulphur content, wt% 0.98 

C5-180C TBP cut, wt% 22.1% 

180-350C TBP cut, wt% 32.0% 

350+ C TBP cut, wt% 44.3% 

550+ C TBP cut, wt% 14.9% 

 

LP model demand 

Table 21 LP model demand - EU 2019 adjusted refining system 
production, millions tons per annum 

Product Mt / a 

LPG 24.3 

Chemical Naphtha 37.4 

Premium 95 Gasoline 76.0 

Super 98 Gasoline 18.7 

US export Gasoline 17.9 

Other export Gasoline 14.9 

Jet and Kerosene 51.9 

Road Diesel 174.5 

Diesel Marine Fuel 10.3 

Heating Oil 70.3 

DMF 0.5%S 17.8 

RMF 0.5%S 17.8 

HSFO 3.5%S 20.3 

LSFO 1.0%S 10.0 

Bitumen 18.3 

Lubes 6.5 

Waxes 0.8 
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Finished products specifications 

Table 22  Summary of LP model main finished products specifications 

    95 Gasoline 98 Gasoline US Gasoline 
Other 

Gasoline 
Jet Road Diesel Heating Oil 

Diesel 
Marine Fuel 

DMF 0.5%S RMF 0.5%S LSFO 1.0%S HSFO 3.5%S 

Specific gravity - 0.720-0.775 0.720-0.775 0.725-0.775 0.7-0.8 ≥ 0.775 0.820-0.845 0.800-0.850 0.8-0.9 0.8-0.9 0.900-0.991 0.900-0.995 0.900-0.991 

Sulphur content wt% ≤ 0.0010 ≤ 0.0010 ≤ 0.0010 ≤ 0.0500 ≤ 0.3 ≤ 0.0010 ≤ 0.1 ≤ 0.1 ≤ 0.5 ≤ 0.5 ≤ 1.0 ≤ 3.5 

Olefins content vol% ≤ 18.0 ≤ 18.0 ≤ 10.0          

Aromatics content vol% ≤ 35.0 ≤ 35.0 ≤ 28.0          

Benzene content vol% ≤ 1.0 ≤ 1.0 ≤ 0.6 ≤ 1.5         

Oxygen content wt% ≤ 3.7 ≤ 3.7           

RVP kPa ≤ 60.0 ≤ 60.0 ≤ 58.0 ≤ 60.0         

Evaporated @70°C vol% 24-50 24-50 20-45 20-45         

Evaporated @100°C vol% 46-72 46-72 47-65 47-65         

Evaporated @150°C vol% ≥ 75 ≥ 75           

Evaporated @250°C vol%      ≤ 65 ≤ 65      

Evaporated @350°C vol%      ≥ 85 ≥ 85      

RON - ≥ 95.0 ≥ 98.0 ≥ 92.0 ≥ 91.0         

MON - ≥ 85.0 ≥ 88.0 ≥ 82.0 ≥ 81.0         

Cetane index -      ≥ 49 ≥ 41 ≥ 40 ≥ 40    

Viscosity @40°C cSt      2.0-4.5 ≤ 4.5 ≤ 11 ≤ 6    

Viscosity @100°C cSt          ≤ 35 ≤ 35 ≤ 35 

Poly Aromatics content wt%      ≤ 8       

Cloud point °C      ≤ -5 ≤ -10 ≤ 0 ≤ 0    

Pour point °C        ≤ 0 ≤ 0 ≤ 30  ≤ 30 

Conradson carbon wt%          ≤ 18 ≤ 18 ≤ 18 
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LP model main process units’ capacities 

Table 23 LP model main process units’ capacities, millions tonnes per 
annum 

Process unit 

Original 
Capacities 

Mt/a 

Calibrated 
Capacities 

Mt/a 

Crude Distillation 668.1 668.1 

Vacuum Distillation 314.5 314.5 

Visbreaker 78.2 78.2 

Delayed Coker 31.2 31.2 

De-Asphalting 4.4 4.4 

Fluid Cat Cracker 112.3 112.3 

Hydrocracker 80.6 80.6 

FCC VGO Pre-treatment 51.0 51.0 

Atm. Resid. Hydrodesulphurisation 2.8 2.8 

Vac. Resid. Hydrodesulphurisation 1.9 1.0 

Resid. Conversion 14.1 7.7 

Naphtha Hydrotreatment 151.8 151.8 

Reformers 88.4 88.4 

Alkylation 9.4 9.4 

Isomerisation 22.5 22.5 

Kerosine Hydrodesulphurisation 50.9 28.0 

Distillate Hydrodesulphurisation 212.7 117.0 

Sulphur recovery 5.8 5.8 

Hydrogen manufacture 2.2 2.2 
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APPENDIX 2 – DOE ASSUMPTIONS 

Table 24 Finished products allocation to DOE categories – Base case mass balance, 
2019 adjusted reference year 

Product Mt / a 

1 LPG 24.3 

LPG 24.3 

2 NAPHTHA 37.4 

Chemical Naphtha 37.4 

3 GASOLINE 127.5 

Premium 95 Gasoline 76.0 

Super 98 Gasoline 18.7 

US export Gasoline 17.9 

Other export Gasoline 14.9 

4 KEROSENE 51.9 

Jet and Kerosene 51.9 

5 DIESEL 174.5 

Road Diesel 174.5 

6 HO MARINE DSL 80.6 

Diesel Marine Fuel 10.3 

Heating Oil 70.3 

7 DMF RMF 0.5%S 35.6 

DMF 0.5%S 17.8 

RMF 0.5%S 17.8 

8 HSFO 30.3 

HSFO 3.5%S 20.3 

LSFO 1.0%S 10.0 

9 OTHERS 37.4 

Bitumen 18.3 

Lubes 6.5 

Waxes 0.8 

Coke 8.2 

Sulphur 3.6 
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APPENDIX 3 – OLS REGRESSION RESULTS 

Figure 8 OLS regression results 
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APPENDIX 4 – STATISTICAL CONCEPTS 

This section contains the basic definition for the main concepts developed and used in this 
report. 

Design of Experiment (DOE) 

The design of experiments is the design of any task that aims to describe and explain the 
variation of information under conditions that are hypothesized to reflect the variation. The 
term is generally associated with experiments in which the design introduces conditions that 
directly affect the variation, but may also refer to the design of quasi-experiments, in which 
natural conditions that influence the variation are selected for observation. 

In its simplest form, an experiment aims at predicting the outcome by introducing a change of 
the preconditions, which is represented by one or more independent variables, also referred to 
as "input variables" or "predictor variables." The change in one or more independent variables is 
generally hypothesized to result in a change in one or more dependent variables, also referred 
to as "output variables" or "response variables." The experimental design may also identify 
control variables that must be held constant to prevent external factors from affecting the 
results. Experimental design involves not only the selection of suitable independent, dependent, 
and control variables, but planning the delivery of the experiment under statistically optimal 
conditions given the constraints of available resources. There are multiple approaches for 
determining the set of design points (unique combinations of the settings of the independent 
variables) to be used in the experiment. Main concerns in experimental design include the 
establishment of validity, reliability, and replicability. 

Latin Hypercube Sampling (LHS) 

Latin hypercube sampling (LHS) is a statistical method for generating a near-random sample of 
parameter values from a multidimensional distribution. 

In the context of statistical sampling, a square grid containing sample positions is a Latin square 
if (and only if) there is only one sample in each row and each column. A Latin hypercube is the 
generalisation of this concept to an arbitrary number of dimensions, whereby each sample is the 
only one in each axis-aligned hyperplane containing it. 

When sampling a function of N variables, the range of each variable is divided into M equally 
probable intervals. M sample points are then placed to satisfy the Latin hypercube requirements; 
this forces the number of divisions, M, to be equal for each variable. This sampling scheme does 
not require more samples for more dimensions (variables); this independence is one of the main 
advantages of this sampling scheme. Another advantage is that random samples can be taken 
one at a time, remembering which samples were taken so far. 

In two dimensions the difference between random sampling, Latin hypercube sampling, and 
orthogonal sampling can be explained as follows: 

In random sampling new sample points are generated without taking into account the previously 
generated sample points. One does not necessarily need to know beforehand how many sample 
points are needed. 

In Latin hypercube sampling one must first decide how many sample points to use and for each 
sample point remember in which row and column the sample point was taken. Such configuration 
is similar to having N rooks on a chess board without threatening each other. 
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In orthogonal sampling, the sample space is divided into equally probable subspaces. All sample 
points are then chosen simultaneously making sure that the total set of sample points is a Latin 
hypercube sample and that each subspace is sampled with the same density. 

 

Thus, orthogonal sampling ensures that the set of random numbers is a very good representative 
of the real variability, LHS ensures that the set of random numbers is representative of the real 
variability whereas traditional random sampling (sometimes called brute force) is just a set of 
random numbers without any guarantees. 

Ordinary Least Squares regression (OLS) 

In statistics, ordinary least squares (OLS) is a type of linear least squares method for estimating 
the unknown parameters in a linear regression model. OLS chooses the parameters of a linear 
function of a set of explanatory variables by the principle of least squares: minimizing the sum 
of the squares of the differences between the observed dependent variable (values of the 
variable being observed) in the given dataset and those predicted by the linear function of the 
independent variable. 

Kernel density curve 

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability 
density function of a random variable. Kernel density estimation is a fundamental data 
smoothing problem. 

Conceptually, a smoothly curved surface is fitted over each point. It can be considered as a 
smooth representation of an histogram. 

The bandwidth of the kernel is a free parameter which exhibits a strong influence on the 
resulting estimate. The bandwidth must be chosen carefully. A small bandwidth will create a 
very overfitted curve while a too big bandwidth will create an oversmoothed curve. 

To illustrate its effect, we take a simulated random sample from the standard normal 
distribution (plotted at the blue spikes in the rug plot on the horizontal axis). The grey curve is 
the true density (a normal density with mean 0 and variance 1). In comparison, the red curve is 
under smoothed since it contains too many spurious data artifacts arising from using a bandwidth 
h = 0.05, which is too small. The green curve is oversmoothed since using the bandwidth h = 2 
obscures much of the underlying structure. The black curve with a bandwidth of h = 0.337 is 
considered to be optimally smoothed since its density estimate is close to the true density. 
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Pearson correlation matrix 

In statistics, the Pearson correlation coefficient is a measure of linear correlation between two 

sets of data. It is the ratio between the covariance of two variables and the product of their 

standard deviations; thus, it is essentially a normalized measurement of the covariance, such 

that the result always has a value between −1 and 1. As with covariance itself, the measure can 

only reflect a linear correlation of variables, and ignores many other types of relationship or 

correlation. As a simple example, one would expect the age and height of a sample of teenagers 

from a high school to have a Pearson correlation coefficient significantly greater than 0, but less 

than 1 (as 1 would represent an unrealistically perfect correlation). 

The Pearson correlation matrix is simply a table of correlations, which compares side-by-side 

Pearson's correlation coefficient of two variables. 

Adjusted R-Squared 

R-squared is the coefficient of determination indicating goodness-of-fit of the regression. This 

statistic will be equal to one if fit is perfect, and to zero when regressors X have no explanatory 

power whatsoever. This is a biased estimate of the population R-squared, and will never 

decrease if additional regressors are added, even if they are irrelevant. 

Adjusted R-squared is a slightly modified version of R-squared, designed to penalize for the 

excess number of regressors which do not add to the explanatory power of the regression. This 

statistic is always smaller than R-squared, can decrease as new regressors are added, and even 

be negative for poorly fitting models. 

p-value 

In null-hypothesis significance testing, the p-value is the probability of obtaining test results at 

least as extreme as the result actually observed, under the assumption that the null hypothesis 

is correct (i.e., parameter not significant). A very small p-value means that such an extreme 

observed outcome would be very unlikely under the null hypothesis. Reporting p-values of 

statistical tests is common practice in academic publications of many quantitative fields. 

F-Statistic (F-test) 

F-statistic tries to test the hypothesis that all coefficients (except the intercept) are equal to 
zero. This statistic has F(p–1,n–p) distribution under the null hypothesis and normality 
assumption, and its p-value indicates probability that the hypothesis is indeed true. 

The F-test of overall significance indicates whether a linear regression model provides a better 
fit to the data than a model that contains no independent variables. If the p-value for the F-test 
is less than the significance level, the sample data provide sufficient evidence to conclude that 
the regression model fits the data better than the model with no independent variables. 

Durbin-Watson 
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Durbin–Watson statistic tests whether there is any evidence of serial correlation between the 
residuals. A Durbin-Watson (d) of 2 indicates no autocorrelation. The value of d always lies 
between 0 and 4. If d is substantially less than 2, there is evidence of positive serial correlation. 
As a rough rule of thumb, if Durbin–Watson is less than 1.0, there may be cause for alarm. Small 
values of d indicate successive error terms are positively correlated. If d > 2, successive error 
terms are negatively correlated. 

Homoscedasticity and heteroscedasticity 

In statistics, a sequence (or a vector) of random variables is homoscedastic if all its random 
variables have the same finite variance. This is also known as homogeneity of variance. The 
complementary notion is called heteroscedasticity. 

Assuming a variable is homoscedastic when in reality it is heteroscedastic results in unbiased but 
inefficient point estimates and in biased estimates of standard errors, and may result in 
overestimating the goodness of fit as measured by the Pearson coefficient. 

The existence of heteroscedasticity is a major concern in regression analysis and the analysis of 
variance, as it invalidates statistical tests of significance that assume that the modelling errors 
all have the same variance. 

A scatterplot of residuals versus predicted values is good way to check for homoscedasticity. 
There should be no clear pattern in the distribution; if there is a cone-shaped or a v-shaped 
pattern, the data is heteroscedastic. 
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