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1. INTRODUCTION: GENERAL OVERVIEW OF CONCAWE REACH 
STRATEGY FOR HUMAN HEALTH 

1.1. PETROLEUM UVCBs 

Petroleum Oil is the largest traded commodity worldwide, either as crude or 
through refined products (International Energy Agency, 2005). In Europe alone in 
2018, around 600 million tonnes of refined petroleum products were manufactured 
and the refining industry collected some €281 billion of duties for EU economy and 
generated over €23 billion in added value to local and national EU economies 
(Concawe data, based on Eurotostat and EU Commission data). The range of 
petroleum substances (Figure 1.1.) manufactured from crude oil is wide, with the 
most common uses as transportation fuels (diesel, petrol and jet fuel). Other major 
uses are for energy/heat-raising applications, such as heating oil, and non-energy 
uses such as the manufacturing of lubricants, plastics, synthetic rubber, fibers and 
plant protection products. Both local and global economic activity is highly 
dependent on petroleum products, such that nearly every person in Europe and 
other developed countries is exposed to these substances through their daily 
routines. As a consequence, it is essential to ensure the safety of petroleum 
products to human and environmental health. 

 
 

Figure 1.1.  Primary and secondary oil-derived products. The refinery distillation splits the 
crude oil into a range of petroleum substances which can be grouped into 
substance categories, historically based on their manufacturing process and 
physical-chemical properties. These substances vary in chemical composition, 
complexity, carbon (C) content, etc. due to the physical-chemical aspects of 
boiling crude oil, the crude oil source and other factors. Light molecules (low C 
number) boil off first, and the higher the boiling temperature the heavier the 
product will be (higher C number) and the more complex it is in terms of number 
of molecules and isomers (see also Table 1.1.). The refinery distillation is most 
of the time followed by chemical treatment (Reforming, hydrotreating, cracking, 
…), which process one secondary product at a time and modify its chemical 
composition. It is also important to notice, in light of grouping and read across 
assessments, that there is overlap in chemical composition between “adjacent” 
streams, whereby the heavy end of a low boiling stream will to some extent 
overlap with the light end of a higher boiling stream. In this way, petroleum 
substances (PS) form a continuum of substances with significant overlapping 
chemical composition between CAS numbers within a substance category and 
between different categories. 
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Products of petroleum refining are frequently categorized as prototypical UVCB 
substances (Unknown or Variable composition, Complex reaction products and 
Biological materials). UVCB substances are one of the most challenging areas in 
regulatory science because there are few established frameworks for how to 
evaluate UVCB substances under current chemical regulatory policy and ensure that 
there is no underestimation of hazard (European Chemicals Agency, 2017). Indeed, 
the complexity of the chemical composition of petroleum substances (PS), in 
particular their multi-constituent nature, makes this class of substances a challenge 
for regulatory assessment under current chemical legislations. The number of 
individual chemical compounds increases rapidly with carbon number (Table 1.1.). 
The predominant compounds are described by carbon number/boiling point ranges 
and hydrocarbon types. Generally, carbon number/boiling point ranges are 
influenced by fractionation whereas hydrocarbon types (n-/i-alkanes, aromatics, 
olefins etc.) are influenced by chemical processing. To identify the hazards in a 
correct and practical way, testing is conducted on the whole substances (human 
health), or on hydrocarbon blocks (environment), rather than on individual 
constituents or groups of constituents. 

Table 1.1.  The complexity of the chemical composition of petroleum substances is illustrated here by 
the increase in number of isomers by boiling point and carbon number range. Numbers are 
an indication of the potential isomers and used for illustration purposes only.  

 

There are many UVCB substances on the market (e.g., petroleum products, flavoring 
agents, fragrances, animal fats and derivatives, vegetable oils and derivatives, 
natural oils and extractives, biofuels, etc.). However, UVCB substance names and 
IDs are not adequately specific to permit unambiguous identification. While UVCBs, 
including petroleum substances, are identified on global chemical inventories with 
unique Chemical Abstract Services (CAS) numbers and names, they present 
enormous challenges when evaluating their potential toxicity due to the largely 
unknown and variable composition of these substances (Clark et al., 2013). For 
petroleum UVCB substances, the CAS description is a detailed reflection of the 
refining processes by which the substance is produced, i.e., the 4 CAS for Bitumen 
all produce a Bitumen substance meeting the specifications of that substance – 
hence although they are UVCB, the variation between these CAS for that particular 
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substance is limited to these specifications and a category approach based on 
manufacturing process is appropriate. Therefore, keeping the 3Rs for toxicology 
testing in mind (Refinement, Reduction and Replacement; Russell and Burch, 1959), 
it is not responsible and not needed to test every (petroleum) UVCB CAS number for 
every endpoint under current regulatory schemes, as this would lead to a high level 
of unnecessary animal testing while not adding much additional value to the 
eventual risk management of these substances. Hence, regulators and the industry 
have a common interest to define a process for (petroleum) UVCB substances to 
ensure that there is no underestimation of relevant potential human health hazards, 
while they minimize or eventually replace the use of animals in safety testing to 
keep regulatory compliance and most importantly to continue a safe production and 
use of petroleum substances.  

1.2. MAMMALIAN TOXICOLOGY OF PETROLEUM SUBSTANCES 

Due to the very high production volumes, all Petroleum Substances (PS) were 
registered in the 2010 REACH1 deadline (all exceed 1000 tonnes and some exceed 
1,000,000 tonnes). Testing proposals to fill the data gaps were submitted where 
there were missing required in vivo animal safety data. One challenge for the 
regulatory authority (i.e., European Chemicals Agency, ECHA) is the number of 
registrations from manufacturers of petroleum substances. By the first quarter of 
2019, there were 185 PS registered and ~4500 unique registrations. In terms of 
volume, PS represent ~25% of all chemicals placed on the market in the EU. Because 
of the large number of registrations and accompanying testing proposals that would 
potentially be needed to address the data gaps in these registrations, ECHA and the 
registrants submitting them have a common interest in assuring protection of human 
health and the environment while being mindful of the animal welfare.  

Despite the complexity with petroleum UVCB substances as described earlier, quite 
a lot is already known on the mammalian toxicology of PS from a wealth of data 
historically generated in the industry, e.g. under earlier regulatory frameworks such 
as the dangerous substance directive with the European Chemicals Bureau in the EU 
and under the High Production Volume Program (HPV) in the USA. In general terms, 
lower boiling petroleum streams that do not contain polycyclic aromatic 
hydrocarbons (PAHs) might show lower tier toxicological effects such as mild skin 
irritation, and in some cases central nervous system effects at higher dose levels. 
On the other hand, heavier and high boiling PS (HBPS), starting from some of the 
gas oils and higher boiling, with the potential to contain certain PAH at higher levels 
have the potential to cause systemic toxicity as well as carcinogenicity and/or 
reproductive toxicity (Feder and Hertzberg, 2013; McKee et al., 2014; McKee and 
White, 2014; Roth et al., 2013). This existing toxicological data has been used to 
fulfil the data requirements in the Concawe REACH dossiers (see next section), and 
the knowledge of the composition and refining processes coupled with the hazard 
data forms the basis for developing grouping, read across and testing hypothesis as 
will be discussed later in the document.  

1.3. DATA GAPS, THE NEED FOR NOVEL APPROACH METHODOLOGY DATA IN 
REGULATORY EVALUATION OF PETROLEUM SUBSTANCES AND CONCAWE 
REACH STRATEGY FOR HUMAN HEALTH 

All PS were registered in the European Union for the 2010 submission deadline under 
REACH (≥1000 tonnes registration band), comprising more than 4500 individual 
registrations. A number of these submissions were accompanied by testing proposals 

                                                 
1 Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the 

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency 
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to fill data gaps in specific toxicity endpoints. To minimize the need for testing in 
vertebrate animals, the majority of data gaps in regulatory submissions and testing 
proposals of petroleum substances under REACH were addressed by using read-
across to similar substances. 

Read-across of PS within the REACH framework is typically done by grouping the 
individual substances into product categories with similar manufacturing processes, 
physical-chemical properties (including refining history and boiling point/carbon 
number ranges), and limited analytical chemical information (such as hydrocarbon 
classes). However, category read-across approaches for (petroleum) UVCBs that are 
based solely on such broad similarity parameters may not always be considered 
sufficient and new approaches to facilitate grouping of UVCBs are needed. Under 
REACH, the similarity principle is mostly build on chemical analytical data (i.e., 
comparing molecular structures), however, when full chemical characterization of 
a substance is unattainable, which is the case for most PS, biological data may 
provide further confidence to prove similarity for read-across and hazard 
assessment. 

Indeed, an authoritative group of European regulators, governmental and academic 
scientists, concluded in 2014 that “for substances of complex, and frequently 
poorly characterized, chemical composition [such as petroleum substances and 
other UVCB], approaching read across from the perspective of a biological 
similarity signature would avoid the inherent challenge of using chemical similarity 
as the main basis of read-across when there is uncertainty and variability in 
chemical composition” (Berggren et al., 2015). Thus, expanding the regulatory 
principle of “read-across” from physical-chemical properties to also include 
biological information could serve as a much stronger basis for regulatory decisions, 
both in terms of addressing uncertainties and increasing confidence and 
transparency. 

A proof of concept of the advantages of integrating chemical structure, physical 
properties and biological data (in-vivo, in vitro and in-silico), has been presented 
in a series of publications that laid the ground for this so-called “chemical-biological 
read-across” approach (Low et al., 2013; Low et al., 2011; Low et al., 2014; Rusyn 
and Greene, 2018; Rusyn et al., 2012). This approach has been recently endorsed 
in the US National Academies of Science reports “Guide on selection of chemical 
alternatives” (National Research Council, 2014) and “Using 21st Century Science to 
Improve Risk-Related Evaluations” (National Academies of Sciences Engineering and 
Medicine, 2017).  

It was hypothesized that these principles could help to address the challenges 
around grouping UVCBs, as will be elaborated on in the next section. 

1.3.1. Concawe REACH strategy for human health: grouping, read across 
hypotheses and Cat-App 

If complex substances such as petroleum UVCBs cannot be characterized fully, can 
biological (mechanistic) information help in describing similarity between 
substances in order to support grouping of similar substances?  

This hypothesis served as a basis for Concawe to initiate the Cat-App2 project, which 
aimed to develop a framework based on this chemical-biological grouping by taking 
advantage of recent innovations in (i) in vitro testing, (ii) high-throughput genomics 

                                                 
2  Cat-App: New Technologies to Underpin Category Approaches and Read-across in Regulatory Programs 
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and (iii) integrative data analyses and visualisation into a transparent workflow, for 
read-across assessment of (complex) UVCB substances in regulatory programmes.  

As described above, with the initial REACH registrations in 2010, Concawe utilized 
the existing toxicological and any relevant data in order to address the required 
endpoints for human health in the registration dossiers. Data was not available on 
all registered substances for all endpoints. A data gap analysis was done by Concawe 
in which no data was available and read-across could not be applied; this identified 
the need for further experimental data on the reprotoxicity endpoint for some 
petroleum substance categories. In addition, further data gaps might now be 
created because both certain read-across assessments as well as some historical 
data are currently being challenged and might not be accepted by the regulators. 
As there is a risk that this leads to a large increase in (unnecessary) animal testing, 
the Cat-App framework was applied to all PS to mitigate this risk by generating data 
to facilitate chemical-biological read-across which could then inform a new data-
gap assessment. Where true gaps exist, i.e., no relevant data are available and 
read-across cannot be applied, targeted testing would be proposed and performed 
when the testing strategy is considered relevant –in terms of added value to the risk 
management process- and accepted by the regulators. (Figure 1.2., see also 
www.concawe.eu/reach for the Concawe REACH roadmap). 

 
 
Figure 1.2. Overview of Concawe REACH roadmap. An informed testing strategy, for which 

Cat-App will serve as a basis, will increase the overall efficiency and 
effectiveness of the toxicological assessments to be conducted under REACH and 
reduce the overall time to complete the regulatory assessment of the entire PS 
portfolio. Furthermore, the data generated in this project will increase the 
understanding on chemical-biological interactions of PS and thereby inform their 
risk assessment. This Figure is taken from the Concawe REACH roadmap for 
petroleum substances brochure, which can be found at www.Concawe.eu/REACH 

  

http://www.concawe.eu/reach
http://www.concawe.eu/REACH
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This targeted testing will be performed with the substance predicted to be the most 
hazardous based on a testing hypothesis for the relevant endpoint. Currently, 
regulatory focus is on the higher tier toxicological endpoints. For these more 
complex toxicological endpoints (repeated dose testing, genetic toxicity, 
carcinogenicity and reprotoxicity), it can be hypothesized based on extensive 
historical in-vivo data that the observed effects caused by exposure to PS are 
associated with the level of 3-7 ring PAC3 in these substances. Based on this read- 
across hypothesis, a substance with the highest “toxic potential” can be selected 
for the specific endpoint, and the data generated on this sample will then be 
conservatively applied to the entire category. Cat-App is expected to provide the 
basis for the grouping approach that is a prerequisite to this form of read-across 
and underpin the read-across assessments by providing further biological evidence 
for the testing hypothesis. The read-across applied here is slightly different from 
“classical” read-across approaches as these are not applicable to UVCB substances, 
and might be more similar4 to the “bridging principle” as referred to in the 
classification and labelling regulation5. This is because the different CAS numbers 
(see chapter 1.1) are describing slightly different ways of producing a similar 
substance: for example, all 4 CAS numbers in the Bitumen category contain a wide 
range of hydrocarbons but are technically the same substance, i.e. Bitumen. Since 
they have to meet the technical specifications for that substance to be applied and 
used that way, the variation in chemical composition between these CAS numbers 
in a specific substance category is limited. In addition, because the physical 
chemistry of petroleum refining leads to a continuum of substances, there will be 
significant overlap between different substance categories: the heavy end of a 
lower boiling refining stream will overlap with the light end of the neighbouring 
higher boiling refining stream. These are concepts which are of critical importance 
for a better interpretation of chemical-biological grouping and read-across of PS, 
and these insights help to facilitate an adapted read-across framework specific to 
UVCB substances by applying something similar to the bridging principle mentioned 
earlier. 

                                                 
3  PAC: polycyclic aromatic compounds. These are polycyclic aromatic hydrocarbons which may include heterocyclics 

and alkylated molecules. Analytically these are measured by the PAC method 2 (in short PAC2). More information can 
be found here: https://www.petroleumhpv.org/polycyclic-aromatic-compounds 

4  Similar but not the same, as PS are substances and not mixtures as referred to under CLP 
5  ECHA 2017: Guidance on labelling and packaging in accordance with Regulation (EC) No 1272/2008 

https://www.petroleumhpv.org/polycyclic-aromatic-compounds
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2. CAT-APP PROGRAMME OVERVIEW 

The Cat-App project was aimed at providing the registrants with an integrative 
approach to solving the similarity challenges of grouping UVCB substances as 
presented above. The overall objective of the project was to develop a framework 
for category read-across for petroleum UVCB substances, but which should 
eventually be more widely applicable to other complex (UVCB) substances, using 
experimental, computational, integrative analysis, and outcome communication 
elements to meet the regulatory requirements under REACH legislation. It should 
be noted that the objective of the project is not to provide specific hazard 
information on the substances that could be used for regulatory purposes. In other 
words, the intention of Cat-App is not to replace in-vivo testing under current 
regulations but rather apply the data in order to increase animal testing programs 
efficiency and effectiveness and thereby facilitate a more informed approach to 
meet regulatory requirements.  

Recent advances in toxicological knowledge and methods enable grouping and read-
across between chemical substances for use in research and regulatory domains. 
The research and development needs for combined prediction approaches that add 
value by building on and integrating various methodologies into “integrated testing 
strategies” have been the subject of active debate (Jaworska and Hoffmann, 2010; 
Piersma et al., 2018). The need for scientifically-valid, generally-accepted, and fit-
for-purpose techniques to produce information necessary for a regulatory decision 
in a standardized but flexible way is currently being met by developing integrated 
testing strategies for mammalian (Landesmann et al., 2013; Urbisch et al., 2015) 
and ecological (Lombardo et al., 2014) toxicity. There is a wide range of information 
that is to be integrated in assessments such as traditional toxicology studies, high 
throughput in vitro tests and quantitative structure activity relationships (QSARs). 
A number of solutions for integrating such evidence to improve confidence in 
category groupings has been proposed, especially as it relates to read-across (Rusyn 
and Greene, 2018). To support such combined approaches, further fundamental 
work is necessary and the Cat-App programme’s research builds on and incorporates 
current methodologies into cases for “chemical-biological categories” using UVCB 
substances. 

Indeed, the Cat-App programme’s research used the latest in vitro models to 
address potential biological targets in humans and mammalian organisms. As 
explained in the previous chapter, this project was initiated with the aim to 
generate New Approach Methodologies (NAM) data with a direct application in the 
Concawe human health strategy under REACH – initially to underpin grouping and 
read-across approaches. It is expected that such application of NAM data should 
help to increase the comfort level to progress their regulatory acceptance, which 
are eventually expected to lead to more targeted and direct alternatives to animal 
data for rapid batch screening of PS after further development and validation.  

2.1. BIOACTIVITY PROFILING AS A NOVEL APPROACH METHODOLOGY FOR 
GROUPING COMPLEX PETROLEUM SUBSTANCES  

Several recent published studies demonstrated the principle of using novel data 
streams from in vitro bioactivity profiling (Grimm et al., 2016) and high-resolution 
mass spectrometry (Grimm et al., 2017) for grouping complex petroleum UVCBs. 
Similar approaches have been applied to other categories of UVCBs (Catlin et al., 
2018). Collectively, these studies advance the use of novel assessment methods to 
establish “sufficient similarity” for UVCBs. One of the main challenges facing the 
petroleum industry with regards to in vitro testing, is how to get lipophilic 
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substances into an aqueous environment.  To overcome this challenge, it was 
decided to utilize Dimethyl Sulfoxide (DMSO) extracts of petroleum substances. This 
bioavailability issue was addressed before in the development of screening assays 
which are applied in the petroleum industry such as the regulatory accepted IP346 
and the modified Ames assay (both assays have been recently reviewed by Concawe, 
and more information can be found at www.concawe.eu). The DMSO extraction 
procedure used herein (see also Figure 3.1.) is designed to concentrate the 
‘biologically active’ fraction, i.e., [3-7 ring] aromatics, of the refinery streams. 
However,  more constituents (i.e., all polar molecules) are extracted which explains 
that certain refining streams with low to no (3-7 ring) PAH content still have (low 
levels of) extractable materials; the extracts obtained using this method are used 
routinely for safety testing (e.g., mutagenicity) and chemical characterization of 
respective refinery streams. In the remainder of the document, the term “PS-E” is 
used to identify the Petroleum Substance-DMSO Extracts when referred to the 
experimental setting of in vitro testing.  

A case study of a comprehensive experimental and computational approach to 
categorize petroleum UVCBs according to global similarities in their bioactivity, 
using a suite of in vitro models, was presented by Grimm et al. (2016). The study 
served as a pilot project to Cat-App with the overall goal to determine whether 
physical-chemical properties and bioactivity from in vitro experiments can be used 
for grouping petroleum UVCBs and assess how such groups correspond to the 
groupings based on the manufacturing process. Details are described in the peer 
reviewed paper, in brief: human induced pluripotent stem cell (iPSC)-derived 
hepatocytes and cardiomyocytes were exposed to DMSO-soluble extracts (as 
described above) of 21 petroleum substances from five product categories. 
Concentration-response data from high-content imaging in these cells and physical-
chemical properties of the substances (Figure 2.1.), as well as targeted high-
throughput transcriptomic analysis of the hepatocytes, revealed distinct clusters of 
petroleum substances. It was found that bioactivity profiling resulted in clustering 
of petroleum substances in a manner similar to the manufacturing process-based 
categories. This study demonstrated how novel in vitro screening approaches can 
be effectively utilized in combination with physical-chemical characteristics to 
group complex substances and enable read-across, which allows for more rapid and 
scientifically-informed evaluation of their potential health impacts. 

http://www.concawe.eu/
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Figure 2.1.  Chemical–biological data-integrative categorization of petroleum UVCBs. 
Integration of phys-chem and bioactivity data was performed using ToxPi (A). 
Four data types comprised 8 cardiophysiology, 3 cardiotoxicity and 5 
hepatotoxicity parameters, and 2 phys-chem descriptors (initial and final boiling 
points). Cluster analysis is shown in panel (B). [Sample coding is explained in 
Grimm et al. (2016). VHGO = vacuum & hydrotreated gas oils; SRGO = straight 
run gas oils; OGO = other gas oils; HFO = heavy fuel oils; RAE = residual aromatic 
extracts]. Image from Grimm et al. (2016). 

 

2.2. CAT-APP GOALS, STRATEGY, APPROACH AND WORKFLOW 

The Cat-App project was initiated and funded by Concawe in 2015, with the aim to 
achieve three goals: 

(1) Minimize the need for testing in vertebrate animals under regulatory 
programmes. One of the aims of REACH is to promote alternative methods to 
hazard assessment in order to reduce the number of animal testing6. REACH 
provides a number of options for this, including grouping of substances in order 
to facilitate read-across of data between them – optimizing the use of available 
toxicology data and of new animal testing needed to address data gaps. The 
available REACH guidance on this works for relatively simple, mainly mono-
constituent substances but is not fit for purpose for complex multi-constituent 
substances including UVCBs, which is also concluded by ECHA (European 
Chemicals Agency, 2017).  Cat-App’s overall aim is therefore to develop a 
framework for grouping UVCB substances that should make this feasible, based 
on chemical-biological properties combining multiple streams of information 
comprising petroleum UVCBs substance production type/refining process, 
physical-chemical properties, chemical analytical profiles, existing (eco-
)toxicological data and a comprehensive array of biological responses in a broad 
spectrum of in vitro systems. 

                                                 
6 See e.g., article 1, article 13 and article 117(3) of Regulation (EC) No 1907/2006 
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(2) Practical application of the Cat-App framework in the Concawe REACH strategy 
as supporting data in the petroleum REACH dossiers, in order to facilitate the 
completion of data gaps in the endpoint requirements with the already existing in 
vivo toxicological data on petroleum substances.  

(3) Inform a broad spectrum of stakeholders globally (commercial entities, 
regulatory agencies and non-governmental organizations) concerned with public 
health and wellbeing, to promote (regulatory) use of the Cat-App framework which 
is expected to eventually have a wide and diverse applicability domain.  

2.2.1. Participating organizations 

The Cat-App team consisted of the following participating organizations: 

Concawe (Brussels, Belgium) is the petroleum industry scientific organisation for 
environmental, health and safety research relating to the refining of crude oil as 
well as the distribution and use of petroleum products to benefit the industry itself 
and the society at large. The scope of Concawe’s activities includes research in 
areas such as fuels quality and emissions, air quality, water quality, occupational 
health and safety, toxicology and REACH product stewardship. The Concawe team 
consisted of a number toxicologists of member companies. Cat-App project 
management was led by Hans Ketelslegers, PhD, ERT. 

Texas A&M University (College Station, TX, USA) is one of the largest research 
universities that is ranked in the top 25 public universities in the USA and the top 
10 public engineering schools. Research areas at Texas A&M University encompass 
a wide range of interdisciplinary research resources that include centres, institutes 
and laboratories dedicated to addressing a wide variety of scientific challenges and 
opportunities. Texas A&M University’s research team was led by Professor Ivan 
Rusyn MD, PhD who coordinated activities in work packages 1, 2 and 3. His 
laboratory and staff are well experienced with complex databases and molecular 
toxicology research. He also worked closely with other principal scientists in this 
project and has been engaged with the European Commission’s Joint Research 
Centre, European Chemicals Agency, US EPA, California EPA, Texas Commission on 
Environmental Quality and other regulators. 

Public Health England (Didcot, Oxfordshire, United Kingdom) is an executive 
agency of the UK Department of Health with responsibility for all aspects of public 
health in England. The Centre for Radiation, Chemical & Environmental Hazards 
(CRCE) has expertise in toxicology (applied and basic mechanistic understanding) 
exposomics, transcriptomics, biomathematics, biostatistics and bioinformatics. This 
expertise is applied in emergency responses, chemical advice, risk assessment, 
support for expert government committees and peer reviewed research. The 
leading investigator was Professor Tim Gant, PhD, FBTS, ERT who has extensive 
experience in transcriptomics and bioinformatics for chemical hazard profiling and 
mechanistic understanding evidenced by the publication record. He worked in 
academia and government and has significant experience in the application of 
toxicology to advance public health. 

North Carolina State University (Raleigh, NC, USA) is one of the two flagship 
research institutions of the University of North Carolina system, with 9 major 
colleges and schools and over 31,000 students. The University is widely renowned 
as a trail-blazing national model for research in the public interest and for 
university-private-government interactions. Of particular relevance are 
partnerships with the National Institute of Environmental Health Sciences (NIEHS), 
and the US Environmental Protection Agency (EPA), fostering a dynamic atmosphere 
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for toxicological research and data from high-throughput screening. The 
Bioinformatics Research Center (BRC) at NCSU, is an interdisciplinary center 
devoted to research at the interfaces of quantitative and biological sciences, with 
strengths in statistical methods applied to toxicological problems. The principal 
investigator is Professor Fred Wright, PhD who is director of the BRC and a lead 
investigator on work package 4. Professor Wright is a statistical geneticist with over 
a decade of experience working with toxicogenomic data.  

University of Ulster (Northern Ireland) has an international reputation for 
excellence and innovation.  Its research is characterised by its capacity to shape 
the future of lives and society through relevant and pioneering research, delivering 
a range of economic, social or cultural benefit from research of the highest quality. 
The Northern Ireland Centre for Stratified Medicine (NICSM) at the University of 
Ulster is a partnership between the Biomedical Science Research Institute, the 
Clinical Translational Research and Innovation Centre and the Western Health and 
Social Care Trust. Shu-Dong Zhang, PhD, is a Senior Lecturer in Bioinformatics at 
NICSM whose research interest include the development of computational, 
statistical, and bioinformatics methods and their applications in biomedical, 
pharmacological and toxicological studies. As an expert in gene expression 
connectivity mapping, Dr. Zhang and his team were responsible for carrying out 
connectivity mapping related parts of work package 4. 

SYNCOM (Ganderkesee, Germany) is a consulting firm with the focus on innovation 
management. Physicists, Chemists, Engineers and Business managers apply 
management expertise and know-how on implementation of administrative 
processes to research and development projects. SYNCOM contributed management 
and administrative support to the consortium. Additionally, it was responsible for 
the organisation and steering of the dissemination activities. Klaus Lenz, PhD was 
the lead of work package 5 and he has been working in the management and 
administration of industrial R&D projects since 1988. 

2.2.2. Cat-App Concept and Approach  

The overall concept of Cat-App was to redefine the regulatory use of a similarity 
principle through development of the framework based on chemical-biological read-
across (Low et al., 2013). Specifically, our approach was to integrate innovations 
in (i) in vitro testing, (ii) high-throughput genomics, and (iii) integrative data 
analyses and visualisations into a framework for category read-across of UVCBs. 
Given its setting and scale, the Cat-App programme has the potential to offer a 
practical solution to one of the challenging issues in chemical regulation in Europe. 
The overall programme consisted of five work packages (Figure 2.2.). Participating 
organisation’s and their roles in the work programme are also shown in this Figure. 
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Figure 2.2. Overview of the Cat-App project. 
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3. BIOACTIVITY PROFILING OF PETROLEUM SUBSTANCES IN HUMAN IN 
VITRO MODELS 

3.1. PREPARING EXTRACTS OF PETROLEUM SUBSTANCES 

To facilitate in vitro bioactivity profiling experiments, researchers at Texas A&M 
University obtained, processed and shared with partner Public Health England (PHE) 
chemical samples (petroleum substance extracts and reference chemicals). First, 
Concawe coordinated procurement and delivery of all petroleum substances to be 
tested in Cat-App to Port Royal Research (Beaufort, SC, USA) who performed 
extraction of petroleum substances into DMSO using American Society for Testing 
and Materials standard procedure (ASTM International, 2010, E1687-10). The DMSO 
extraction procedure used herein was designed to concentrate the ‘biologically 
active’ fraction (i.e., mostly 3-7 ring polycyclic aromatics, but also other polar 
constituents) of the refinery streams. The extracts (PS-E, see chapter 2.1) obtained 
using this method are used routinely for safety testing (e.g., mutagenicity) and 
chemical characterization of the refinery streams (ASTM International, 2010). The 
extraction protocol overview is shown in Figure 3.1. 

 
Figure 3.1.  Petroleum substance extraction procedure based on ASTM International 

(2010) standard method (E1687-10). 

Overall, 141 petroleum substances (which represent the entire continuum of active 
petroleum substances under REACH) from diverse manufacturing stream categories 
were used in Cat-App programme. For statistical visualisation purposes, some 
categories were merged together which leads to the 16 Cat-App specific PS-E 
categories as shown in Table 3.1. 

Petroleum 
sample

[4 g]

+ Cyclo-
hexane
[10 mL]

+ DMSO
[10 mL]

DMSO 

fraction

+ DMSO
[10 mL]

Cyclohexane fraction

Stock Extract 
for in vitro

[in 100% DMSO]

DMSO 

fraction

Cyclo-
hexane
[10 mL]

+ DMSO
[10 mL]

DMSO 

fraction

+ DMSO
[10 mL]

Cyclohexane fraction

“Method blank” 
[cyclohexane-

equilibrated DMSO]

DMSO 

fraction
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Table 3.1. Cat-App specific Petroleum substance categories used in this project. In some cases, closely 
related substances (PS-E) from different Concawe categories were grouped together solely for 
statistical and display purposes: HRBO was combined into OLBO (BO), slack waxes and paraffinic 
waxes were combined (WAX), Bitumens were combined with the single substance Oxidized Asphalt 
(BIT) and a single MK1 was grouped with Kerosine (KER). 

 

Category 
Abbreviation 

(*) 
N of samples 
in category 

Petrolatums P.LAT 3 

Paraffin and Hydrocarbon Waxes/Slack Waxes WAX (2) 10 

Low boiling Point Naphthas (Gasolines) NAPHTHA 10 

Other Lubricant Base Oils/Highly Refined Base Oils BO (2) 33 

Kerosines/MK1 Diesel Fuel KER (2) 10 

Foots Oils FO 3 

Other Gas Oils OGO 4 

Bitumens/Oxidized Asphalt BIT (2) 5 

Residual Aromatic Extracts RAE 2 

Treated Distillate Aromatic Extracts TDAE 2 

Heavy Fuel Oil Components HFO 27 

Unrefined/Acid Treated Oils UATO 4 

Cracked Gas Oils CGO 8 

Vacuum Gas Oils, Hydrocracked Gas Oils & Distillate Fuels VHGO 10 

Straight-Run Gas Oils SRGO 6 

Untreated Distillate Aromatic Extracts UDAE 4 

* The number in brackets represents the number of Concawe categories that were analyzed together in Cat-App, 
which in total makes 20 categories  

 
 

3.2. IN VITRO BIOACTIVITY SCREENING STUDY DESIGN 

Overall, the Cat-App programme used 141 petroleum substance extracts (see 
Section 3.1) and 20 reference chemicals (see Section 4) that represented the major 
structural classes of chemistries in petroleum substances: monoaromatics, 
diaromatics, triaromatics, n-paraffins and, 4-ring aromatics. Reference chemicals 
were obtained from commercial suppliers and processed to create a dilution series 
in “Method Blank” (see Figure 3.1., cyclohexane-equilibrated dimethyl sulfoxide). 
Overall, 4 serial log dilutions of each extract and reference substance were created, 
aliquoted into 384-well master plates (Figure 3.2a) and sealed with aluminium film 
until use. In addition to the test substances, plates contained a number of quality 
controls (Figure 3.2b-e). Plates were stored at -20°C before use and identical 
master plates were used at both Texas A&M University and Public Health England.  
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Figure 3.2.  Experimental plate design for Cat-App.  
(A) Overall design of the plate with 308 wells in a 384-well plate utilized for 
various test substances and controls.  
(B-E) Location of various negative, positive, and reproducibility controls is 
indicated. 

 

3.3. CELL LINE SELECTION 

In work package 2, experiments were performed to evaluate bioactivity of 141 PS-
E and 20 reference chemicals using five human induced pluripotent stem cell (iPSC)-
types (hepatocytes, endothelial cells, neurons, macrophages, and cardiomyocytes), 
two primary human cell lines (HUVEC and HLMVEC), and eight established (MCF7, 
A549, HepG2, HepaRG, LN229, HT29, 5H-SY5Y, and A357) human cell lines 
(Figure 3.3.).  

A

B                                     C

D                                     E
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Figure 3.3.  Human cell types used for Cat-App Programme bioactivity profiling. 

Cell type and vendor selections were based on the following considerations. Cells 
had to be of human origin and represent diverse organs/tissues. We used both 
“primary” cells, iPSC-derived cells, as well as a number of established cell lines. 
These in vitro models had to be reproducible (i.e., a particular cell/donor can be 
obtained from a commercial source) and suitable for evaluation of both “functional” 
and “cytotoxicity” endpoints so that we could assess the specificity of the effects 
of test compounds. It was considered more important to have a strong screening 
assay which delivers consistent and reproducible responses regardless of its 
toxicological functionality rather than having a model with a strong biological 
relevance, as the aim is to support grouping of substances based on a consistent 
response and not to predict the toxicological effects of a substance. 

Cells were plated in 384-well plates in densities recommended by the supplier, using 
optimized media supplied by the same company or optimised for density by 
experimentation for each cell line (House, J.S., et al., 2020). Cells were cultured 
without treatment for a period of time required to achieve functional capacity. 
Each cell line was then exposed to vehicle and at least four concentrations (1:10 
dilutions) of the DMSO extracts of 141 petroleum substances and 20 reference 
substances for up to 24 hours. Appropriate negative and positive controls, as well 
as selected duplicates were included on each plate to assure reproducibility of the 
results. Multiple plates were seeded and one plate contained all compounds in one 
concentration. For each concentration, multiple plates were screened. To ensure 
plate-to-plate reproducibility, select substances were plated in full concentration-
response on each plate. Additional plates were included for collecting cell lysates 
for high-throughput transcriptomic analysis. 

3.4. PHENOTYPIC ASSAYS 

Bioactivity profiling was conducted using a number of imaging-based and 
molecular/biochemical assays (Table 3.2.).  
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Table 3.2. The number of endpoints assayed for each of the cell lines used in Cat-App 

Organ/Tissue Origin 
Cell type 

name 
Number of 
phenotypes 

Skin Malignant melanoma A375 3 

Lung Epithelial carcinoma A549 3 

Liver Cholangiosarcoma HEPARG 3 

Liver Hepatocellular carcinoma HEPG2 3 

Lung Microvascular endothelial cells HLMVEC 4 

Gut Colorectal adenocarcinoma HT29 4 

Brain Glioblastoma LN229 4 

Breast Epithelial adenocarcinoma MCF7 3 

Bone marrow Neuroblastoma SH-SY5Y 4 

Heart iPSC-derived cardiomyocytes CM 14 

Liver iPSC-derived hepatocytes HEP 6 

Blood vessel iPSC-derived endothelial cells ENDO 9 

Blood vessel Umbilical cord endothelial cells HUVEC 6 

Brain iPSC-derived neuronal cells NEUR 4 

Blood iPSC-derived macrophages MACRO 1 

   71 

For example, following exposure to PS-E and reference compounds, cell type-
specific molecular high-content imaging data such as Ca2+ fluxes, cytotoxicity, 
mitochondria potential, nuclear morphology, intracellular oxidant production, lipid 
metabolism changes, formation of vessel or neuronal networks, etc. were collected 
using appropriate molecular biology reagents and fluorescent dyes, where 
appropriate. 

Assay development and description of many endpoints are included in a number of 
peer-reviewed publications for several of the cell types used:  

 iCell hepatocytes (Grimm et al., 2015; Sirenko et al., 2014a),  

 iCell neurons (Sirenko et al., 2014b),  

 iCell cardiomyocytes (Sirenko et al., 2013a; Sirenko et al., 2013b; Sirenko et 

al., 2017),  

 iCell endothelial and HUVEC cells (Iwata et al., 2017). 

In human established cell lines, cell type-specific high-content data for apoptosis, 
reactive oxygen species, cell viability and mitochondrial activity was collected using 
luminescent probe-based assays. 
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3.5. QUALITY CONTROL METHODOLOGY AND OUTCOMES OF QUALITY 
ASSESSMENT OF THE BIOACTIVITY DATA  

Quality control and uncertainty analysis parts of Cat-App programme utilized 
various control features for bioactivity assays to evaluate the data and to flag assay 
and cell line combinations with potentially high signal to noise ratios. First, during 
data collection phase, several upstream quality control procedures using positive 
controls (Figure 3.2c) were implemented in order to determine that the cells were 
responding according to expectations in the published assays (see Section 3.4). 
Second, additional analyses to perform the overall quality control for bioactivity 
profiling data were based on three criteria: (i) concordance of three types of 
negative controls (media, pure DMSO, and “method blank” vehicle), (ii) inter-plate 
replicates, and (iii) intraplate replicates. Only the remaining assays were subject 
to the QC procedures described here. The quality control procedures were 
implemented as “flags” for each assay in each cell line so that downstream analyses 
could be compared in which flagged assays were either included or not included. 

There were a number of negative (method) controls (Figure 3.2b) that were used 
as the primary normalization reference within each plate. To assess potential 
problems with each plate and with unexpected differential behaviour of controls, 
each negative control well (DMSO or Media) for each assay was first normalized to 
the method control mean. Excessive variation within or across plates would be 
potential evidence of undesirable plate effects or differential effects of DMSO and 
media. Specific details on the quality control parameters are provided in Work 
Package 4 report.  

With respect to intra-plate replicates, a total of 20 compounds were present in 
duplicate on each plate, across a range of concentrations (Figure 3.2d). Intra-plate 
replication in each experiment was assessed after a variance stabilization was 
applied. 

With respect to inter-plate replicates, the plate design placed almost all substances 
at a single dilution per plate. However, 5 substances were placed at a full dilution 
series for each plate (Figure 3.2e), providing an additional source of information 
on replicability. The QC flag procedure examined whether for each of the dilution-
series ‘substances normalized values across the plates’ vs. ‘the dose response values 
across the separate plates’ for the same substance were similar or showed variance.  

As a summary of the bioactivity quality control results, we show in Figure 3.4. the 
cell lines and flag outcome across the 15 cell lines. Overall, data from 13 of the 15 
cell lines used in the experiments was deemed of acceptable quality for further 
analyses. Data from 43 assays was used in further data analyses. 
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Figure 3.4.  Cell type and assay quality control analysis outcomes. The bar graph shows the 
percentage of endpoints passing quality control for each cell type used. The 
number of endpoints passing QC is shown for each cell type. Abbreviations: NEUR, 
neurons; CM, cardiomyocytes; HEP, hepatocytes; MACRO, macrophages. Cell 
types are coloured by their origin as shown in the inset. 

3.6. SUMMARY OF THE FINDINGS FROM BIOACTIVITY PROFILING 

As a summary across the 43 bioactivity assays/cell lines that passed quality control 
flags, the ToxPi index was computed (Marvel et al., 2018). Briefly, ToxPi is an 
analysis and visualization tool that first linearly rescales each assay to the [0,1] 
interval (0-min, 1=max), and then the user chooses assays to belong to groupings 
known as “slices.” This index was also used in later analyses for comparison with 
Concawe categories, but here ToxPi was used first as a summary index across all 
assays. Figures 3.5a-b illustrate how assays were grouped into one slice per cell 
line for overall summaries, with weighting in proportion to the number of assays per 
cell line. In addition (Figures 3.5c-d), individual cell lines were examined, and 
assays were grouped into slices according to assay type. This analysis shows that 
median bioactivity across all cell lines shows a clear gradient among Concawe 
categories. The PS-E extracts of Unrefined/Acid Treated Oils (UATO) and Untreated 
Distillate Aromatic Extracts (UDAE) exhibited high degrees of bioactivity, while the 
PS-E for Waxes (WAX) and petrolatums (P.LAT) but also Base Oils (BO), for example, 
have low levels.  When data were examined for each cell type separately (Figure 
3.5c-d), additional patterns were discernible. For example, the hepatocytes 
showed separation into two broad bioactivity regions, whereas the cardiomyocytes 
showed a gradient of bioactivity among the categories in the bottom half of 
bioactivity. It is clear that while a gradient of bioactivity exists between the Cat-
App categories, there is also appreciable degree of variability in bioactivity within 
each category.  This can be due in part to the combination of Concawe 
manufacturing categories into Cat-App categories, but also the designation of these 
substances as UVCB (see also the last paragraph of section 1.3.1), which leads to 
significant overlap between categories that are not always very similar from a 
refining perspective (for example, the observed overlap between Naphthas and Base 
Oils). However, this is also evidence that the use of marker substances to predict 
bioactivity as an indicator of toxicity is not appropriate. 
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Figure 3.5. ToxPi analysis of the 
bioactivity data.  

(A) Data from 43 assays across 12 cell 
types were used to construct a ToxPi 
for each tested substance. The 
relative contribution of each cell 
type is shown in the Table.  
(B) ToxPi scores based on all data for 
each Concawe category is shown as a 
box-and-whiskers plot.  
(C-D) Separate ToxPi analyses were 
performed on the data from 
hepatocytes (5 assays) and 
cardiomyocytes (12 assays). Please 
see Table 3.1. for explanation of 
acronyms and Cat-App specific 
groupings. Individual substance data 
are presented in the supplemental 
material to House, J.S., et al., 2020. 

 

 

Next, we examined the ToxPi profiles of the individual substances in each Cat-App 
category. As an example of the differences between categories and similarities 
within each category, two examples are shown in Figure 3.6. ToxPi are shown for 
27 PS-E in the heavy fuel oil (HFO) category and 9 PS-E in the Waxes (WAX) category. 
For the HFO category, most of the PS-E exhibited very similar ToxPi profiles across 
all cell types indicating an overall similarity in bioactivity (left panel of Figure 
3.6.). Very different ToxPi profiles were apparent for the WAX PS-E (right panel of 
Figure 3.6.). However, variability among substances in each of the two categories 
displayed were also apparent, similar to the variability within each category shown 
in Figure 3.5b. For example, two PS-E in the HFO category (top right) were quite 
different in the effects on cardiomyocytes (blue slice) and other cell types.  
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Figure 3.6.  Supervised (i.e., bioactivity data were 
grouped based on the Cat-APP categories) grouping of 
petroleum UVCB based on the bioactivity profiling data. 
ToxPi profiles are shown for substances in the HFO (left) 
and WAX (right) Concawe categories. 

 

 

 

 

 

 

 

 

 

 

 

 

One of the possible hypotheses that explains the variability in bioactivity within 
each category is the variability in 3-7 ring PAC content of each substance (see PAH 
hypothesis for PS, section 1.3.1). To examine whether 3-7 ring PAC content might 
be associated with overall bioactivity, the relationship between bioactivity of the 
substances and the 3-7 ring PAC content in each substance was evaluated. It was 
hypothesized that the variability in bioactivity within each category is related to 
the variability in 3-7 ring PAC content of each substance. Therefore, the bioactivity, 
expressed as a cumulative ToxPi score for each substance, was compared for each 
UVCB to the 3-7 ring PAC content expressed as a proportion of DMSO-extractable 
PAHs. Specifically, 3-7 ring PAC content score was calculated by taking the sum of 
aromatic ring content (for 3 through 7 ring –containing constituents) times the 
percent total weight of DMSO-extractable polycyclic aromatic compounds (PAC) 
determined by PAC-2 Method as described by Gray et al., 2013.  

Consistent with the hypothesis, the overall fit for the ToxPi scores based on the 
bioactivity data from all 13 cell types (Figure 3.7.) showed a strong positive 
correlation (Spearman rho=0.89) with the PAH 3-7 ring content of each substance.  
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Figure 3.7.  Relationships between bioactivity-based ToxPi scores of PS-E and PAH 3-7 ring content 
score of the petroleum UVCB used in Cat-App. The image on the left (A) shows the overall correlation 
plot with all substances included. X-axis is PAH 3-7 ring content score that was calculated by taking the 
sum of aromatic ring content (for 3 through 7 ring –containing constituents) times the percent total 
weight of DMSO-extractable polycyclic aromatic compounds (PAC) determined by PAC-2 Method. Y-axis 
is the cumulative ToxPi score of each substance based on the bioactivity in 13 cell lines. Each substance 
is marked by a colour that corresponds to Concawe Cat-App specific categories. The images on the right 
(B) show the same information but each plot contains the substances for a Cat-App specific category. 
Note: for statistical visualisation reasons the Concawe categories were merged into 16 classes shown 
here by 16 colors. Subcategories are noted in the right panel: MK1 (in KER), HRBO (in BO) and Oxidized 
Asphalt (in BIT). For further explanation on Cat-App specific acronyms and groupings refer to Table 3.1. 
See supplemental material of House, J.S., et al., 2020 for cell-specific correlations. 
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The right panels of the Figure 3.7. show examples of the individual Concawe 
categories. For those categories with relatively higher 3-7 ring PAC content, strong 
trends in the categories are observed showing increased bioactivity correlated to 
increased 3-7 ring PAC content. In contrast, for categories with low to negligible 3-
7 ring PAC content these trends were not observed. Overall, the results presented 
in this Figure corroborates the known relationship between the content of PACs, 
especially of 3-7 ring type, in the petroleum refining products with their potential 
health hazard (see section 1.3.1). 

We also note that the ToxPi bioactivity should not be interpreted as a quantitative 
indicator of the health hazard potential of a substance because ToxPi scores are 
based on a relative comparison of the cumulative effects of the substances included 
in the analysis. ToxPi are informative only in the context of a particular dataset. 
ToxPi profiles of the individual substances (Figures 3.6. and 3.7.) aid in visualizing 
the patterns in the effects of each substance on in vitro cell-based models. We show 
that there is similarity in the patterns of effects by the substances in a category, 
while there are appreciable difference between categories. In addition, trends in 
the total ToxPi scores and their correlation with PAH 3-7 ring content are helpful as 
further supporting data, integrated with other data types (e.g., analytical, in vivo, 
other in vitro), in the selection of the most representative substances from each 
category for further testing. This application in an overall integrative testing 
strategy maximises the efficient use of animals needed for toxicological 
assessments of petroleum UVCBs and reduce the overall time to complete the 
regulatory assessment of petroleum substances (Figure 1.2.). 
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4. BIOACTIVITY PROFILING OF KNOWN CONSTITUENTS FOR GROUPING 
OF PETROLEUM SUBSTANCES  

A number of reference compounds were selected for testing in parallel with PS-E, 
to investigate if these could add additional value to the assessment and grouping of 
PS. The reference compounds were selected from those that are frequently used as 
“marker molecules” for complex petroleum-derived substances in analytical 
chemistry methods, such as GCxGC-FID (ASTM International, 2011), and for which a 
strong in vitro database already exists. Specifically, we selected 20 “reference 
substances” (Figure 4.1.) that are representative of the major known chemical 
structural classes in petroleum substances: n-paraffins, mono-, di-, tri- and higher 
order aromatics. These substances also have been used in ToxCast screening (Judson 
et al., 2009; Williams et al., 2017), as well as many of them have in vivo toxicity 
data, and thus other information is available on them for potential comparison. The 
20 reference chemicals were included in all screening among petroleum substance 
extracts and other controls (see section 3.2 and Figure 3.2a). 

 

Figure 4.1. Reference compounds used in Cat-App. 

We tested whether bioactivity profiles of the PS-E correlate with those of individual 
reference compounds, which might be informative in a further weight of evidence 
approach. We found that few strong correlations exist among petroleum UVCBs and 
the reference chemicals for all categories, which indicates that read-across from 
further safety data on those reference chemicals to the whole UVCB is of limited 
relevance. This also further supports the hypothesis that data on the PS-E is based 
on the complex interactions of the chemistry and are not driven by one constituent 
in the UVCB.  

It was considered that these data are outside the current scope of the report, hence 
do not add further value and will therefore not be described in more detail here. 
The relevant data, as well as all data generated under Cat-App, will be published 
in a secured online Cat-App database (more details on accessibility and other 
relevant information will be published on www.concawe.eu/cat-app).  

 
 

http://www.concawe.eu/cat-app
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5. MECHANISTIC UNDERPINNING OF THE BIOACTIVITY-BASED 
GROUPING OF PETROLEUM SUBSTANCES THROUGH HIGH-
THROUGHPUT TRANSCRIPTOMIC ANALYSIS 

The transcriptomic profiling of ~3,000 transcripts was conducted on 6 cell types 
(Figure 5.1.) using the TempOSeq technology (Grimm et al., 2016; Yeakley et al., 
2017). Cell types were selected from the original 15 based on several criteria: (i) 
cells with assays passing QC for bioactivity; (ii) cells that represent a diverse set of 
tissues and/or organs, and (iii) priority was given to human iPS- cells. Overall, 4 iPSC 
and 2 cancer cell lines were selected for transcriptomic analysis. To enable accurate 
quantification of transcriptional concentration and to evaluate differential 
expression analysis and perform assessment of transcriptional dose-response, a 
comprehensive pipeline was developed in Cat-App (House et al., 2017). 

 

Figure 5.1.  Transcriptomic analysis of the biological effects of UVCBs and reference 
chemicals was conducted on 6 cell types as indicated in the figure. The 
method used for these experiments is detailed in (Grimm et al., 2016; Yeakley 
et al., 2017) and the data processing pipeline in (House et al., 2017). 

In total, over 10,000 samples were processed for TempO-seq, resulting in over 
35 million data points. The quality control procedures were performed at the plate 
level, ensuring sufficient read counts, as well as identification of suspect samples 
due to low correlation with remaining control samples. After passing earlier quality 
control steps, fold change of the highest concentration tested as compared to 
method blank was calculated.  Probes with false discovery rate q-values <0.10 for 
each cell line were then used to calculate transcriptional point of departure, as 
detailed in House et al. (2017). 

The overall transcriptomic assessment of the number of differentially expressed 
genes supports the view that iPSC hepatocytes are most responsive to exposure with 
hydrocarbon-containing complex substances, probably because they are more 
metabolically-competent than other cell types studied (Figure 5.2.). In addition, 
PS-E with the highest PAH 3-7 ring content have elicited the most pronounced 
effects on gene expression in hepatocytes and other cell types.  
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Figure 5.2.  Transcriptional effects of DMSO extracts of petroleum UVCBs on gene 
expression in 6 cell types. 
Left, the fraction of transcripts affected by all substances. For each cell type, 
~3,000 transcripts were evaluated across all 141 substances. For example, 4% 
represents the proportion of differentially expressed genes in the iCell 
hepatocytes. Right, substance and cell type-specific effects of the petroleum 
UVCBs are shown. iCell hepatocytes and A375 cells, representing the cell types 
that had the most and least pronounced UVCB-induced transcriptional effects, 
are shown as examples where substances are ranked by the total number of 
transcripts significantly affected by treatment. Colours represent the 
directionality of change. The top 8 substances (indicated by their Concawe 
category) are shown in the insert for hepatocytes. 

Next, we determined whether the degree of an effect on gene expression can be 
used to group petroleum UVCBs. When transcriptomic data from all cell types was 
combined, there was little evidence of group-specific effects (Figure 5.3.). 
However, iCell hepatocyte-only data showed much more pronounced separation 
among categories, with Residual Aromatic Extracts (RAE) showing the greatest and 
waxes (WAX) the least overall effect on gene expression. Again, strong separation 
between the substances that contain higher levels of 3-7 ring PAC on one end and 
higher refined substances with lower PAC levels on the other end of the continuum. 
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Figure 5.3.  Transcriptional activity for Cat-App specific categories. 
(See Table 3.1. for further explanation on acronyms for Cat-App specific 
categories). Left, the number of differentially expressed genes in all 6 cell types 
based on all DMSO extract data for each Concawe category is shown as a box-
and-whiskers plot. Right, data for hepatocytes only are shown. 

We also tested whether transcriptional activity of the PS-E of the individual 
petroleum UVCBs was correlated with the PAH 3-7 ring content of the PS. PAH 3-7 
ring content score was calculated by taking the sum of aromatic ring content (for 3 
through 7 ring structures) times the percent weight from DMSO extract data. 
Figure 5.4. (left) shows that Spearman correlations of differential gene expression 
in each cell type or all cell types with 3-7 ring PAH content varied widely with 
hepatocytes exhibiting the highest correlation. In order to ascertain how closely the 
aromatic ring content is associated with the ToxPi bioactivity from all in vitro 
bioactivity data and transcriptomics, we conducted PCA. Figure 5.4. (right) shows 
strong correlation (Spearman 0.75) between the first principal component (PC1) and 
the ToxPi score for in vitro bioactivity and transcriptomics.  

Table 5.1.  Correlation (Spearman and Pearson) between gene expression (number of 
differentially expressed genes) and PAH content (level of 3-7 ring PAH) of 
UVCB substances. Correlations and p-values for each cell type and all cells 
combined are shown. 

 

Cell type
Spearman 
correlation

p-
value

Pearson 
correlation

p-
value

A375 0.24 0.005 0.13 0.12

iPSC CM 0.11 0.2 0.51 10-11

iPSC ENDO 0.18 0.04 0.2 0.02

iPSC HEP 0.75 10-26 0.76 10-26

MCF7 0.20 0.02 -0.02 0.8

iPSC NEUR 0.09 0.3 0.29 10-4

All Cells 0.62 10-16 0.7 10-22
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6. PREDICTIVE INTEGRATIVE ANALYSIS OF THE BIOACTIVITY, HIGH-
THROUGHPUT TRANSCRIPTOMIC AND ANALYTICAL CHEMISTRY 
DATA FOR GROUPING OF PETROLEUM SUBSTANCES  

One relevant research question of interest is whether the extensive data compiled 
and generated for Cat-App enables the generation of supervised predictive models 
for Concawe categories. The term ‘supervised’ denotes that we use the existing 
categories to train a model and then apply a “leave one out” approach to predict 
in which category the specific substance belongs based on its chemical and / or 
biological profile.  

As a comprehensive summary of available data, we included data in three major 
types. The analytical data (A) consisted of the 3-7 ring PAH data in %wt DMSO 
extractables as explained earlier (2-7 ring PAC content), with the aromatic ring 
percentages and total weight, GCxGC data with specific compound constituency 
(naphthalene, anthanthrene, benzo[e]pyrene, etc…) as well as additional PAH ring 
content, and SIMDIS data with initial boiling points, final boiling points and 5% 
increments. Any missing data were mean-imputed. Initial exploratory analysis 
suggested that higher prediction accuracy could be achieved with vetting of the 
analytical data, and so the final analytical predictive data used consisted of priority, 
per1-per 7, relative PAH 3-7 and PAH 4-7 content, and final boiling point. The 
Bioactivity data (B) consisted of all the phenotypic assays that passed QC 
(Figure 3.4.). These are a matrix of the dose point of departure values for each of 
141 substances across the 43 assays. Finally, Expression data (E) using TempO-seq 
fold-changes (max dose vs. controls) were utilized from hepatocyte gene expression 
on ~2800 genes (Figure 5.3.). 

As the number of potential features vastly outnumbered the number of UVCB 
substances, a penalized machine learning approach (the PAMR method implemented 
in R) was used for classification, with leave-one-out cross validation. The leave-
one-out approach ensures that the classification accuracy is realistic, because each 
of the 141 UVCBs is held out in succession and not used in training the model. 
Another way to describe the estimated accuracy is the predicted accuracy if an 
entirely new UVCB were to be classified. As some of the 21 original Concawe 
substance categories for the 141 UVCBs had too few members for this statistical 
classification approach, analyses were performed using the 16-category version of 
Concawe categories (Table 3.1.) used for the colour scheme shown in section 5.  

Figure 6.1. shows statistical classification accuracy for analytical data (accuracy 
43%) and bioactivity data (accuracy 38%).  The combination of analytical and 
bioactivity data gave a higher accuracy (45%). The categories are ordered by mean 
PAH 3-7 relative content, and it is apparent that several of the category errors are 
in fact assignments to categories of similar PAH 3-7 content (shown in light green). 
Assignments to more “distant” categories are shown in yellow and red, highlighting 
substances that merit further scrutiny. We note that random assignment of UVCBs 
would give a much lower accuracy (as low as ~20%, depending on the random 
category assignment approach used). One salient feature of classification using 
bioactivity data alone is that predictions tend to concentrate on the two largest 
categories, base oils and heavy fuel oils (Figure 6.1., middle panel). The 
combination of analytical and biological data (Figure 6.1., right panel) provides not 
only the highest accuracy, but the spread of classifications across the categories is 
better explainable in terms of the 3-7 ring PAC content of the substances related 
to their observed biological activity.  
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Figure 6.1.  The results of leave-one-out classification analysis (by PAM-R) using analytical 
and bioactivity data alone and in combination. 

Analyses including the expression data alone show reduced accuracy (31%, Figure 
6.2., left). One possible explanation for this result is the so-called “curse of 
dimensionality,” i.e. the number of features (genes) that are examined is too large 
for effective classification. Indeed, when expression data are added in combination 
with analytical and bioactivity data (Figure 6.2., right), the accuracy (39%) is still 
poorer than for analytical+bioactivity as shown in Figure 6.1.  

 

Figure 6.2.  The results of leave-one-out classification analysis using expression alone 
(left panel) and all three data types (analytical+bioactivity+expression, right 
panel). 

These analyses suggest that the incorporation of both bioactivity and analytical data 
allow for more accurate categorization of substances. More targeted approaches 
that focus on categorization of petroleum UVCBs that have little to no PAH ring 
composition may be instructive to help differentiate the substances for which little 
biological activity was observed here, and is therefore expected to possibly increase 
accuracy overall. Careful follow-up analyses can focus on data features that are 
characteristic of each substance, and further examination of “misclassified” 
substances. 
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7. DISCUSSION 

The Cat-App is a first-of-its-kind project that attempted to determine whether new 
approach methodologies that are based on in vitro bioactivity and gene expression 
profiling can be used to ascertain similarities among complex petroleum UVCB 
substances. Because of the chemical composition complexity and expected 
variability in composition of the petroleum UVCB within and among the 
manufacturing classes, it was questioned to what extent the manufacturing 
stream/phys-chem properties would be sufficient to support “similarity” of complex 
UVCBs. Therefore, Cat-App aimed to establish a biological fingerprint that could be 
used in conjunction with the other inherent (phys/chem) properties to serve as a 
basis for grouping these substances.  The ultimate goal was to incorporate the 
biological component as an additional piece of information to help underpin the 
exisiting grouping exercise thereby increasing the potential to reduce animal testing 
under regulatory programmes. It is recognized that grouping materials with variable 
and complex identities can be difficult in light of traditional evaluation tools, and 
adding the biological component adds an additional component for consideration. 

The Cat-App project demonstrated that bioactivity profiling of  complex UVCBs is a 
feasible path towards characterization of “sufficient similarity” for complex 
substances based on NAM data. It is the largest to date “case study” that was aimed 
at testing whether and how in vitro bioactivity and gene expression data can be 
used to inform grouping of UVCBs. Ambitious goals of Cat-App, in terms of the 
number of substances, cell types, endpoints and data analysis questions, have been 
met with respect to both scientific output and timelines. This project demonstrates 
how a focused 2-year programme can yield both the novel knowledge and 
informative data that are immediately applicable to decision-making. 

One of the main findings of Cat-App is that there is a clear relationship between in 
vitro bioactivity profiles and the PS-E of the petroleum UVCB (i.e., DMSO extract as 
explained in chapters 2 and 3 of this document). By using the PS-E of the substance, 
it is recognized that this does not represent the full substance, however as the role 
of Cat-App is not for hazard identification, the use of a normalized control helps to 
eliminate questions over what is available or testing, as it provides a consistent 
matrix to test in the biological endpoints, thereby allowing direct comparison of the 
results both within and across groups and categories. It is well established that some 
manufacturing categories of petroleum UVCB, such as HFO for example, contain 
substances that can vary widely in terms of their 3-7 ring PAC content. Indeed, we 
observed both the overall strong correlation between bioactivity and the categories 
of UVCBs (for example, HFO – which have overall much higher PAC content than e.g. 
waxes - in general show high bioactivity whereas waxes show low bioactivity), but 
also significant variation within some PS categories (HFO have a large range from 
low to high PAC containing substances which is reflected in the spread of bioactivity 
observed in this category). This trend was enforced by the fact that the biological 
data separate out the two foots oils from the HFO group of substances when they 
were intially grouped together for statistical visualisation purposes (e.g., 
Figure 3.5. & 3.7.), which is well explainable as Foots Oils are much closer to 
Waxes from a refining perspective. More specifically, the 3-7 ring PAC content of 
these PS-E correlated strongly with bioactivity. Petroleum substances can be ranked 
in the chemical-biological space (low  high 3-7 ring PAC content and bioactivity), 
representing the continuum of petroleum substances. This ranking is in agreement 
with the PAC hypothesis for petroleum substances which states that certain specific 
toxicological effects observed in heavier (average molecular weight) substances are 
associated with the level of 3-7 ring PAC in these substances. Thus, Cat-App adds 
an important additional mechanistic information to the overall weight of evidence 
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that is being built holistically across the continuum of petroleum substances to 
further support this hypothesis. 

It is also evident that existing Concawe categories contain substances with 
significant inter- and intra-category overlap as expected based on the phys-chem 
characteristics of PS. Indeed, petroleum substances are a continuum in terms of 
their chemical composition with “adjacent” streams overlapping: to some extent, 
there will be overlap between the heavy end of a low boiling stream and the light 
end of the adjecent higher boiling stream (see also Figure 1.1.). Despite these 
expected similarities, the bioactivity data are able to clearly distinguish among the 
substances that should not be placed into the same category based on their refining 
properties and/or product specifications. For example Heavy Fuel Oils (HFOs) are 
clearly different from Foots Oils, and although these were initially “grouped” 
together for statistical purposes, it is interesting to see that they are identified as 
different from HFOs which is correct from a refining perspective.The same was 
observed for other substances categories, where for example highly refined base 
oils were less bioactive then the other LBOs -with which they were grouped for this 
project (Figure 3.5. & 3.7.). 

Another goal of Cat-App was to determine what new approach methodologies and 
models are most informative in terms of decision-making for complex petroleum 
UVCB substances. We found that data derived from assays of biological activity in 
iPS cell-derived models was more informative in terms of their ability to group 
substances and ascertain trends in bioactivity. We posit that this finding is most 
likely the product of the retained organotypicity of these cell types as compared to 
established cancer cell lines. In addition, in this study, data from iPSC-derived 
hepatocytes was most informative for separating the substances in terms of their 
overall bioactivity trends, consistent with the ability of these cells to metabolise 
PAH-containing substances to reactive intermediates. Also, assays based on iPSC-
derived cardiomyocytes were able to provide some separation between the UVCB 
categories with substances that have low to negligible PAC content, which poses 
the question whether there may be different types of molecules other than PAC 
playing a role in the observed biological response, which could be interesting follow-
up work to investigate: whether generating and adding data to the intergrative 
analysis on the biological response of the non-PAC part of the UVCB can further 
improve the overall grouping. Nevertheless, these categories are chemically very 
different ranging from low-boiling naphtha to high-boiling bitumen. 

Gene expression data generated in this project are massive in terms of the number 
of substances and cell types analyzed, more than 35,000,000 data points were 
obtained. These data provide further support to the observations from in vitro 
bioactivity profiling and offer additional mechanistic insights. We found that liver 
cells proved to be most informative, most signifciantly expressed genes were all 
involved in biotransformation/PAH metabolism related pathways. In addition, the 
PS-E that triggered most noticeable gene expression responses were the ones with 
the highest PAH content. This is further mechanistic support to the PAH hypothesis 
for petroleum substances, as it confirms mechanistic pathways for 3-7 ring PAHs via 
interaction with receptors in hepatocytes to alter gene expression. 

We tested whether multi-dimensional in vitro bioactivity, gene expression, or 
analytical characterization data on petroleum UVCBs can be used to classify each 
substance into a particular Concawe category. We found that each of these data 
streams alone has significant power to predict what category or overall group the 
substance may belong to; however, mis-classification was observed relatively 
frequently as well. Importantly, combinations of these data, a so-called chemical-
biological read-across, was most powerful in eliminating mis-classifications. These 



 report no. 24/20 
 
 

   
 
 
 
 

  32 

data offer strong support for the need of various data streams to increase 
confidence in grouping of complex UVCBs.  

Overall, the data do support the use of the current Concawe categories which are 
based on refining history, and add further biological insights to this grouping in 
terms of chemical-biological trends across the continuum of PS which is important 
in view of generating read-across hypotheses.   

In parallel to petroleum UVCBs, we tested whether some of the reference (“R20”) 
chemicals, molecules representing the common classes of hydrocarbons found in 
petroleum refining products, could be used as exemplar molecules to evaluate the 
full UVCB. With limited exception, correlations between these R20 compounds and 
UCVBs on biological responses were relatively weak, indicating that single chemicals 
were usually insufficient to replicate the diversity of compounds in a UVCB on 
phenotypic and transcriptomic cellular responses. The noted exceptions, i.e., 
limited instances where indeed similarity in biological responses were observed, 
seem to be for when the UCVB contained particularly high amounts of PAH and the 
R20 chemical was a PAH, further supporting the PAH hypothesis. In conclusion, the 
data from Cat-App indicate that individual reference chemicals are not  sufficient 
to replicate the complexity and diversity of the petroleum refining-derived UCVBs. 
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8. CONCLUSION 

Cat-App data add an important and informative biological component to the 
chemical-biological trends observed in both the overall continuum (i.e., the 
hydrocarbon space) of PS as well as within PS categories. An interesting observation 
from these data is that they were able to discriminate specific substances from 
categories they were initially forced into: for statistical purposes, foots oils were 
initially merged with heavy fuel oils, which are completely different from a refining 
perspective, and the biological data were able to pick these out. Similarly, highly 
refined base oils are different from lubricating base oils and again based on the 
chemical-biological data these were assigned differently. These data therefore have 
the potential to underpin the overall grouping of these substances by showing 
chemical-biological trends, an aspect that can address the challenge from 
regulators that grouping PS UVCBs on their phys/chem data only (the historical 
approach taken in Concawe) is not sufficient.  

The next step is to then apply this further in supporting read-across assesments and 
testing strategies to avoid unecessary (duplicate) animal testing. Althought the Cat-
App data provide further insights and supporting information for the PAH hypothesis 
that is the basis for several higher tier toxicological effects observed with PS, these 
data are not intended to predict toxicity and therefore their application on this 
aspect is limited to hypothesis building. Starting from chemical biological grouping 
of PS, an approach could be to look at the endpoint under consideration more 
specifically and integrate further mechanistic insights from other -more targeted- 
in vitro work ongoing at Concawe, as well as specific historical in vivo data relevant 
to the specific endpoint. Such an integrated analysis would help select the most 
representative samples for further testing, as well as further supporting read-across 
of historical data.  

This can be done in an integrated testing strategy as described earlier in this report 
to address human health endpoint requirements under REACH, in a holistic approach 
which looks at the continuum, the full hydrocarbon space, of PS. Besides avoiding 
unnecessary animal testing, this approach should also help to reduce time to 
complete the regulatory assessment of 185 PS overall (see Figure 1.2.). Therefore, 
Cat-App data will be integrated into the Concawe product dossiers in REACH 
submissions as supporting WoE information at the heart of an intelligent testing 
strategy. Further work that could be considered following the outcomes of this 
project is to investigate the observed variation in response with the DMSO extact of 
PS that have neglegible levels of 3-7 ring PAH, to investigate other possibilities of 
dosing PS to in vitro systems instead of using a DMSO extract (e.g., passive dosing 
options as applied in assays used for ecotoxicological assessments), application of 
the best performing models to samples under current regulatory investigation to 
provide additional biological and mechanistic support for those experimental and 
read-across assessments, as well as to address the variation within a CAS number 
(one of the challenges with UVCBs) and other areas. 

The practical approach taken with Cat-App describes a direct regulatory 
application of New Approach Methodology (NAM) data, to support grouping (and 
subsequently read-across) assessments. The framework presented petroleum 
substances as a case study, but its concept is more generally applicable and 
therefore expected to help further progress the regulatory acceptance of these 
types of new biological data – initially as supporting information, but on the 
longer term with the aim to help develop alternatives to animal testing.  
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9. GLOSSARY 

AE Aromatic Extracts 

BO Base Oils 

BRC Bioinformatics Research Center 

C Carbon 

CAS Chemical Abstract Services 

CGO Cracked Gas Oils 

CRCE Centre for Radiation, Chemical & Environmental Hazards 

DMSO Dimethyl Sulfoxide 

ECHA European Chemicals Agency 

EPA Environmental Protection Agency 

EU European Union 

GCxGC Comprehensive Two-Dimensional Gas Chromatography   

HBPS Heavier and High Boiling PS 

HFO Heavy Fuel Oil(s) 

HPV High Production Volume Program 

HRBO Highly Refined Base Oils 

iPSC induced Pluripotent Stem Cell 

LBO Lubricating Base Oils 

NAM New Approach Methodologies 

NCSU North Carolina State University 

NICSM Northern Ireland Centre for Stratified Medicine 

NIEHS National Institute of Environmental Health Sciences 

OGO Other Gas Oils 

OLBO Other Lubricating Base Oils 

PAC Poly-cyclic Aromatic Compounds 

PAH Polycyclic Aromatic Hydrocarbons 

PCA Principal Components Analysis 

PHE Public Health England 

PS Petroleum Substance(s) 

PS-E Petroleum Substance-DMSO Extracts 

QC procedures Quality Control procedures 

QSARs Quantitative Structure Activity Relationships 

RAE Residual Aromatic Extracts 

REACH Registration, Evaluation and Authorisation of Chemicals 

SRGO Straight-Run Gas Oils  

tDAE treated Distillate Aromatic Extracts 

UATO Unrefined/Acid Treated Oils 

uDAE untreated Distillate Aromatic Extracts 

UVCBs Unknown or Variable composition, Complex reaction products 
and Biological materials 

VHGO Vacuum Gas Oils, Hydrocracked Gas Oils and Distillate Fuels  

WoE Weight-of-Evidence 
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