Report

Air pollutant emission estimation methods for E-PRTR reporting by refineries

2019 edition
Air pollutant emission estimation methods for E-PRTR reporting by refineries

2019 edition

L. Hoven (Concawe Science Executive)
T. Megaritis (Concawe Research Associate)

This report was prepared by B. Smithers

Thanks for their contribution to:

Concawe Special Task Force (STF-69):
A. Bakker, O. Duclaux, M. Durand, P. Kangas, D. Leventos, A. Sanchez, P. Roberts, B. Smithers

Reproduction permitted with due acknowledgement

© Concawe
Brussels
July 2019
ABSTRACT

This report is an update of the Concawe publication “Air Pollutant Emission Estimation Methods for EPER and PRTR Reporting by Refineries”. It provides algorithms to permit emission estimates to be made by refineries to meet the reporting requirements of the European Pollutant Release and Transfer Register (EP-PRTR) regarding pollutant emissions to air. This edition contains new factors for the estimation of hydrogen cyanide (HCN) emissions from fluid catalytic cracking units (FCCUs). This report supersedes previous versions, as listed below:

Concawe Report 4/17
Concawe Report 3/15
Concawe Report 1/09
Concawe Report 3/07
Concawe Report 9/05R
Concawe Report 9/05

The control copy of this report is posted as an electronic document on the Concawe web-site (www.concawe.org).

There are 60 air pollutants which must be reported under the E-PRTR requirements if their respective annual emission threshold values are exceeded at a facility. All 60 pollutants are listed in Appendix 1 of this report. Emission estimation methods are provided for 25 of those pollutants. New and updated information is summarised in Appendix 2.

KEYWORDS

Air pollution, refineries, E-PRTR, emission factors, sources.

INTERNET

The controlled version of this report is available as an Adobe pdf file on the Concawe website (www.concawe.org) and the latter should be checked for updates. New and updated information provided in this version is summarised in Appendix 2.

NOTE
Considerable efforts have been made to assure the accuracy and reliability of the information contained in this publication. However, neither Concawe nor any company participating in Concawe can accept liability for any loss, damage or injury whatsoever resulting from the use of this information.

This report does not necessarily represent the views of any company participating in Concawe.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. EMISSION ESTIMATION METHODOLOGIES</td>
<td>3</td>
</tr>
<tr>
<td>3. POLLUTANTS</td>
<td>4</td>
</tr>
<tr>
<td>4. EMISSION SOURCES</td>
<td>6</td>
</tr>
<tr>
<td>4.1. REFINERIES</td>
<td>6</td>
</tr>
<tr>
<td>4.2. GASOLINE MARKETING FACILITIES</td>
<td>6</td>
</tr>
<tr>
<td>5. EMISSION ESTIMATION ALGORITHMS</td>
<td>8</td>
</tr>
<tr>
<td>5.1. INTRODUCTION</td>
<td>8</td>
</tr>
<tr>
<td>5.2. EMISSION FACTORS DERIVED FROM MEASUREMENTS WITH DATA BELOW THE LIMIT OF DETECTION</td>
<td>10</td>
</tr>
<tr>
<td>5.3. TREATMENT OF DATA WHERE MEAN AND MEDIAN VALUES AVAILABLE</td>
<td>10</td>
</tr>
<tr>
<td>5.4. OVERVIEW OF COMBUSTION ALGORITHMS</td>
<td>10</td>
</tr>
<tr>
<td>5.4.1. Heating Values</td>
<td>11</td>
</tr>
<tr>
<td>6. EMISSION CONTROLS</td>
<td>12</td>
</tr>
<tr>
<td>6.1. OVERVIEW</td>
<td>12</td>
</tr>
<tr>
<td>6.2. PARTICULATE EMISSIONS FROM FLUID CATALYTIC CRACKING UNITS</td>
<td>12</td>
</tr>
<tr>
<td>6.3. EMISSIONS FROM CATALYTIC REFORMING UNITS</td>
<td>12</td>
</tr>
<tr>
<td>7. METHANE (CH₄)</td>
<td>13</td>
</tr>
<tr>
<td>7.1. COMBUSTION OF FUELS</td>
<td>13</td>
</tr>
<tr>
<td>7.1.1. Other Fuels</td>
<td>14</td>
</tr>
<tr>
<td>7.2. DESTRUCTION OF GASEOUS STREAMS</td>
<td>15</td>
</tr>
<tr>
<td>7.2.1. Flares</td>
<td>15</td>
</tr>
<tr>
<td>7.2.1.1. Flare Stream Details Known</td>
<td>15</td>
</tr>
<tr>
<td>7.2.1.2. Flare Stream Details Unknown</td>
<td>15</td>
</tr>
<tr>
<td>7.2.2. Incineration of hydrocarbon gas streams</td>
<td>15</td>
</tr>
<tr>
<td>7.3. FUEL GAS SYSTEMS</td>
<td>16</td>
</tr>
<tr>
<td>7.4. UNCONTROLLED BLOWDOWN SYSTEMS</td>
<td>16</td>
</tr>
<tr>
<td>8. CARBON MONOXIDE (CO)</td>
<td>17</td>
</tr>
<tr>
<td>8.1. COMBUSTION OF FUELS</td>
<td>17</td>
</tr>
<tr>
<td>8.1.1. Other Fuels</td>
<td>18</td>
</tr>
<tr>
<td>8.2. DESTRUCTION OF GASEOUS STREAMS</td>
<td>18</td>
</tr>
<tr>
<td>8.2.1. Flares</td>
<td>18</td>
</tr>
<tr>
<td>8.2.1.1. Flare Stream Details Known</td>
<td>19</td>
</tr>
<tr>
<td>8.2.1.2. Flare Stream Details Unknown</td>
<td>19</td>
</tr>
<tr>
<td>8.2.2. Incineration of hydrocarbon gas streams</td>
<td>19</td>
</tr>
<tr>
<td>8.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS</td>
<td>19</td>
</tr>
<tr>
<td>8.3.1. Full Burn Regeneration</td>
<td>19</td>
</tr>
<tr>
<td>8.3.2. Partial Burn with CO Boiler</td>
<td>19</td>
</tr>
<tr>
<td>8.3.3. Partial Burn without CO Boiler</td>
<td>20</td>
</tr>
<tr>
<td>8.4. CATALYTIC REFORMING UNITS</td>
<td>20</td>
</tr>
<tr>
<td>9. CARBON DIOXIDE (CO₂)</td>
<td>21</td>
</tr>
<tr>
<td>9.1. COMBUSTION</td>
<td>21</td>
</tr>
<tr>
<td>9.2. DESTRUCTION OF GASEOUS STREAMS</td>
<td>21</td>
</tr>
<tr>
<td>9.2.1. Flares</td>
<td>21</td>
</tr>
</tbody>
</table>
9.2.1.1. Flare Stream Details Known 21
9.2.1.2. Flare Stream Composition Unknown 22
9.2.1.3. Flare Stream Details Unknown 22
9.2.2. Incinerators 22
9.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 22
9.3.1. FCCU With CO Boiler 23
9.3.2. FCCU Without CO Boiler 23
9.4. OTHER CATALYST REGENERATION 23
9.4.1. Flue Gas Flow and Composition Known 23
9.4.2. Flue Gas Details Unknown 23
9.5. COKERS 23
9.6. HYDROGEN PLANTS 24
9.6.1. Feed Composition Data Known 24
9.6.2. Feed Composition Data Unknown 24
9.7. SOUR GAS PROCESSING 24

10. HYDROFLUOROCARBONS (HFC) 25

11. NITROUS OXIDE (N₂O) 26
11.1. COMBUSTION OF FUELS 26
11.1.1. Other Fuels 27
11.2. DESTRUCTION OF HYDROCARBON GAS STREAMS IN INCINERATORS 27

12. AMMONIA (NH₃) 28
12.1. NOₓ REDUCTION SYSTEMS 28
12.1.1. SNCR 28
12.1.2. SCR 28
12.2. REFRIGERATION SYSTEMS 28
12.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 29
12.3.1. Full Burn Regeneration 29
12.3.2. Partial Burn with CO Boiler 29
12.3.3. Partial Burn without CO Boiler 29

13. NON-METHANE VOLATILE ORGANIC COMPOUNDS (NMVOC) 30
13.1. COMBUSTION OF FUELS 30
13.1.1. Other Fuels 31
13.2. DESTRUCTION OF GASEOUS STREAMS 32
13.2.1. Flares 32
13.2.1.1. Flare Stream Details Known 32
13.2.1.2. Flare Stream Details Unknown 32
13.2.2. Incineration of hydrocarbon gas streams 32
13.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 33
13.3.1. Full Burn Regeneration 33
13.3.2. Partial Burn with CO Boiler 33
13.3.3. Partial Burn without CO Boiler 33
13.4. FLUID COKERS 33
13.5. FUGITIVE EMISSIONS FROM PRESSURISED COMPONENTS 33
13.5.1. Leak Detection Surveys Undertaken 34
13.5.1.1. Conventional Hydrocarbon Monitor 34
13.5.1.2. Optical Gas Imaging Camera 34
13.5.2. Leak Detection Surveys Not Undertaken 35
13.5.2.1. Component Data Available 35
13.5.2.2. No Component Data Available 36
13.6. OILY-WATER COLLECTION AND TREATMENT SYSTEMS 37
13.6.1. Emission Estimation Models For Entire System 37
13.6.2. Process Drains 37
13.6.3. Oil-Water Separators 38
13.6.3.1. Gravity Separator - where separator inlet monitoring data available 38
13.6.3.2. Simple Algorithms 38
13.7. COOLING WATER TOWERS 41
13.8. LOADING OF MOBILE CONTAINERS 41
13.8.1. Uncontrolled Emissions 41
13.8.2. Emissions Controlled with a Vapour Recovery Unit (VRU) 42
13.8.2.1. VRU Fitted with a CEM 42
13.8.2.2. VRU Efficiency Known 42
13.9. STORAGE TANKS 42
13.9.1. Floating Roof Tanks 43
13.9.2. Vertical Fixed Roof Tanks (VFRT) 43
13.9.2.1. VFRTs Connected to a Vapour Holding Tank (VHT) 43
13.9.3. Aboveground Horizontal Tanks 43
13.9.4. Underground Tanks 43
13.9.5. Tank Cleaning 43
13.9.6. Storage Tanks - General Comments 43
13.10. UNCONTROLLED BLOWDOWN SYSTEMS 44
13.11. UNCONTROLLED BITUMEN BLOWING 44

14. NITROGEN OXIDES (NOX) 45
14.1. COMBUSTION IN BOILERS AND FURNACES 45
14.2. GAS TURBINES 49
14.2.1. Natural Gas Combustion 49
14.2.2. Distillate Oil Combustion 50
14.3. GAS ENGINES (4 STROKE, LEAN BURN) 50
14.4. DIESEL ENGINES (LARGE, STATIONARY) 50
14.5. COMBUSTION OF AUXILIARY AND PILOT FUELS 50
14.6. DESTRUCTION OF GASEOUS STREAMS 51
14.6.1. Flares 51
14.6.1.1. Flare Stream Details Known 51
14.6.1.2. Flare Stream Details Unknown 51
14.6.2. Incineration of hydrocarbon gas streams 51
14.7. FLUID CATALYTIC CRACKING UNIT REGENERATORS 51

15. SULPHUR HEXAFLUORIDE (SF₆) 52

16. OXIDES OF SULPHUR (SOX) 53
16.1. COMBUSTION 53
16.2. DESTRUCTION OF GASEOUS STREAMS 53
16.2.1. Flares 53
16.2.1.1. Flare Stream Details Known 53
16.2.1.2. Flare Stream Details Unknown 54
16.2.2. Incinerators 54
16.2.2.1. Sulphur Plant Tail Gas Incinerator 54
16.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 54
16.3.1. Coke sulphur content known 54
16.3.2. Coke sulphur content not known 55
16.4. CATALYTIC REFORMING UNITS 55

17. HYDROCHLOROFLUOROCARBDONS (HCFC) 56

18. ARSENIC (AS) 57
18.1. COMBUSTION OF FUELS 57
18.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 57
18.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 58
18.4. FLUID COKERS 58

19. CADMIUM (CD) 59
19.1. COMBUSTION OF FUELS 59
19.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 60
19.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 60

20. CHROMIUM (CR) 61
20.1. COMBUSTION OF FUELS 61
20.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 62

21. COPPER (CU) 63
21.1. COMBUSTION OF FUELS 63
21.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 64
21.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 64
21.4. FLUID COKERS 64

22. MERCURY (HG) 65
22.1. COMBUSTION OF FUELS 65
22.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 66
22.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 66
22.4. FLUID COKERS 66

23. NICKEL (NI) 67
23.1. COMBUSTION OF FUELS 67
23.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 68
23.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 68
23.4. FLUID COKERS 68

24. LEAD (PB) 69
24.1. COMBUSTION OF FUELS 69
24.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 70
24.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 70
24.4. FLUID COKERS 70

25. ZINC (ZN) 71
25.1. COMBUSTION OF FUELS 71
25.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 72
25.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 72
25.4. FLUID COKERS 72

26. DIOXINS AND FURANS (PCDD AND PCDF) 73
26.1. COMBUSTION OF FUEL OIL 73
26.2. CATALYTIC REFORMING UNIT REGENERATORS 74
26.2.1. Continuous Regeneration Mode 74
26.2.2. Semi-Regenerative Mode 74

27. BENZENE (C₆H₆) 75
27.1. SPECIATED FENCELINE NMVOC DATA AVAILABLE 75
27.2. NO SPECIATED FENCELINE NMVOC DATA AVAILABLE 75
27.3. ESTIMATION BY SOURCE 76
27.3.1. Combustion of Fuels 76
27.3.2. Destruction of Hydrocarbon Gas Streams 77
27.3.2.1. Flare Stream Details Known 77
27.3.2.2. Flare Stream Details Unknown 77
27.3.2.3. Incinerators 77
27.3.3. Fluid Catalytic Cracking Unit Regenerators 78
27.3.3.1. Full Burn Regeneration 78
27.3.3.2. Partial Burn with CO Boiler 78
27.3.3.3. Partial Burn without CO Boiler 78
27.3.4. Fluid Cokers 78
27.3.4.1. Emissions Controlled with CO or Fired Waste Heat Boiler 78
27.3.4.2. Non-Controlled Emissions 78
27.3.5. Uncontrolled Blowdown System 78

28. POLYCYCLIC AROMATIC HYDROCARBONS (PAH) 79
28.1. COMBUSTION OF FUELS 79
28.1.1. Refinery Fuel Oil Combustion in Boilers and Furnaces 79
28.1.2. Gas Combustion in Boilers and Furnaces 80
28.1.2.1. Natural Gas 80
28.1.2.2. Refinery Fuel Gas 80
28.1.3. Gas Combustion in Gas Turbines 81
28.1.4. Gas Combustion in Gas Engines 81
28.1.5. Distillate Oil Combustion in Diesel Engines 82
28.1.6. Incinerator Support Fuel and Flare Pilot Fuel 82
28.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 82
28.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 82

29. CHLORINE AND INORGANIC CHLORINE COMPOUNDS 84
29.1. CATALYTIC REFORMING UNITS 84

30. HYDROGEN CYANIDE (HCN) 85
30.1. FLUID CATALYTIC CRACKING UNIT REGENERATORS 85
30.1.1. Full Burn Regeneration 85
30.1.2. Partial Burn with CO Boiler 85

31. PARTICULATE MATTER WITH DIAMETER <10 µM (PM_{10}) 86
31.1. COMBUSTION OF FUELS 86
31.1.1. Other Fuels 88
31.2. DESTRUCTION OF HYDROCARBON GAS STREAMS 88
31.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS 88
31.4. FLUID COKERS 88

32. REFERENCES 89

APPENDIX 1 E-PRTR AIR POLLUTANTS 93
APPENDIX 2 UPDATES IN EMISSION ALGORITHMS AND FACTORS 96
APPENDIX 3 ANTHRACENE AND NAPHTHALENE 97
A3.1 ANTHRACENE 97
A3.1.1 Combustion of Fuels 97
A3.1.2 Fluid Catalytic Cracking Unit Regenerator 98
A3.1.3 Emissions from a Very Large Refinery 98
A3.2 NAPHTHALENE 98
A3.2.1 Combustion of Fuels 98
A3.2.2 Fluid Catalytic Cracking Unit Regenerator 99
A3.2.3 Emissions from a Very Large Refinery 99
SUMMARY

With the introduction of the public domain databases of pollutant releases - EPER (European Pollutant Emission Register) and its successor E-PRTR (European Pollutant Release and Transfer Register) - there is a need for reliable and consistent emissions data in the oil industry sector.

The E-PRTR Regulation requires that annual emissions of key species are reported where those emissions exceed a minimum threshold.

This Report provides the estimation algorithms and emission factors for uncontrolled releases of air pollutants from stationary sources at oil refineries which Concawe recommends for E-PRTR reporting purposes, where measurements have not been undertaken. The emission estimation algorithms are fully referenced and the emission factors provided in a consistent metric unit base.

Concawe has previously published Report No. 9/05 (and a revised version 9/05R) Air Pollutant Emission Estimation Methods for EPER and PRTR Reporting by Refineries.

Report No. 9/05R was submitted to the European Commission and the European Environment Agency and is referenced as a source of sector specific calculation methods in the EU (2006) Guidance Document for the Implementation of the European PRTR.

This current report is the fifth edition of Report No. 3/07. This edition includes new factors for estimating hydrogen cyanide (HCN) emissions from fluid catalytic cracking units (FCCUs). A change log is presented in Appendix 2.

It is expected that future refinements to the emission factor database will be made. This document is therefore a “snapshot” of the present knowledge. Before using this report, the version number should be compared with the control copy which is posted as an electronic document on the Concawe web-site (www.concawe.org).
1. INTRODUCTION

The European Directive 96/61/EC on integrated pollution prevention and control (IPPC) \[48\] mandated the publication of a regularly updated pollutant inventory. The European Pollutant Emission Register (EPER) required the reporting of a number of pollutants, both to air and water, from all facilities listed in Annex 1 of the IPPC Directive.

The EPER requirements were succeeded by those of the European Pollutant Release and Transfer Register (E-PRTR) Regulation \[52\]. This implements at EU level the UNECE PRTR Protocol which was signed in 2003 in Kiev \[61\]. The first report of the E-PRTR was for the year 2007 with annual reporting thereafter. The E-PRTR is more extensive than EPER in a number of respects. For example, the list of pollutants has been enlarged and the amount of information required to be reported concerning emissions and transfers of pollutants has increased. Guidance on the implementation of the E-PRTR has been provided by the European Commission \[51\]. The list of air pollutants and their threshold values above which emissions must be reported are given in Appendix 1.

With regard to the data submissions for these Registers, Concawe identified three issues that require attention by the oil refining sector:

1. The data submitted should be reliable, in the sense that they represent as accurately as possible the actual pollutant emissions. Over-estimation of emissions is clearly to be avoided. Moreover, under-estimation can give a false impression of what pollution emissions levels can be reached under realistic circumstances.
2. Data should be consistent between comparable sources within the industry.
3. The sharing of best practices in terms of emission factors is important in order to improve the quality of the reporting.

To address these issues, the Concawe Air Quality Management Group initiated a review of the published emission factors for those air pollutants which may be emitted in excess of the reporting threshold values from stationary sources found at the majority of European refineries.

It was noted that there were no emission estimation guidelines for each and every one of the pollutants to air from refineries which may possibly require reporting under the regulations. Although guidance is provided in the European Environment Agency Emission Inventory Guidebook \[28\] for the major air pollutants, it does not give estimation methodologies for all of the E-PRTR listed pollutants.

On the other hand, for some pollutants such as non-methane volatile organic compounds (NMVOCs) there are a number of different estimation methodologies being used by European refineries e.g. protocols produced by the US EPA \[36\] and a number of nationally agreed methods such as that published by the UK Energy Institute \[30\].

Concawe, therefore, published Report No. 9/05 and its first revision No. 9/05R \[16\] which comprised a compendium of emission factors, with associated references, for the uncontrolled release of air pollutants. The compendium could not be fully comprehensive as emission factors are not available in the public domain for all sources and/or pollutants. Concawe, however, considered this to be the most appropriate set of emissions factors for the refining sector.
Report No. 9/05R was superseded by Report No. 3/07 [17], which focused on the requirements of the E-PRTR and contained additional algorithms and updated emission factors. The second updated edition of that report was published in 2009 (Report No. 1/09 [19]), a third edition in 2015 (Report No. 3/15 [21]) and a fourth edition in 2017 (Report No. 4/17 [24]).

This current report is the fifth edition of Report No. 3/07 and supersedes Report 4/17. It includes new emission factors for hydrogen cyanide (HCN) from fluid catalytic cracking units (FCCUs).

This report provides the estimation algorithms which Concawe recommends for E-PRTR reporting purposes. Alternatively, where measurements have been undertaken, these can be used if considered representative. It does not consider the estimation of accidental or non-routine (e.g. due to maintenance) releases to air. The EU Guidance [51] recommends that emissions from such releases should be estimated by sites on an ad-hoc basis using whatever data are available and the most appropriate methods considered for the circumstances. This report also does not provide guidance on estimating emissions from mobile sources, e.g., transport and mobile machinery on site.

The emission factors provided are for uncontrolled releases. Reported emissions must take account of any abatement equipment installed e.g. wet gas scrubbers, electrostatic precipitators, etc. (see Section 6).

Where emission factors are available, algorithms are provided for sources found in the majority of European refineries. There are some emission sources for which estimation algorithms are not provided in this report e.g. coke calciners. Refineries should review all of the sources of air pollutants on-site and establish if there are any additional sources from those listed in this report which may require emission estimates to be made for E-PRTR reports.

Concawe has previously published reports on non-methane volatile organic compound (NMVOC) emissions from refineries and other downstream oil industry sources. However Report No. 85/54 [14] which was widely used by Industry is now out of date and is no longer available. Although marketing terminals and service stations are not subject to E-PRTR reporting requirements, for completeness this current report provides NMVOC emission estimation algorithms which are applicable to gasoline storage and handling at these facilities.

A summary of the changes to the algorithms and emission factors given in Report No. 4/17 is provided in Appendix 2.
2. EMISSION ESTIMATION METHODOLOGIES

There are a number of sources of emission estimation methodologies:

- Oil industry associations e.g. Concawe, API, etc.
- Oil companies that have published methods in the professional press
- National and international environmental authorities e.g. US EPA, European Environment Agency, etc.
- International organisations e.g. IPCC, etc.
- European Commission.

Methodologies published by the national and international organisations may be non-oil industry sector specific.

Only those estimation methods which are currently in the public domain were considered for inclusion in this report. The methodologies were considered in the following order of preference to determine those most representative for oil industry sources:

- Methods published by the oil industry
- Sector specific methods published by national and international authorities
- Non-sector specific methods.

Reported E-PRTR emission data must include a code to identify the type of estimation methodology used. The classification codes are simple letters:

Class M: emission data are based on measurements. Additional calculations are needed to convert the results of measurements into annual emission data. Emissions can be derived from continuous or discontinuous measurements of pollutant concentrations. Alternatively, they can be determined based on the results of short term or spot measurements.

Class C: emission data are based on calculations using activity data (e.g. fuel used, production rate) and emission factors or mass balances.

Class E: emission data are based on non-standardised estimations derived from best assumptions or expert guesses that are not based on publicly available references or good practice guidelines.

Where data are measured or calculated, the method of measurement and/or the calculation method must also be provided in the E-PRTR data submission.

The EU Guidance document [51] provides a list of the internationally approved or “equivalent” methodologies that should be used and the method names to be included in the E-PRTR submission. One of the accepted equivalent methodologies is a “European-wide sector specific calculation method, developed by industry experts, which has been delivered to the European Commission, to the European Environment Agency and the relevant international organisations”. The EU Guidance document [51] references Concawe Report No. 9/05R [16] which had been submitted to the EC and EEA. This current report is a replacement for Report No. 9/05R and hence use of the algorithms in this report can be considered to be an approved calculation methodology: data could then be reported using the letters “C” and method name acronym “SSC” (sector specific calculation).
3. **POLLUTANTS**

There are 60 air pollutants which must be reported under the E-PRTR requirements if their respective annual emission threshold values are exceeded at a facility. All of these are shown in Appendix 1, with their threshold values.

The EU Guidance Document on E-PRTR Implementation [51] provides indicative lists of the pollutants likely to be emitted on a sector specific “activity” basis. In addition to having its own specific sectoral activity of “mineral oil and gas refineries”, the Oil Industry also uses combustion units with ratings in excess of 50 MW. These are included in the sectoral activity classified within the PRTR Regulation [52] as “thermal power stations and other combustion installations”.

Those pollutants on the sector specific indicative lists within the EU Guidance Document for these two activities are listed in Appendix 1.

Information was requested from the Concawe member companies concerning the emissions of air pollutants from refineries reported either internally or externally. Appendix 1 lists those pollutants which had been estimated, by at least one of the nine companies who responded, to exceed the E-PRTR reporting thresholds.

Appendix 1 indicates that the pollutants included on the two EU indicative lists are almost identical to those on the oil industry list. The difference is the addition of trichloroethylene on the indicative list for combustion installations.

Trichloroethylene (TRI) is not a product of combustion; its major use is as an organic solvent for industrial degreasing. The inclusion of this pollutant on the sector specific indicative list for combustion installations appears to be due to an anomaly in the EPER database. Only one facility classified as “Combustion installation > 50 MW” reported emissions of TRI, but these would appear to be from the process of manufacturing rubber tyres and tubing at the site and not as a by-product of combustion. TRI has been used in refineries as a chlorinating agent in platformer units, but it is no longer an authorised substance under REACH for this application. This report, therefore, does not consider this pollutant further.

This report provides algorithms to estimate the emissions of all of the other pollutants on the indicative lists in the EU Guidance for refineries and combustion installations rated in excess of 50 MW.

Anthracene and naphthalene are two pollutants that are known to be emitted by refineries, but are not on the sector specific indicative lists. A review of the emissions of these pollutants is provided in Appendix 3. It is shown that, even for the largest refineries, neither anthracene nor naphthalene emissions are likely to exceed their E-PRTR reporting threshold values.

Hydrogen cyanide (HCN) is not listed in the refining sector specific indicative list. Information available from the US EPA (Environmental Protection Agency) [45], however, indicated that annual emissions from some fluid catalytic cracking units (FCCUs) could exceed the yearly E-PRTR reporting threshold. Concawe has, therefore, reviewed the information in the US EPA report [45] and data from recent tests on a number of FCCUs in the EU and developed emissions factors for the two modes of FCCU operation [25]. These factors are provided in Section 30 of this report.
Sites should review their processes and emission sources to establish if there is the potential for any of the other E-PRTR air pollutants to be released in excess of their reporting thresholds.
4. EMISSION SOURCES

4.1. REFINERIES

This report divides the sources found within the majority of refineries, for which emission factors are available in the public domain, into the following categories:

- Combustion
- Process vents
- Storage
- Loading
- Miscellaneous

Combustion sources considered comprise:
- Boilers
- Furnaces
- Fired waste heat boilers
- CO boilers
- Gas turbines
- Gas engines
- Diesel engines
- Incinerators
- Flares

Process sources included are:
- Hydrogen plants
- Fluid coking units
- Fluid catalytic cracking units
- Catalytic reforming units

Miscellaneous sources included are:
- Process drains
- Oil-water separators
- Fugitive emissions from pressurised pipe work and components
- Refrigeration systems
- Use of SF₆

There are some sources which are only found in a limited number of refineries for which algorithms are not given in this report. One example is coke calcining, for which emission factors are available in an API report [1].

4.2. GASOLINE MARKETING FACILITIES

Neither marketing distribution terminals nor service stations are regulated under the terms of the IPPC Directive [48] and hence are not required to submit E-PRTR reports.

Emission estimates for distribution terminals and service stations may, however, be made by oil companies for their own environmental reporting purposes.

Emissions from distribution terminals are primarily NMVOCs due to the storage and loading of refined products, in particular gasolines. Emission estimation methods for sources of NMVOCs at terminals are provided in Appendix 4.1.
Some terminals have small steam raising boilers e.g. to heat heavy oil storage tanks. The algorithms provided in this report can be used to estimate combustion emissions from these facilities.

Unlike refineries and terminals, storage at service stations is in underground horizontal tanks. Emissions occur from these due to the displacement of vapours during filling and the evaporation of the stored gasoline. Emissions also occur due to the filling of automobile fuel tanks and from minor drips and spills during those operations. Estimation methods for NMVOC emissions from these sources are provided in Appendix 4.2.
5. EMISSION ESTIMATION ALGORITHMS

5.1. INTRODUCTION

Algorithms are provided for the E-PRTR air pollutants which may exceed their emissions reporting thresholds. The level of emissions depends upon the refinery crude throughput, the process units installed, fuels consumed, type of equipment in use, procedures in place, etc.

Algorithms are given on a pollutant by pollutant basis in Sections 7 through 31, in the order of the pollutant list in Appendix 1.

Algorithms are also provided in Appendix 3 for two additional pollutants (anthracene and naphthalene). It is demonstrated that the emissions of neither of these pollutants are likely to exceed their E-PRTR reporting thresholds.

Estimation algorithms are given for the sources of each pollutant. A reference is provided for each method, with additional details where considered appropriate.

If no pollutant algorithm is provided for a source, it is because:

- emissions of the pollutant do not occur from that source;
- emissions are considered negligible; or
- no published algorithm has been found or considered appropriate for sources at refineries.

Table 1 indicates those sources for which pollutant algorithms are provided in this report.

Emission factors are given in scientific units to 3 significant figures i.e. 5.67E+03 is equivalent to 5670.

It should be noted that data submitted in E-PRTR reports should be expressed in kg/year and with three significant digits, e.g. 123 000, 17.9, 2.10.
Table 1 Sources for which pollutant emission estimation methodologies are provided in this report

<table>
<thead>
<tr>
<th>Source</th>
<th>CH₄</th>
<th>CO</th>
<th>CO₂</th>
<th>HFC</th>
<th>N₂O</th>
<th>NH₃</th>
<th>NMVOC</th>
<th>NOx</th>
<th>SF₆</th>
<th>SOx</th>
<th>HCFC</th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Hg</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
<th>Dioxins</th>
<th>C₂H₆</th>
<th>PAH</th>
<th>Cl</th>
<th>HCN</th>
<th>PM₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler</td>
<td>×</td>
</tr>
<tr>
<td>Furnace</td>
<td>×</td>
</tr>
<tr>
<td>Gas turbine</td>
<td>×</td>
</tr>
<tr>
<td>Gas engine</td>
<td>×</td>
</tr>
<tr>
<td>Diesel engine</td>
<td>×</td>
</tr>
<tr>
<td>Pilot or support fuel</td>
<td>×</td>
</tr>
<tr>
<td>Incinerator</td>
<td>×</td>
</tr>
<tr>
<td>Flare</td>
<td>×</td>
</tr>
<tr>
<td>Hydrogen plant</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Fluid coking unit</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Fluid catalytic cracking unit</td>
<td>×</td>
</tr>
<tr>
<td>Catalytic reforming unit</td>
<td>×</td>
</tr>
<tr>
<td>Process drainage</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Oil-water separator</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Process fugitives</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Loading</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>SCR/SNCR</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Refrigeration</td>
<td>×</td>
</tr>
<tr>
<td>Lab/test/HV switch gear</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>
5.2. EMISSION FACTORS DERIVED FROM MEASUREMENTS WITH DATA BELOW THE LIMIT OF DETECTION

A few emission factors were originally derived from measurements where, if the values measured were all below the limit of detection, those data points were set at the limit of detection level. Where possible, in this report these factors have been identified and the following rule used to adjust them:

- Where all data points were below the measurement detection limit, the emissions factor has been set to zero (i.e. it is considered that the source is not proven).

Where both the averages of data points above and below the limit of detection (the ‘detect’ and ‘non-detect’ values) are provided in a reference, along with the number of data points used to derive these, a weighted value as calculated below has been used in this report.

- Weighted factor = \[\frac{\text{[average detect value} \times \text{number of detect samples]} + \text{[average non-detect value} \times \text{number of non-detect samples} \times \text{detect ratio}}]}{\text{total number of samples}}\]

where detect ratio = number of detect samples / total number of samples.

Reference: [62], Section 7.4.7

All algorithms where these adjustments have been made are identified in the text.

5.3. TREATMENT OF DATA WHERE MEAN AND MEDIAN VALUES AVAILABLE

In some references, i.e. [1], [10] and [11], both the mean and median values of pollutant emission data sets are provided. A small number of the data sets used to determine emission factors are highly skewed, resulting in mean values dominated by a few very high values that are not representative of the majority of readings. Where the mean value exceeds the median value by more than a factor of ten, the median has been considered a more realistic value and has been used in this report. In all other cases the mean value has been used.

All algorithms where the median value has been used are identified in the text.

5.4. OVERVIEW OF COMBUSTION ALGORITHMS

For many of the pollutants arising from combustion sources the published emission factors are one of the following types:

a) Mass per unit volume combusted (EF\text{_VOL})
b) Mass per energy consumed (EF\text{_NCV})

To provide a consistent approach within this report, algorithms using emissions factors based on EF\text{_NCV} are provided. This type of factor enables emissions to be calculated for fuels which are widely different in composition to those for which EF\text{_VOL} was originally determined. Where published factors are only in the form of EF\text{_VOL}, the values of EF\text{_NCV} have been calculated using default values for the fuels. Where appropriate, this is noted within the text. Details, along with the default fuel heating values used in this report, are provided in Appendix 5.
5.4.1. Heating Values

In the USA, the norm is to use Higher Heating Value (HHV) (or Gross Calorific Value) for a fuel, whilst in Europe the Net Calorific Value (NCV) (or Lower Heating Value - LHV) is usually quoted. In this report all heating values quoted are NCVs and all emission factors involving heat energy require the use of the corresponding fuel NCV, unless otherwise quoted.

\[\text{NCV} = \text{HHV} \times \text{Correction Factor for heat of vaporisation of water in the fuel} \]

For liquid fuels:
\[\text{NCV} = \text{HHV} \times 0.95 \]

For gaseous fuels:
\[\text{NCV} = \text{HHV} \times 0.9 \]

Reference: [6], Section 4.2.
6. EMISSION CONTROLS

6.1. OVERVIEW

The algorithms provided in this report (with the exceptions identified in Sections 6.2 and 6.3) assume that no emission reduction control equipment (e.g. flue gas desulphurisation system, vapour recovery unit, etc.) is installed in vent lines, stacks or flues.

Calculated emissions must, therefore, take account of any emission controls. The algorithm to be used is:

\[
\text{Emissions reported} = \text{Uncontrolled emissions} \times (1 - [\text{EFF} \times \text{ONTIME}] / 10000)
\]

where:
- EFF = Average percentage efficiency of emission reduction control equipment over reporting period.
- ONTIME = Percentage of the time that the emission reduction equipment is operational when required during the reporting period.

Where there are two or more emission control devices in series impacting a particular pollutant (e.g. for particulates: cyclone plus electrostatic precipitator) then the effect of each device on the pollutant emissions must be taken into account. For example, if two devices are installed, with respective efficiencies of \(\text{EFF}_1\) and \(\text{EFF}_2\) and operating times of \(\text{ONTIME}_1\) and \(\text{ONTIME}_2\), then the algorithm is:

\[
\text{Emissions reported} = \text{Uncontrolled emissions} \times \{(1 - [\text{EFF}_1 \times \text{ONTIME}_1] / 10000) \times (1 - [\text{EFF}_2 \times \text{ONTIME}_2] / 10000)\}
\]

For vapour recovery units (VRUs) designed to reduce NMVOC emissions from loading operations, algorithms are also provided where the average vent emission concentration is known but not the overall VRU efficiency.

6.2. PARTICULATE EMISSIONS FROM FLUID CATALYTIC CRACKING UNITS

The algorithms for emissions of particulates (\(\text{PM}_{10}\)) (see Section 31) and metals (see Sections 18, 19 and 21 through 25) from these units assume that there are cyclone systems installed inside the regenerator vessel to separate the catalyst particles from the hydrocarbon vapours. If additional cyclones or other emission abatement devices such as electrostatic precipitators are installed external to the regenerator then the effect of these additional controls to further reduce emissions must be taken into account in the reported emission level.

6.3. EMISSIONS FROM CATALYTIC REFORMING UNITS

There are limited references to emissions from catalytic reforming units (CRUs). The emission factors quoted in this report for CO and SOx are from a paper by Bertrand et al. [11]. This paper uses combined emissions data from a number of units. As some of these units may have emission abatement controls installed, the factors may not truly represent uncontrolled emissions.

A review of the emissions for particulates and metals using the factors in reference [11] for a very high throughput CRU indicated that the estimated emissions were very small relative to other sources of these pollutants in a large refinery. No factors for these pollutants have therefore been provided.
7. METHANE (CH$_4$)

Estimation methods are provided for emissions due to:
- Combustion of fuels
- Destruction of gaseous streams in incinerators and flares
- Fugitive emissions from fuel gas lines
- Venting to atmosphere of uncontrolled blowdown systems

7.1. COMBUSTION OF FUELS

Mass emitted (kg) = (EF$_{NCV}$ × M × NCV) / 1000

where:
EF$_{NCV}$ = Emission factor (in g/GJ)
M = mass of fuel combusted (in tonnes)
NCV = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor EF$_{NCV}$ are provided in Table 2.

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>EF$_{NCV}$ g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces < 10 MW (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>6.98E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>1.43E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>9.63E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.08E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas - hydrogen gas content < 65% v/v</td>
<td>3.26E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas - hydrogen gas content ≥ 65% v/v</td>
<td>2.39E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td>Boilers and Furnaces 10 MW to 100 MW</td>
<td>Distillate (gas oil)</td>
<td>1.68E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>3.02E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>9.63E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.08E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
</tbody>
</table>
Table 7.1.1 - Emission Factors for Other Fuels

<table>
<thead>
<tr>
<th>Source</th>
<th>Fuel</th>
<th>(\text{EF}_{\text{NCV}}) (\text{g/GJ})</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces 10 MW to 100 MW</td>
<td>Refinery Fuel Gas - hydrogen gas content < 65% v/v</td>
<td>3.26E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas - hydrogen gas content ≥ 65% v/v</td>
<td>2.39E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td>Boilers and Furnaces > 100 MW</td>
<td>Distillate (gas oil)</td>
<td>9.05E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>8.45E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.08E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas - hydrogen gas content < 65% v/v</td>
<td>3.26E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas - hydrogen gas content ≥ 65% v/v</td>
<td>2.39E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td>Gas Turbine(^4)</td>
<td>Natural Gas</td>
<td>4.11E+00</td>
<td>[6] Section 4, Table 4-9</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>5.97E+02</td>
<td>[6] Section 4, Table 4-9</td>
</tr>
<tr>
<td>Diesel Engine(^2) Large, Stationary</td>
<td>Diesel Fuel</td>
<td>3.67E+00</td>
<td>[6] Section 4, Table 4-9</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>LPG</td>
<td>9.63E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.08E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas - hydrogen gas content < 65% v/v</td>
<td>3.26E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas - hydrogen gas content ≥ 65% v/v</td>
<td>2.39E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
</tbody>
</table>

Notes:
1. Factor derived from turbines operating at high (≥ 80%) loads.
2. Factor is derived from data from one engine with 9% CH₄ by weight in the exhaust gas.

7.1.1 Other Fuels

In the absence of specific emission factors for other gaseous fuels (e.g. low joule gas) it is recommended to use the value of \(\text{EF}_{\text{NCV}} \) for natural gas from Table 2.
7.2. DESTRUCTION OF GASEOUS STREAMS

7.2.1. Flares

The following algorithms are for emissions from the combustion of the flare gas. For emissions from the combustion of the pilot gas fuel used to initiate flare combustion, use the algorithms in Section 7.1.

7.2.1.1. Flare Stream Details Known

If the mass and composition of the flare stream are known:

Mass emitted (kg) = $5.00 \times 10^{-3} \times M \times MF_{CH_4}$

where:
$M =$ total mass of gas flared (in tonnes)
$MF_{CH_4} =$ mass fraction of methane in gas flared

This algorithm assumes that 0.5% of the hydrocarbons remain unburned in “well designed and operated flares, such as in refineries”.

Reference: [6], Section 4.6, Figure 4-2.

7.2.1.2. Flare Stream Details Unknown

If the mass and composition are not known and a flare gas recovery system is not installed, a conservative factor based on refinery feed can be used:

Mass emitted (kg) = $2.28 \times 10^{-5} \times \text{Refinery Feed (in m}^3\text{)}$

Reference: [6], Section 4.6, Table 4-11.

If a flare gas recovery system is installed it can be considered to be an emissions control device. The equation in Section 6.1 can be used (with $EFF =$ flare gas recovery system efficiency) to adjust the emissions estimate obtained from the algorithm above.

7.2.2. Incineration of hydrocarbon gas streams

If the destruction efficiency of the incinerator and the mass and composition of the gas stream being combusted are known:

Mass emitted (kg) = $(100 - DE) \times 10 \times M \times MF_{NMVOC}$

where:
$DE =$ incinerator destruction efficiency (%)
$M =$ total mass of gas incinerated (in tonnes)
$MF_{NMVOC} =$ mass fraction of methane in gas incinerated

Otherwise, use the algorithm in Section 7.1 with an emission factor EF_{NCV} equal to that for natural gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 7.1.
7.3. FUEL GAS SYSTEMS

Fugitive emissions can occur from the components e.g. valves, flanges, etc., in fuel gas lines containing methane. Emissions may be determined from leak monitoring surveys where CH₄ concentrations are measured, or calculated using equipment component counts (see Section 13.5). Where neither of these is available, a conservative emissions estimate can be obtained from:

\[
\text{Mass emitted (kg)} = 3.00\text{E-01} \times M \times MF_{\text{CH}_4}
\]

where:

\(M \) = total mass of fuel gas combusted (in tonnes)

\(MF_{\text{CH}_4} \) = mass fraction of methane in fuel gas

Reference: [59], Section 2, Reference Table 1.

7.4. UNCONTROLLED BLOWDOWN SYSTEMS

The gaseous emissions from blowdown systems in EU refineries are recovered and/or flared.

If these controls are not operational and all of the emissions are released to atmosphere, the total hydrocarbons emissions can be conservatively estimated using the factor provided in US EPA publication AP-42 [36], Table 5.1-1. This reference states that methane comprises less than 1% by mass of the total hydrocarbon emissions.
8. CARBON MONOXIDE (CO)

Estimation methods are provided for emissions due to:
- Combustion of fuels
- Destruction of gaseous streams in incinerators and flares
- Partial burn regeneration of fluid catalytic cracking units (FCCUs)
- Regeneration of catalytic reforming units

Note that the Refinery BREF [26], Section 5.1.4, BAT 4 requires direct measurement of CO emissions from all combustion units and from fluid catalytic cracking units.

8.1. Combustion of Fuels

Mass emitted (kg) = \(\frac{(EF_{\text{NCV}} \times M \times NCV)}{1000} \)

where:
- \(EF_{\text{NCV}} \) = Emission factor (in g/GJ)
- \(M \) = mass of fuel combusted (in tonnes)
- \(NCV \) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(EF_{\text{NCV}} \) are provided in Table 3.

Table 3 CO Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(EF_{\text{NCV}}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces</td>
<td>Distillate (gas oil) (^7)</td>
<td>1.62E+01</td>
<td>[38] Section 1.3, Table 1.3-1</td>
</tr>
<tr>
<td>< 10 MW</td>
<td>Refinery Fuel Oil(^{1,2})</td>
<td>6.00E+00</td>
<td>[26] Section 3.10.3.1</td>
</tr>
<tr>
<td>(for CO Boilers and</td>
<td>LPG(^3)</td>
<td>3.71E+01</td>
<td>[38] Section 1.5, Table 1.5-1</td>
</tr>
<tr>
<td>Fired Waste Heat</td>
<td>Natural Gas</td>
<td>3.93E+01</td>
<td>[38] Section 1.4, Table 1.4-1</td>
</tr>
<tr>
<td>Boilers only applies to the</td>
<td>Refinery Fuel Gas(^4)</td>
<td>1.21E+01</td>
<td>[26] Section 3.10.3.1</td>
</tr>
<tr>
<td>support fuel firing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boilers and Furnaces</td>
<td>Distillate (gas oil) (^7)</td>
<td>1.62E+01</td>
<td>[38] Section 1.3, Table 1.3-1</td>
</tr>
<tr>
<td>10 MW to 100 MW</td>
<td>Refinery Fuel Oil(^{1,2})</td>
<td>6.00E+00</td>
<td>[26] Section 3.10.3.1</td>
</tr>
<tr>
<td></td>
<td>LPG(^3)</td>
<td>3.71E+01</td>
<td>[38] Section 1.5, Table 1.5-1</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>3.93E+01</td>
<td>[38] Section 1.4, Table 1.4-1</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas(^4)</td>
<td>1.21E+01</td>
<td>[26] Section 3.10.3.1</td>
</tr>
<tr>
<td>SOURCE</td>
<td>FUEL</td>
<td>EF_{NCV} g/GJ</td>
<td>REF</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>Boilers and Furnaces > 100 MW</td>
<td>Distillate (gas oil)1</td>
<td>1.62E+01</td>
<td>[38] Section 1.3, Table 1.3-1</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil1,2</td>
<td>6.00E+00</td>
<td>[26] Section 3.10.3.1</td>
</tr>
<tr>
<td></td>
<td>LPG3</td>
<td>3.47E+01</td>
<td>[46] SCC 10101002</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>3.93E+01</td>
<td>[38] Section 1.4, Table 1.4-1</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas4</td>
<td>1.21E+01</td>
<td>[26] Section 3.10.3.1</td>
</tr>
<tr>
<td>Gas Turbine5</td>
<td>Distillate (gas oil)6</td>
<td>1.49E+00</td>
<td>[37] Section 3.1, Table 3.1-1</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>4.80E+00</td>
<td>[28] Section 1.A.1, Table 3.1-17</td>
</tr>
<tr>
<td>Gas Engine7 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>2.66E+02</td>
<td>[37] Section 3.2, Table 3.2-2</td>
</tr>
<tr>
<td>Diesel Engine Large, Stationary</td>
<td>Diesel Fuel</td>
<td>3.85E+02</td>
<td>[37] Section 3.4, Table 3.4-1</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>LPG3</td>
<td>3.71E+01</td>
<td>[38] Section 1.5, Table 1.5-1</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>3.93E+01</td>
<td>[38] Section 1.4, Table 1.4-1</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas4</td>
<td>1.21E+01</td>
<td>[26] Section 3.10.3.1</td>
</tr>
</tbody>
</table>

Notes:
1. US EPA AP-42 [38], Table 1.3-1, note e states that CO emissions may increase by factors of 10 to 100 if the unit is improperly operated or not well maintained.
2. Factor derived using NCV of 40 MJ/kg from the Refinery BREF [26], Table 3.54.
3. Factor is for propane combustion.
4. Factor derived using NCV of 48.07 MJ/kg from the Refinery BREF [26], table in Annex 8.6.2, Section B.2.3.
5. Factor derived from turbines operating at high (≥ 80%) loads.
6. Factor provided in US EPA AP-42 [37] was derived using HHV of 139 MBtu/103 US gal.
7. Factor derived from engines operating at < 90% load.

8.1.1. **Other Fuels**

In the absence of specific emission factors for other gaseous fuels (e.g. low joule gas) it is recommended to use the value of EF_{NCV} for refinery fuel gas from Table 3.

8.2. **DESTRUCTION OF GASEOUS STREAMS**

8.2.1. **Flares**

The following algorithms are for emissions from the combustion of the flare gas. For emissions from the combustion of the pilot gas fuel used to initiate flare combustion, use the algorithms in Section 8.1.
8.2.1.1. Flare Stream Details Known
If the mass and composition of the flare stream are known:

\[\text{Mass emitted (kg)} = 1.33 \times 10^{-1} \times M \times NCV \]

where:
\(M \) = mass of flare gas combusted (in tonnes)
\(NCV \) = net calorific value of the flare gas combusted (in MJ/kg)

Reference: [47], Table 13.5-2.

8.2.1.2. Flare Stream Details Unknown
If the mass and composition are not known and a flare gas recovery system is not installed, a conservative factor based on refinery feed can be used:

\[\text{Mass emitted (kg)} = 1.20 \times 10^{-2} \times \text{Refinery Feed (in m}^3) \]

Reference: [27], Activity 090203, Section 8, Table 2.

If a flare gas recovery system is installed it can be considered to be an emissions control device. The equation in Section 6.1 can be used (with EFF = flare gas recovery system efficiency) to adjust the emissions estimate obtained from the algorithm above.

8.2.2. Incineration of hydrocarbon gas streams
Use the algorithm in Section 8.1 with an emission factor \(E_{\text{NCV}} \) equal to that for natural gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 8.1.

8.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS
CO is produced during the regeneration process and depends upon its severity. Emissions from partial burn regeneration are normally controlled with a CO boiler.

It is anticipated that EU refineries will estimate CO\(_2\) emissions from FCCUs using the algorithm in Section 9.3. In this case, the CO emissions will be determined from measurements of flue gas flow and CO concentration.

Where the method in Section 9.3 is not used, CO emissions can be estimated using the following:

8.3.1. Full Burn Regeneration
CO emissions are deemed to be negligible. This assumes sufficient flue gas oxygen concentration to ensure complete conversion of CO to CO\(_2\).

8.3.2. Partial Burn with CO Boiler
CO emissions are deemed to be negligible.

Reference: [36], Table 5.1-1.
8.3.3. Partial Burn without CO Boiler

If there is no CO boiler in operation:

Mass emitted (kg) = 3.92E+01 \times \text{Volume of fresh feed to unit (in m}^3\text{)}

Reference: [36], Table 5.1-1.

8.4. CATALYTIC REFORMING UNITS

Mass emitted (kg) = 4.16E-02 \times \text{Volume of feed to unit (in m}^3\text{)}

Reference: [11], Table 1. This reference uses data from a number of units with varying degrees of abatement equipment installed - see Section 6.3. It also provides data on the number of data points both above and below the limit of detection. The emission factor is a weighted value using both sets of data - see Section 5.2 of this report.
9. CARBON DIOXIDE (CO₂)

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in incinerators and flares
- Fluid catalytic cracking unit regenerators
- Other catalyst regeneration e.g. in catalytic reforming units
- Fluid and Flexi-cokers
- Hydrogen plants

European refiners must estimate their CO₂ emissions under the terms of the EU greenhouse gas emission allowance trading scheme [50]. An EU guidance document [53] sets out detailed guidelines for the monitoring and reporting of CO₂ emissions.

9.1. COMBUSTION

EU guidance [53] specifies that CO₂ emissions from combustion installations be calculated by multiplying the energy content of each fuel used by an emission factor and an oxidation factor (default value equal to one). This requires the NCV of each fuel to be determined along with activity-specific emission factors.

The algorithm provided below applies the fundamental principle of complete stoichiometric combustion using the value of carbon content of the fuel. This approach reduces the emission calculation uncertainty as only carbon content has to be determined instead of values for both NCV and emission factor,

\[
\text{Mass emitted (kg)} = 1000 \times M \times MF_{\text{CARBON}} \times CFC_{\text{MW}}
\]

where:
- \(M\) = mass of fuel burnt (in tonnes)
- \(MF_{\text{CARBON}}\) = mass fraction of carbon in fuel
- \(CFC_{\text{MW}}\) = Molecular weight conversion from C to CO₂ = \(\frac{44.01}{12.01}\) = 3.664

Thus for refinery oil and gaseous fuels:

\[
\text{Mass emitted (kg)} = 3.664E+03 \times M \times MF_{\text{CARBON}}
\]

9.2. DESTRUCTION OF GASEOUS STREAMS

9.2.1. Flares

The following algorithms are for emissions from the combustion of the flare gas. For emissions from the combustion of the pilot gas fuel used to initiate flare combustion, use the algorithm in Section 9.1.

9.2.1.1. Flare Stream Details Known

If the mass and composition of the flare stream are known, use algorithm in Section 9.1, where:
- \(M\) = mass of flare gas burnt (in tonnes)
- \(MF_{\text{CARBON}}\) = mass fraction of carbon in flare gas

EU guidance [53] specifies this methodology for CO₂ reporting purposes by European refineries.
9.2.1.2. Flare Stream Composition Unknown

If the composition of the flare gas stream is not known, a conservative factor based on the combustion of ethane can be used:

Mass emitted (kg) = 3.93E+00 × Volume of gas flared (in m³)

Reference: [53], Annex II, Section 2.1.1.3 (b).

9.2.1.3. Flare Stream Details Unknown

If both the mass and the composition of the flare gas stream are not known and a flare gas recovery system is not installed, a conservative factor based on refinery feed can be used:

Mass emitted (kg) = 3.14E+00 × Refinery Feed (in tonne)

Reference: [57], Section 3, Table 5.

If a flare gas recovery system is installed it can be considered to be an emissions control device. The equation in Section 6.1 can be used (with EFF = flare gas recovery system efficiency) to adjust the emissions estimate obtained from the algorithm above.

9.2.2. Incinerators

Use algorithm in Section 9.1, where:

\[M = \text{mass of gas incinerated (in tonnes)} \]

\[M_{\text{CARBON}} = \text{mass fraction of carbon in gas incinerated} \]

9.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS

EU guidance [53] requires that emissions shall be calculated by a material balance approach, taking into account the state of the input air and the flue gas. Note that for CO₂ reporting, all CO in the flue gas shall be reported as CO₂.

Concawe report 10/04 [15] provides the following algorithm:

Mass emitted (kg) = (AR + SR) × (VF_{CO₂} + VF_{CO}) × CON_{VOL} × TIME

where:

\[AR = \text{Air blower capacity (in m³/minute)} \]
\[SR = \text{Supplemental oxygen addition rate (in m³/minute)} \]
\[VF_{CO₂} = \text{Volume fraction of CO₂ in flue gas} \]
\[VF_{CO} = \text{Volume fraction of CO in flue gas (prior to CO boiler if installed)} \]
\[CON_{VOL} = \text{Volume conversion factor at 15 C = 44 / MCF} \]
\[MCF = \text{Molar conversion factor at 15 C = (22.4 × 288 / 273) = 23.631 m³/kgmole} \]
\[TIME = \text{time blower operated (in minutes)} \]
Thus:

\[
\text{Mass emitted (kg)} = 1.86E+00 \times (AR + SR) \times (VF_{CO2} + VF_{CO}) \times \text{TIME}
\]

Reference: [6], Section 5.2.1, equation 5-6.

9.3.1. FCCU With CO Boiler

\[
\text{Mass emitted (kg)} = 1.86E+00 \times (AR + SR) \times (VF_{CO2} + VF_{CO}) \times \text{TIME}
\]

9.3.2. FCCU Without CO Boiler

\[
\text{Mass emitted (kg)} = 1.86E+00 \times (AR + SR) \times VF_{CO2} \times \text{TIME}
\]

9.4. OTHER CATALYST REGENERATION

\[CO_2\] is produced during the catalyst regeneration in reforming and hydro-processing units.

9.4.1. Flue Gas Flow and Composition Known

EU guidance [53] specifies that the method provided in Section 9.3 should be used.

9.4.2. Flue Gas Details Unknown

The following algorithm conservatively assumes complete stoichiometric combustion of the carbon in the coke deposited on the catalyst. In practice there will be small emissions of CO (see Section 8.4).

\[
\text{Mass emitted (in kg)} = 3.66E+03 \times CR \times MF_{CARB} \times \text{Feed}
\]

where:
- CR = Mass ratio of coke produced per feed
- MF_{CARB} = Mass fraction of carbon in coke
- Feed = Feed to unit (in tonnes)

Reference: [6], Section 5.2.4.

9.5. COKERS

There are several varieties of cokers in use in refineries, including delayed cokers, fluid cokers, and flexi-cokers.

Delayed cokers will not have \[CO_2\] emissions, other than from their process heaters [6]. These should be calculated using the fuel combustion algorithm in Section 9.1.

Fluid cokers and flexi-cokers may have a \[CO_2\] vent resulting from the coke burner.

EU guidance [53] specifies that the method provided in Section 9.3 should be used for flexi-cokers.

For cokers where flue gas flow and composition are unknown:

\[
\text{Mass emitted (in kg)} = 3.66E+03 \times CR \times MF_{CARB} \times \text{Feed}
\]
where:
CR = Mass ratio of coke produced per feed
MF_{CARB} = Mass fraction of carbon in coke
Feed = Feed to unit (in tonnes)

Reference: [6], Section 5.2.3.

If the burner off-gas is burned as a low joule gas fuel, the subsequent emissions
should be calculated using the fuel combustion algorithm in Section 9.1.

9.6. HYDROGEN PLANTS

\(\text{CO}_2 \) is produced during the hydrogen production process.

9.6.1. Feed Composition Data Known

EU guidance [53] specifies that emissions should be calculated from the carbon
content of the feed gas.

\[
\text{Mass emitted (kg)} = 3.66 \times 10^3 \times MF_{\text{CARB}} \times \text{Feed}
\]

where:
MF_{\text{CARB}} = mass fraction of carbon in feed gas
Feed = Feed to unit (in tonnes)

9.6.2. Feed Composition Data Unknown

If the composition of the feed gas is not known, a conservative factor based on an
ethane feed can be used:

\[
\text{Mass emitted (kg)} = 2.90 \times 10^3 \times \text{Feed to unit (in tonnes)}
\]

Reference: [53], Annex III, Section 2.1.2.2 (b).

9.7. SOUR GAS PROCESSING

For systems that vent the waste \(\text{CO}_2 \) (e.g. amine units), emissions can be estimated
by material balance using the known throughput and \(\text{CO}_2 \) concentrations of the inlet
and outlet gas streams. The accuracy of this estimate is highly dependent on the
consistency of the \(\text{CO}_2 \) concentration measurements. To improve the accuracy of
this method, the API Compendium [6] suggests that a volume weighted-average \(\text{CO}_2 \)
concentration should be determined (especially for the inlet gas) using a range of
gas sample data. If the sweet gas concentration is unknown, 0\% can be applied as a
simplifying assumption, recognising that this will likely over-estimate the emissions.

Reference: [6], Section 5.1.5.

For sulphur recovery units that route the sulphur plant tail-gas to an incinerator,
use the algorithm in Section 9.1 (See Section 9.2.2).
10. HYDROFLUOROCARBONS (HFC)

Hydrofluorocarbons (HFCs) may be used as refrigerants in refinery thermal exchange equipment.

Emissions are assumed to equal the amount used during the reporting period to top-up systems to replenish losses due to uncontrolled leakage.

Mass emitted (kg) = Mass used to top-up refrigerant systems (in kg)

Usage where the systems have been fully or partially drained and refrigerants collected for recycling or destruction should not be reported.
11. **NITROUS OXIDE (N\textsubscript{2}O)**

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of hydrocarbon gas streams in incinerators

11.1. **COMBUSTION OF FUELS**

Mass emitted (kg) = \((\text{EF}_{\text{NCV}} \times M \times \text{NCV}) / 1000 \)

where:
- \(\text{EF}_{\text{NCV}} \) = Emission factor (in g/GJ)
- \(M \) = mass of fuel combusted (in tonnes)
- \(\text{NCV} \) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(\text{EF}_{\text{NCV}} \) are provided in Table 4.

Table 4 N\textsubscript{2}O Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(\text{EF}_{\text{NCV}}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>8.40E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>1.60E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>4.33E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.03E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Natural Gas (where low NO\textsubscript{X} burners fitted)</td>
<td>3.00E-01</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>3.89E-02</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td>Gas Turbine4</td>
<td>Natural Gas</td>
<td>1.43E+00</td>
<td>[6] Section 4, Table 4-9</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>1.00E-01</td>
<td>[6] Section 4, Table 4-5</td>
</tr>
<tr>
<td>Diesel Engine Large, Stationary</td>
<td>Diesel Fuel</td>
<td>6.00E-01</td>
<td>[6] Section 4, Table 4-5</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>LPG</td>
<td>4.33E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.03E+00</td>
<td>[6] Section 4, Table 4-7</td>
</tr>
</tbody>
</table>
Other Fuels

In the absence of specific emission factors for other gaseous fuels (e.g., low joule gas) it is recommended to use the value of E_{NCV} for refinery fuel gas from Table 4.

DESTRUCTION OF HYDROCARBON GAS STREAMS IN INCINERATORS

Use the algorithm in Section 11.1 with an emission factor E_{NCV} equal to that for natural gas combustion in a furnace.

Reference: [6], Section 4.7.

For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 11.1.
12. **AMMONIA (NH₃)**

Estimation methods are provided for emissions from:
- Selective Non-Catalytic NOₓ Reduction (SNCR) systems
- Selective Catalytic NOₓ Reduction (SCR) systems
- Refrigeration systems
- Fluid catalytic Cracking Unit Regenerators

Note that the Refinery BREF [26], Section 5.1.4, BAT 4 requires continuous, direct measurement of NH₃ emissions from all units equipped with SCR and SNCR.

12.1. **NOₓ REDUCTION SYSTEMS**

Ammonia is produced as a by-product by SCR and SNCR systems installed in flues to reduce NOx emissions.

12.1.1. **SNCR**

The emission algorithms are:

\[
\text{Mass emitted (kg)} = 3.50 \times 10^{-01} \times V_{\text{OIL}}
\]

or

\[
\text{Mass emitted (kg)} = 2.88 \times 10^{+02} \times V_{\text{GAS}}
\]

where:
- \(V_{\text{OIL}} \) = Volume of oil combusted in device connected to SNCR (in m³)
- \(V_{\text{GAS}} \) = Volume of gas combusted in device connected to SNCR (in million m³)

Reference: [9], Section 5.4, Table 5-5.

12.1.2. **SCR**

The emission algorithms are:

\[
\text{Mass emitted (kg)} = 1.70 \times 10^{-01} \times V_{\text{OIL}}
\]

or

\[
\text{Mass emitted (kg)} = 1.46 \times 10^{+02} \times V_{\text{GAS}}
\]

where:
- \(V_{\text{OIL}} \) = Volume of oil combusted in device connected to SCR (in m³)
- \(V_{\text{GAS}} \) = Volume of gas combusted in device connected to SCR (in million m³)

Reference: [9], Section 5.4, Table 5-5.

12.2. **REFRIGERATION SYSTEMS**

Ammonia may be used as a refrigerant in refinery thermal exchange equipment.

Emissions are assumed to equal the amount used during the reporting period to top-up systems to replenish losses due to uncontrolled leakage.

\[
\text{Mass emitted (kg)} = \text{Mass used to top-up refrigerant systems (in kg)}
\]
Usage where the systems have been fully or partially drained and refrigerants collected for recycling or destruction should not be reported.

12.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS

NH$_3$ is produced during the regeneration process and depends upon its severity. Emissions from partial burn regeneration are normally controlled by a CO boiler.

12.3.1. Full Burn Regeneration

Emissions are deemed to be negligible

Reference: [12], Section 9.3.4.

12.3.2. Partial Burn with CO Boiler

Emissions are deemed to be negligible

Reference: [12], Section 9.3.4.

12.3.3. Partial Burn without CO Boiler

If there is no CO boiler in operation:

Mass emitted (kg) = 1.55E-01 \times Volume of fresh feed to unit (in m3)

Reference: [9], Section 4, Table 4.1.
13. NON-METHANE VOLATILE ORGANIC COMPOUNDS (NMVOC)

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in incinerators and flares
- Fluid catalytic cracking unit regenerators
- Fluid cokers
- Components under pressure e.g. pumps and valves ("fugitives")
- Process drains
- Oil-water separators
- Loading of mobile containers (rail-cars, road tankers, ships and barges)
- Storage tanks
- Venting to atmosphere of uncontrolled blowdown systems
- Uncontrolled bitumen blowing

The driver for reporting VOC emissions is photochemical production of ozone. Methane has a negligible photochemical reactivity. In Europe this compound is therefore excluded from the “basket” of reactive VOCs which are collectively referred to as non-methane volatile organic compounds (NMVOC). The US EPA also considers ethane to have a significantly low reactivity. A number of emission factors developed by the EPA, therefore, are for non-(methane and ethane) VOCs. Those NMVOC emission factors provided in this section which exclude ethane emissions are identified.

13.1. COMBUSTION OF FUELS

Mass emitted (kg) = \((E_{\text{NCV}} \times M \times \text{NCV}) / 1000\)

where:
- \(E_{\text{NCV}}\) = Emission factor (in g/GJ)
- \(M\) = mass of fuel combusted (in tonnes)
- \(\text{NCV}\) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(E_{\text{NCV}}\) are provided in Table 5.

Table 5 NMVOC Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(E_{\text{NCV}}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces < 10 MW (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>1.10E+00</td>
<td>[38] Section 1.3, Table 1.3-3</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>3.41E+00</td>
<td>[38] Section 1.3, Table 1.3-3</td>
</tr>
<tr>
<td></td>
<td>LPG(^1)</td>
<td>3.96E+00</td>
<td>[38] Section 1.5, Table 1.5-1</td>
</tr>
<tr>
<td></td>
<td>Natural Gas(^2)</td>
<td>2.58E+00</td>
<td>[38] Section 1.4, Table 1.4-2</td>
</tr>
<tr>
<td>SOURCE</td>
<td>FUEL</td>
<td>EF_{NCV} g/GJ</td>
<td>REF</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>Boilers and Furnaces 10 MW to 100 MW</td>
<td>Distillate (gas oil)</td>
<td>6.47E-01</td>
<td>[38] Section 1.3, Table 1.3-3</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>8.45E-01</td>
<td>[38] Section 1.3, Table 1.3-3</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>3.96E+00</td>
<td>[38] Section 1.5, Table 1.5-1</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>2.58E+00</td>
<td>[38] Section 1.4, Table 1.4-2</td>
</tr>
<tr>
<td>Boilers and Furnaces > 100 MW</td>
<td>Distillate (gas oil)</td>
<td>2.46E+00</td>
<td>[38] Section 1.3, Table 1.3-3</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>2.29E+00</td>
<td>[38] Section 1.3, Table 1.3-3</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>2.27E+00</td>
<td>[46] SCC 10101002</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>2.58E+00</td>
<td>[38] Section 1.4, Table 1.4-2</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (gas oil)2,3,4</td>
<td>1.86E-01</td>
<td>[37] Section 3.1, Table 3.1-2a</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.60E+00</td>
<td>[28] Section 1.A.1, Table 3-17</td>
</tr>
<tr>
<td>Gas Engine2, 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>5.64E+01</td>
<td>[37] Section 3.2, Table 3.2-2</td>
</tr>
<tr>
<td>Diesel Engine3, Large, Stationary</td>
<td>Diesel Fuel</td>
<td>3.71E+01</td>
<td>[37] Section 3.4, Table 3.4-1</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>LPG</td>
<td>3.96E+00</td>
<td>[38] Section 1.5, Table 1.5-1</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>2.58E+00</td>
<td>[38] Section 1.4, Table 1.4-2</td>
</tr>
</tbody>
</table>

Notes:
1. Factor is for propane combustion. Derived by subtracting the emissions factor for methane from that for total organic compounds.
2. Factor excludes ethane emissions.
3. Factor derived from turbines operating at high (≥ 80%) loads
4. Factor provided in US EPA AP-42 [37] was derived using HHV of 139 MBtu/10³ US gal.
5. Based on data from one engine with exhaust gas TOC composition by weight of 91% NMVOCs.

13.1.1. Other Fuels

In the absence of specific emission factors for other gaseous fuels (e.g. refinery fuel gas, low joule gas) it is recommended to use the value of EF_{NCV} for natural gas from Table 5.
13.2. DESTRUCTION OF GASEOUS STREAMS

13.2.1. Flares

The following algorithms are for emissions from the combustion of the flare gas. For emissions from the combustion of the pilot gas fuel used to initiate flare combustion, use the algorithm in Section 13.1.

13.2.1.1. Flare Stream Details Known

If the mass and composition of the flare stream are known:

Mass emitted (kg) = 5.00E-00 × M × MF_{NMVOC}

where:
M = total mass of gas flared (in tonnes)
MF_{NMVOC} = mass fraction of NMVOC in gas flared

This algorithm assumes that 0.5% of the hydrocarbons remain unburned in “well designed and operated flares, such as in refineries”.

Reference: [6], Section 4.6.

13.2.1.2. Flare Stream Details Unknown

If the mass and composition are not known and a flare gas recovery system is not installed, a conservative factor based on refinery feed can be used:

Mass emitted (kg) = 2.00E-03 × Refinery Feed (in m³)

This factor is for total unburned hydrocarbons. Comparison with the emission factor for methane (Section 7.2.1.2) indicates that methane is assumed to constitute about 1% by mass of the total unburned hydrocarbons.

Reference: [27], Activity 090203, Section 8, Table 2.

If a flare gas recovery system is installed it can be considered to be an emissions control device. The equation in Section 6.1 can be used (with EFF = flare gas recovery system efficiency) to adjust the emissions estimate obtained from the algorithm above.

13.2.2. Incineration of hydrocarbon gas streams

If the destruction efficiency of the incinerator and the mass and composition of the gas stream are known:

Mass emitted (kg) = (100 - DE) × 10 × M × MF_{NMVOC}

where:
DE = incinerator destruction efficiency (%)
M = total mass of gas combusted (in tonnes)
MF_{NMVOC} = mass fraction of NMVOC in gas combusted

Otherwise, use the algorithm in Section 13.1 with an emission factor EF_{NCV} equal to that for natural gas combustion in a furnace.
For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 13.1.

13.3. **FLUID CATALYTIC CRACKING UNIT REGENERATORS**

NMVOCs are produced during the regeneration process. Emissions from units operating with partial burn regeneration are normally controlled with a CO boiler.

13.3.1. **Full Burn Regeneration**

Emissions are deemed to be negligible

13.3.2. **Partial Burn with CO Boiler**

Emissions are deemed to be negligible

Reference: [36], Table 5.1-1.

13.3.3. **Partial Burn without CO Boiler**

If there is no CO boiler in operation:

\[
\text{Mass emitted (kg)} = 6.30 \times 10^{-1} \times \text{Volume of fresh feed to unit (in m}^3\text{)}
\]

This factor is for total hydrocarbons (THC). EPA publication AP-42 [36] states that, overall, less than 1% by mass of THC emissions is methane.

Reference: [36], Table 5.1-1.

13.4. **FLUID COKERS**

If the off-gas is not fed to a CO boiler, or it is not in operation:

\[
\text{Mass emitted (kg)} = 4.60 \times 10^{-2} \times \text{Feed to unit (in m}^3\text{)}
\]

Reference: [31], Section 4.2.1, Table 8.

13.5. **FUGITIVE EMISSIONS FROM PRESSURISED COMPONENTS**

Emissions can occur due to leakage past seals on components installed in pressurised pipework or process plant e.g. valves, pumps, flanges, etc.

Emission estimates can be made by:

- Measuring the VOC concentration adjacent to potential leak points and estimating the emission flux using correlation equations or emission factors.
- Detecting leaks using optical gas imaging.
- Using average emission factors for individual types of components and their process service, where the number of components is known.
- Using a conservative overall emission factor based on refinery throughput.

Note that this section does not deal with emissions from low pressure equipment such as drains, oil-water separators, loading systems and product storage tanks. Emission estimation methodologies for these sources are provided separately – see Sections 13.6, 13.8 and 13.9.
13.5.1. Leak Detection Surveys Undertaken

Leaking components can be identified either using a conventional hydrocarbon monitor to measure the VOC concentration adjacent to potential leak points or an optical gas imaging (OGI) camera can be used to visualise gas leaks remotely.

This report does not provide details of the measurement methods. Concawe Report 6/08 [18] provides a comparative review of conventional and OGI techniques for leak detection.

13.5.1.1. Conventional Hydrocarbon Monitor

This method requires the “screening” of leak sources by measuring the concentration of VOCs at the surface of each potential source using a conventional hydrocarbon monitor. The local VOC concentration (“screening value”) at the surface of a leak source is converted into an emission flux using a correlation equation or emission factors.

Details of the methodologies and the calculation of emissions are provided by the US EPA [35] and in the European CEN Standard on fugitive emission estimation [13].

13.5.1.2. Optical Gas Imaging Camera

In this method emissions are estimated using a “leak” / “no-leak” criterion where the emission factor used depends on the “leak” detection sensitivity of the camera. The emission factors for each equipment type for specified camera detection limits are provided in Table 6. Concawe Report 6/15 [22] recommends the use of the leak/no-leak factors for 6 g/h (highlighted in Table 6).

The emissions can be calculated for each equipment type and service using:

\[
\text{Mass emitted (kg)} = [(F_{\text{LEAK}} \times N_{\text{LEAK}}) + (F_{\text{NO-LEAK}} \times N_{\text{NO-LEAK}})] \times \text{TIME}
\]

where:

- \(F_{\text{LEAK}}\) = Emission factor for leaking components according to the detection limit of the camera
- \(N_{\text{LEAK}}\) = Number of components identified as leaking
- \(F_{\text{NO-LEAK}}\) = Emission factor for non-leaking components according to the detection limit of the camera
- \(N_{\text{NO-LEAK}}\) = Number of components identified as not leaking
- \(\text{TIME}\) = Time that the equipment is in operation and pressurised (in hours).

Details of the methodology and the calculation of emissions are provided in Concawe Report 6/08 [18], Report 6/15 [22] and in a paper by Lev-On et al [55].
Table 6 Leak/No-Leak Emission Factors where optical gas imaging (OGI) is used to detect leaks

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Factor Type</th>
<th>Emission Factor for Specified OGI Leak Definition for different camera sensitivity settings kg/hr/source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3 g/hr</td>
</tr>
<tr>
<td>Valves</td>
<td>Leak</td>
<td>5.50E-02</td>
</tr>
<tr>
<td></td>
<td>No-Leak</td>
<td>1.90E-05</td>
</tr>
<tr>
<td>Pumps</td>
<td>Leak</td>
<td>1.40E-01</td>
</tr>
<tr>
<td></td>
<td>No-Leak</td>
<td>9.60E-05</td>
</tr>
<tr>
<td>Flanges</td>
<td>Leak</td>
<td>2.90E-02</td>
</tr>
<tr>
<td></td>
<td>No-Leak</td>
<td>2.60E-06</td>
</tr>
<tr>
<td>All other components</td>
<td>Leak</td>
<td>5.60E-02</td>
</tr>
<tr>
<td></td>
<td>No-Leak</td>
<td>7.00E-06</td>
</tr>
</tbody>
</table>

Reference: [55].

Definitions of “Service”

The CEN standard [13] provides the following definitions for “service”:

- Gas service: equipment which in use contains process fluid that is in the gaseous state at operating conditions.
- Light liquid service: equipment which in use contains hydrocarbon streams of which at least 20% wt has a vapour pressure in excess of 0.3 kPa at 20°C. For example, this includes automotive and aviation gasolines and crude oil. It excludes products such as kerosenes and gasolins.

13.5.2. Leak Detection Surveys Not Undertaken

13.5.2.1. Component Data Available

Where no monitoring (or only a partial survey) has been undertaken, the emissions from un-surveyed equipment can be calculated using:

\[
\text{Mass emitted (kg)} = F_{\text{COMP}} \times N \times \text{TIME}
\]

where:

- \(F_{\text{COMP}} \) = Average emission factor for the particular equipment type as in Table 7.
- \(N \) = Number of pieces of equipment grouped in the relevant category according to the equipment type, service and operation.
- \(\text{TIME} \) = Time that the equipment group is in operation and pressurised (in hours).

This algorithm is conservatively high as it assumes that the product contained within the equipment components wholly comprises NMVOCs i.e. it does not account for non-NMVOC components contained within the fugitive emission. However, the non-NMVOC emissions will mainly be methane e.g. from fuel gas, and this has the lowest density of the hydrocarbons emitted. For fuel gas systems this can be compensated for; see Section 7.3 for methane emission estimation. Moreover, the number of
equipment components in pipelines containing low concentration NMVOC streams (e.g. low joule gas) is generally a very small percentage of the total components on a refinery.

Table 7
Average Emission Factors for Components

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Service</th>
<th>Emission Factor kg/hr/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valves</td>
<td>Gas</td>
<td>2.68E-02</td>
</tr>
<tr>
<td></td>
<td>Light Liquid</td>
<td>1.09E-02</td>
</tr>
<tr>
<td>Pump seals</td>
<td>Light Liquid</td>
<td>1.14E-01</td>
</tr>
<tr>
<td>Compressor seals</td>
<td>Gas</td>
<td>6.36E-01</td>
</tr>
<tr>
<td>Pressure relief valves</td>
<td>Gas</td>
<td>1.60E-01</td>
</tr>
<tr>
<td>Flanges and non-flanged connectors</td>
<td>All</td>
<td>2.50E-04</td>
</tr>
<tr>
<td>Open-ended lines</td>
<td>All</td>
<td>2.30E-03</td>
</tr>
<tr>
<td>Sampling connections</td>
<td>All</td>
<td>1.50E-02</td>
</tr>
</tbody>
</table>

Reference: [13]

Component counts

The count can be based on up-to-date piping and instrumentation diagrams, equipment lists, operating manuals or physical component counts. The count should include spare components if these are filled with process fluid and are pressurised.

If actual counts are not available, an extrapolation can be made from published information. An EPA report [32] cites an example of a US refinery of 52 500 m³/day capacity having 11 500 valves, 46 500 flanges, 350 pump seals, 70 compressor seals and 100 relief valves.

Alternatively, the CFA Code of Practice [12], Section 3.4.1, Table 3-1, provides the following “average” refinery data:

<table>
<thead>
<tr>
<th>Emission Source Component</th>
<th>Gas</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valves per pump or compressor</td>
<td>133</td>
<td>41</td>
</tr>
<tr>
<td>Flanges per valve</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Mixer seals per mixer</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Pump seals per pump</td>
<td>-</td>
<td>1.35</td>
</tr>
<tr>
<td>Compressor seals per compressor</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

13.5.2.2. No Component Data Available

A conservative emission factor can be used if no data on components are available:

Mass emitted (kg) = 2.00E-01 × Refinery feed (in tonnes)

Reference: [28], Chapter 1.B.2.a.iv, Table 3-6.
13.6. **OILY-WATER COLLECTION AND TREATMENT SYSTEMS**

Contaminated waste water systems principally comprise process drains and a water treatment facility, such as a gravity separator. The emissions from oily-water systems vary significantly with time, depending, for example, on the amount and volatility of the entrained oil, waste water temperature, flow, etc.

Emissions can be estimated for the entire system using complex models available as software packages (see Section 13.6.1).

Alternatively, the emissions from the process drains and the separator systems can be estimated separately (see Sections 13.6.2 and 13.6.3).

13.6.1. **Emission Estimation Models For Entire System**

There are a number of complex estimation models available to calculate emissions from waste water systems. They aim to estimate average emission rates of individual species for each of the system components, collectively permitting the determination of the overall emissions from a refinery wastewater collection and treatment system.

One such model is WATER9 which was developed by the US EPA. This is Windows based and consists of analytical expressions for estimating air emissions of individual waste constituents in waste water collection, storage, treatment, and disposal facilities. An EPA report [34] provides the mathematical equations used in this model. However, the US EPA advises that the WATER9 model was developed using software that is now outdated and because of this the model is not reliably functional on computers using certain operating systems. The software is still freely available [39] but the US EPA is no longer providing assistance to users.

The input data demands for WATER9 are large and require considerable sampling and analyses to be undertaken. Because of this complexity the US EPA developed a simplistic refinery wastewater emission tool (RWET) [42]. The equations used in this model are provided in the EPA emissions estimation protocol [44].

13.6.2. **Process Drains**

The following algorithm provides an estimate for emissions from the entire refinery process drain system in oily-water service. Note that drain systems on clean water (with minimal potential for contact with oil) and storm water are excluded.

Process drains and junction boxes are normally fitted with an emission control device such as a water seal or sealed cover. An assessment needs to be made to establish how many of the drain covers are unsealed and vent directly to atmosphere.

Mass emitted (kg) = 3.20E-02 × N × TIME

where:
N = number of unsealed drain openings in the refinery process drain system.
TIME = period of emission estimate in hours (for E-PRTR annual reports = 8760)

This factor excludes ethane emissions.

Reference: [12], Section 7.5.2, Table 7-3.
13.6.3. Oil-Water Separators

Emissions from separators can be determined using simple emission factors which are known to give conservatively high estimates. Alternatively, an algorithm can be used for uncovered gravity separators which requires, as a minimum, data on separator inlet flow and entrained oil concentration. Sampling and analysis thus have to be undertaken and due to the temporal variability of the input parameters the estimation accuracy will depend on the frequency of testing. A decision tree for supporting the selection of the methodology used by refineries in their estimation of annual VOC emissions from uncovered primary oil-water separator systems based on the results of the field campaigns reported in Concawe Report 5/14 [20] is provided in Figure 1.

13.6.3.1. Gravity Separator - where separator inlet monitoring data available

An estimate for the emissions from uncovered API type separators is provided by:

\[
\text{Mass emitted (kg) = 1.00E-04 \times D \times V \times (5.74 \times T_{\text{AMB}} - 5.15 \times T_{\text{DP}} + 38.6 \times T_{\text{WW}} + 33.6) \times \text{TIME}}
\]

where:
- \(D\) = liquid density of evaporated hydrocarbons (kg/m\(^3\)). If unknown, Concawe Report 5/14 [20] provides a default average value of 745 kg/m\(^3\).
- \(V\) = flow rate of hydrocarbons entering the separator (m\(^3\)/h). Calculated from data on waste water flow and concentration of hydrocarbons in the waste water.
- \(T_{\text{AMB}}\) = ambient water temperature (°C)
- \(T_{\text{DP}}\) = 10% distillation point (°C). If unknown, RIVM/MNP Handbook [58] provides a default average value of 150°C
- \(T_{\text{WW}}\) = Waste water temperature (°C)
- \(\text{TIME}\) = period of emission estimate in hours (for E-PRTR annual reports = 8760)

Reference: [56], developed in reference [58], Section 5.2.

Where a cover is fitted to a gravity separator, the emissions abatement efficiency can be assumed to be 97%. Reference [12], Section 7.5.2, Table 7-3.

13.6.3.2. Simple Algorithms

a) Where the quantity of water treated is unknown

\[
\text{Mass emitted (kg) = 2.00E-02 \times A \times \text{TIME}}
\]

where:
- \(A\) = exposed water area of separator (m\(^2\))
- \(\text{TIME}\) = period of emission estimate in hours (for E-PRTR annual reports = 8760)

b) Where the quantity of water treated is known

\[
\text{Mass emitted (kg) = EF_{\text{SEP}} \times VOL_{\text{WATER}}}
\]

where:
- \(EF_{\text{SEP}}\) = Emission factor for the type of separator given in Table 8.
- \(VOL_{\text{WATER}}\) = Volume of waste water treated by the separator (in m\(^3\)).
Table 8 Emission Factors for Oil-Water Separators

<table>
<thead>
<tr>
<th>SEPARATOR TYPE</th>
<th>EMISSION FACTOR (EF<sub>SEP</sub>)<sup>1</sup> kg/m<sup>3</sup> waste water treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity type - uncovered</td>
<td></td>
</tr>
<tr>
<td>Oil in water concentration <880 mg/l</td>
<td>2.25E-02</td>
</tr>
<tr>
<td>Oil in water concentration 880 - 3500 mg/l</td>
<td>1.11E-01</td>
</tr>
<tr>
<td>Oil in water concentration >3500 mg/l</td>
<td>6.00E-01</td>
</tr>
<tr>
<td>Gravity type - covered<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>Oil in water concentration <880 mg/l</td>
<td>6.75E-04</td>
</tr>
<tr>
<td>Oil in water concentration 880 - 3500 mg/l</td>
<td>3.30E-03</td>
</tr>
<tr>
<td>Oil in water concentration >3500 mg/l</td>
<td>1.80E-02</td>
</tr>
<tr>
<td>Gravity type - covered and connected to flare</td>
<td>0</td>
</tr>
<tr>
<td>DAF<sup>3</sup> or IAF<sup>4</sup> - uncovered<sup>5</sup></td>
<td>4.00E-03</td>
</tr>
<tr>
<td>DAF or IAF - covered<sup>5</sup></td>
<td>1.20E-04</td>
</tr>
<tr>
<td>DAF or IAF - covered and connected to flare</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
1. These factors exclude ethane emissions
2. Where the complete system has a tightly sealed cover installed with an assumed vapour retention efficiency of 97%. For other types of cover an efficiency of 90% can be assumed. For partly covered systems guidance is provided in Concawe Report 5/14 [20].
3. DAF = Dissolved air flotation type
4. IAF = Induced air flotation type
5. The emission factors for these types of separator apply where they are installed as secondary treatment systems.

Reference: [20], Section 6.5 and [12], Section 7.5, Table 7-3.

Emissions from basins and ponds that handle clean water or storm water are considered negligible.

For ponds temporarily storing oily-water, use the emission factor for an uncovered, gravity type separator from **Table 8**.
Figure 1 Decision tree for guidance in determining emissions from uncovered systems

Can quantity of recovered oil per annum be determined?

Yes

No

Is it possible to undertake regular sampling of ambient, water and free oil 10% distillation point (DP) temperatures and free oil density?

Yes

No

Can quantity of water treated per annum be determined?

Yes

No

Use factor (20 g/m2/h)

Compute annual average emissions from free oil using algorithm in 13.6.3.1 (Litchfield algorithm).

Can quantity of water treated be determined?

Yes

No - stop

Are any basins covered only by an oil sheen or have no surface oil at all?

Yes

No - stop

Consider undertaking regular sampling of water in these basins to determine composition of dissolved and emulsified oil. Use a model to determine VOC emissions. Sum with Litchfield result.

Are OIW concentrations assessed to average <880 mg/l?

Yes

No

Use factor (0.6 kg/m3_ww)

Compute emissions using Litchfield algorithm with OIW measured concentration or assessed average value.

No

Yes

Use factor (0.111 kg/m3_ww)

Use factor (0.0225 kg/m3_ww)
13.7. **COOLING WATER TOWERS**

Emissions from cooling water towers are considered negligible as sound refinery engineering practice ensures that oil is prevented from entering these systems.

Guidance on estimating emissions if a heat exchanger oil leak has occurred and monitoring data are unavailable is provided in the CFA Code of Practice [12], Section 7.9.5.

13.8. **LOADING OF MOBILE CONTAINERS**

Emissions from the loading of mobile containers (i.e. road tankers, rail tank cars, barges and marine tankers) depend upon the type of container being loaded and the degree of saturation of the vapour in the cargo tank. For example, uncontrolled emissions from road tankers depend upon the mode of loading (i.e. top loading with a drop pipe through an open hatch or bottom loading through pipework connected on the tanker) and if the tanker delivers product to a facility with a “vapour balancing” system installed. In this type of system, the vapours displaced from the storage tank being filled by the tanker are fed back into the tanker compartment to “balance” the off-loaded product. The tanker thus returns to the loading facility with the compartments filled with vapour.

Emissions from loading can be controlled with a vapour recovery unit (VRU) or thermal oxidiser. Algorithms for VRUs are given below. Emissions from thermal oxidisers can be calculated using the algorithms listed in this report for incinerators.

13.8.1. **Uncontrolled Emissions**

\[
\text{Mass emitted (kg)} = EF_{LOAD} \times VOL_{LOAD} \times TVP
\]

where:
- \(EF_{LOAD}\) = Emission Factor from Table 9, depending on loading mode.
- \(VOL_{LOAD}\) = Volume of product loaded (in \(m^3\)).
- \(TVP\) = True Vapour Pressure of product at loading temperature (in kPa).

Reference: [30], Section 2.

For gasolines, TVP can be calculated from:

\[
TVP = RVP \times 10^\left(\left(7.047E-06 \times RVP + 1.392E-02\right) \times TEMP + \left(2.311E-04 \times RVP - 5.236E-01\right)\right)
\]

where:
- \(RVP\) = Reid Vapour Pressure (in kPa)
- \(TEMP\) = product loading temperature (in degrees Centigrade)

Reference: [30], Annex 1.
Table 9 NMVOC Emission Factors for Loading of Mobile Containers

<table>
<thead>
<tr>
<th>LOADING MODE</th>
<th>EMISSION FACTOR EF\textsubscript{LOAD} kg/m3/kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Tanker, Bottom Loading</td>
<td>8.60E-03</td>
</tr>
<tr>
<td>No Vapour Balancing during Previous Off-Loading</td>
<td></td>
</tr>
<tr>
<td>Road Tanker, Top Loading</td>
<td>9.40E-03</td>
</tr>
<tr>
<td>No Vapour Balancing during Previous Off-Loading</td>
<td></td>
</tr>
<tr>
<td>Road Tanker, Bottom or Top Loading</td>
<td>2.28E-02</td>
</tr>
<tr>
<td>Vapour Balancing during Previous Off-Loading</td>
<td></td>
</tr>
<tr>
<td>Rail Tanker, Top Loading</td>
<td>1.08E-02</td>
</tr>
<tr>
<td>Rail Tanker, Bottom Loading</td>
<td>1.05E-02</td>
</tr>
<tr>
<td>Marine tanker - typical cargo tank condition2</td>
<td>3.91E-03</td>
</tr>
<tr>
<td>Barge - typical cargo tank condition2</td>
<td>7.45E-03</td>
</tr>
</tbody>
</table>

Notes:
1. During the top loading of rail tankers emissions occur from the open loading hatch both before and after loading \(\text{[30]}\). As there is no open hatch during bottom loading of a rail tanker, this factor assumes no pre- or post-loading emissions.
2. These factors are for typical cargo tank vapour conditions. For other situations (e.g. tank gas freed or ballasted, previous cargo non-volatile, etc.) specific emission factors are provided in EPA-publication AP-42 \(\text{[36]}\), Table 5.2-2 for the loading of gasoline with a TVP of 55 kPa. These factors should be pro-rated for the value of the TVP of the product loaded.

13.8.2. Emissions Controlled with a Vapour Recovery Unit (VRU)

VRUs may be fitted with a continuous emissions monitor (CEM) or the recovery efficiency may be known from tests.

13.8.2.1. VRU Fitted with a CEM

Mass emitted (kg) = 1.00E-03 × MEAS\textsubscript{CONC} × VOL\textsubscript{LOAD} × (1 - TVP / 100)

where:
MEAS\textsubscript{CONC} = Measured VRU vent concentration (in g/m3)
VOL\textsubscript{LOAD} = Volume of product loaded (in m3)
TVP = True Vapour Pressure of product at loading temperature (in kPa)

Reference: \(\text{[30]}\), Section 2.2.

13.8.2.2. VRU Efficiency Known

Emissions should be calculated using the algorithm in Section 6.1.

13.9. STORAGE TANKS

Emissions from storage tanks comprise two components:
 - Working loss; emissions due to the tank being filled (displacing vapours above the product stored) or emptied (evaporation of product “clinging” on tank internal walls)
- Standing losses: emissions due to the expansion of the vapour space in fixed roof tanks due to vapour temperature or pressure changes and leakage past equipment (e.g. seals, still wells, etc.) fitted to floating roofs.

13.9.1. Floating Roof Tanks

Floating roof tanks can be of the following types:
- External floating roof (EFR)
- EFR fitted with domed cover
- Internal floating roof (IFR)
 - fitted with open vents in the fixed roof
 - fitted with vents in the fixed roof which can be connected to a control device e.g. pressure/vacuum valves, a vapour recovery unit, etc.

For all of these tank types except IFR tanks which are not freely vented, use the latest edition of the API MPMS, Chapter 19.2 [7]. For IFR tanks fitted with vents which can be closed, guidance is provided in an API report [5] which shows that emissions from closed-vent internal floating roof tanks are approximately 5% less than emissions from internal floating roof tanks with open vents.

Methodologies to estimate the emissions when the roof has landed on its legs and is no longer floating on the product are provided in an API report [3].

13.9.2. Vertical Fixed Roof Tanks (VFRT)

For these tanks, use the latest edition of the API MPMS Chapter 19.1 [8].

13.9.2.1. VFRTs Connected to a Vapour Holding Tank (VHT)

A vapour holding tank comprises a fixed roof tank containing a flexible diaphragm. Where connected to a storage tank, a correctly sized VHT stores any emissions from the tank due to the rise in vapour temperature during the day, and then releases these vapours back to the tank as it cools at night. The VHT, therefore, controls the “standing losses”.

Emissions, therefore, can be assumed to equal only the “working losses”.

13.9.3. Aboveground Horizontal Tanks

For these tanks, use the latest edition of EPA publication AP-42 [41], Section 7.1.3.1.

13.9.4. Underground Tanks

Use the algorithms for service station storage tanks provided in Appendix 4.2.

13.9.5. Tank Cleaning

Guidance on the estimation of evaporative emissions during tank cleaning is provided in an API report [4].

13.9.6. Storage Tanks - General Comments

EPA publication AP-42, Chapter 7 [41] normally contains the latest versions of the API references [3], [7] and [8]. Emission calculation software (TANKS) utilising the
algorithms in reference [41] is available from the US EPA via their website, https://www.epa.gov/chief. The US EPA advise that this software is now outdated and is not reliably functional on computers using modern operating systems and therefore it is no longer providing assistance to users. Commercial software is, however, now available.

It should be noted that some options are provided in the algorithms in the API and EPA references [3], [5], [7], [8] and [41] to cover the state of equipment; e.g. degrees of rust on tank internal shells, tightness of floating roof seals, etc. Users of the algorithms, therefore, must ensure that the factors utilised to derive emissions for a particular tank are appropriate. In particular, the API states that the algorithms are only ‘applicable to properly maintained equipment under normal working conditions’

13.10. **UNCONTROLLED BLOWDOWN SYSTEMS**

The gaseous emissions from blowdown systems in EU refineries are recovered and/or flared.

If these controls are not operational and all of the emissions are released to atmosphere, the total hydrocarbons emissions can be conservatively estimated using the factor provided in the EPA publication AP-42 [36], Table 5.1-1.

13.11. **UNCONTROLLED BITUMEN BLOWING**

The gaseous emissions from bitumen blowing in EU refineries are controlled, for example using scrubbers and incinerators.

Where these controls are not operational and all of the emissions are emitted to atmosphere, the emissions can be estimated using the factor in the 2005 edition of the EEA Guidebook [27], Activities 040101 & 040102, Section 8.2.1, Table 8.2.
14. **NITROGEN OXIDES (NOx)**

Estimation methods are provided for emissions of NO\textsubscript{x} from:

- Combustion of fuels
- Destruction of gaseous streams in incinerators and flares
- Fluid catalytic cracking unit regenerators

Note that the Refinery BREF [26], Section 5.1.4, BAT 4 requires monitoring of NO\textsubscript{x} emissions, using the techniques and frequencies specified, from all combustion units and from fluid catalytic cracking units.

14.1. **COMBUSTION IN BOILERS AND FURNACES**

NO\textsubscript{x} emissions from combustion comprise two components:

- Thermal NO\textsubscript{x}; this is the thermal fixation of molecular nitrogen and is generally a function of flame temperature, residence time and oxygen concentration in the flame zone
- Fuel NO\textsubscript{x}; this is the result of the direct oxidation of the nitrogen in liquid fuels or the non-inert nitrogen containing species in gaseous fuels.

The following methodology is outlined in more detail, with an example, in a paper by Takacs et al [60].

Total NO\textsubscript{x} Emissions = Thermal NO\textsubscript{x} + Fuel NO\textsubscript{x}

Thermal NO\textsubscript{x}

Thermal NO\textsubscript{x} Mass emitted (kg) = $1.00\text{E-03} \times TNF \times M \times HHV$

where:
- TNF = Thermal NO\textsubscript{x} factor (in g/GJ)
- M = Mass of fuel combusted (in tonnes)
- HHV = Higher heating value of the fuel combusted (in MJ/kg)

For liquid fuels

\[HHV = 1.05 \times NCV \]

For gaseous fuels

\[HHV = 1.11 \times NCV \]

where NCV = Net calorific value (in MJ/kg)

\[TNF = F_{\text{BASE}} \times F_{\text{H2}} \times F_{\text{CONTROL}} \times F_{\text{PREHEAT}} \times F_{\text{H2O}} \times F_{\text{LOAD}} \times F_{\text{BURN}} \]

\(F_{\text{BASE}} \) is the base fuel factor. This accounts for differences in flame temperature due to fuel composition and is therefore dependent on the type of fuel burnt. Values for different fuels are given in Table 10.
Table 10 Values for F_{BASE}

<table>
<thead>
<tr>
<th>FUEL</th>
<th>F_{BASE} (g/GJ) (HHV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane, Natural Gas, LPG</td>
<td>56</td>
</tr>
<tr>
<td>Refinery Fuel Gas</td>
<td>69</td>
</tr>
<tr>
<td>Low Joule Gas</td>
<td>30</td>
</tr>
<tr>
<td>Refinery Fuel Oil, Distillates</td>
<td>56</td>
</tr>
</tbody>
</table>

F_{H_2} is the adjustment factor for the amount of hydrogen gas in the fuel.

For all liquid fuels, methane, natural gas and LPG: $F_{\text{H}_2} = 1.0$

For other refinery gaseous fuels, values for F_{H_2} are given for some hydrogen concentrations in Table 11. These can be used to extrapolate for other compositions.

Table 11 Values for F_{H_2}

<table>
<thead>
<tr>
<th>FUEL</th>
<th>H$_2$ CONCENTRATION % v/v</th>
<th>F_{H_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinery Fuel Gas</td>
<td>0 - 23</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>1.46</td>
</tr>
<tr>
<td>Low Joule Gas</td>
<td>0 - 14.7</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>24.7</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>34.7</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>54.7</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>74.7</td>
<td>1.46</td>
</tr>
</tbody>
</table>

F_{CONTROL} is the adjustment factor for at-the-source control technologies, including burner type. Values are given in Table 12.
Table 12 Values for F_{CONTROL}

<table>
<thead>
<tr>
<th>CONTROL TECHNOLOGY</th>
<th>F_{CONTROL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1.00</td>
</tr>
<tr>
<td>Low NOx burner, staged fuel</td>
<td>0.33</td>
</tr>
<tr>
<td>Low NOx burner, staged air</td>
<td>0.60</td>
</tr>
<tr>
<td>Ultra-low NOx burner</td>
<td>0.30</td>
</tr>
<tr>
<td>Flue Gas Recirculation</td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>1.00</td>
</tr>
<tr>
<td>5%</td>
<td>0.60</td>
</tr>
<tr>
<td>10%</td>
<td>0.40</td>
</tr>
<tr>
<td>15%</td>
<td>0.30</td>
</tr>
<tr>
<td>20%</td>
<td>0.20</td>
</tr>
</tbody>
</table>

F_{PREHEAT} is the adjustment factor for the average air preheat temperature. Values are given in Table 13.

Table 13 Values of F_{PREHEAT}

<table>
<thead>
<tr>
<th>AIR PREHEAT TEMPERATURE Degrees C</th>
<th>F_{PREHEAT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 38</td>
<td>1.00</td>
</tr>
<tr>
<td>38</td>
<td>1.00</td>
</tr>
<tr>
<td>93</td>
<td>1.10</td>
</tr>
<tr>
<td>149</td>
<td>1.32</td>
</tr>
<tr>
<td>204</td>
<td>1.60</td>
</tr>
<tr>
<td>260</td>
<td>1.86</td>
</tr>
</tbody>
</table>

$F_{\text{H}_2\text{O}}$ is the adjustment factor for the moisture content of the combustion air. Values are given in Table 14.
Table 14 Values of F_{H_2O}

| MOISTURE CONTENT
kg H_2O / kg dry air | F_{H_2O} |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>0.01</td>
<td>0.79</td>
</tr>
<tr>
<td>0.02</td>
<td>0.67</td>
</tr>
<tr>
<td>0.03</td>
<td>0.53</td>
</tr>
<tr>
<td>0.04</td>
<td>0.41</td>
</tr>
<tr>
<td>0.05</td>
<td>0.29</td>
</tr>
</tbody>
</table>

F_{LOAD} is the adjustment factor for the loading of the combustion unit. For dual fuel firing, the load is calculated using the total thermal input. Values are given in Table 15.

Table 15 Values of F_{LOAD}

<table>
<thead>
<tr>
<th>LOAD (% of design)</th>
<th>F_{LOAD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.55</td>
</tr>
<tr>
<td>60</td>
<td>0.70</td>
</tr>
<tr>
<td>80</td>
<td>0.85</td>
</tr>
<tr>
<td>100</td>
<td>1.00</td>
</tr>
</tbody>
</table>

F_{BURN} is the adjustment factor for the burner intensity, a measure of the heat release per volume of burner space. There is no precise measure for burner intensity. Where no combustion unit information on intensity is available, in general high intensity burners are used for packaged boilers and pyrolysis furnaces and low intensity burners are used for all other fired heaters and boilers. Where furnace (radiant cell) volume is known, then the classification can be ascertained from:

- High intensity is > 700 kW/m3
- Low intensity is < 30 kW/m3

Values for F_{BURN} are given in Table 16.

Table 16 Values for F_{BURN}

<table>
<thead>
<tr>
<th>BURNER INTENSITY</th>
<th>F_{BURN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>1.8</td>
</tr>
<tr>
<td>Low</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Fuel NOx

Fuel NOx Mass emitted (kg) = 1.00E-03 × FNF × M × HHV

where:
FNF = Fuel NOx factor (in g/GJ)
M = Mass of fuel combusted (in tonnes)
HHV = Higher Heating Value of the fuel combusted (in MJ/kg)

FNF = (1.00E+04 × MPNITROGEN × CFNMW × FN2CONTENT) / HHV

where:
MPNITROGEN = Mass Percentage of Nitrogen in the fuel combusted
CFNMW = Molecular weight conversion from N to NO2 = 46 / 14 = 3.286
FN2CONTENT = Adjustment factor for nitrogen content. Values are given in Table 17.

Table 17 Values for FN2CONTENT

<table>
<thead>
<tr>
<th>FUEL NITROGEN % m/m</th>
<th>FN2CONTENT</th>
<th>Uncontrolled Burner</th>
<th>Low-NOx burner with staged air</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.05</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.05</td>
<td>0.87</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.78</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.53</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.38</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.32</td>
<td>0.251</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Reference: [54] - value corrected from that published in reference [60].

Combining the above equations:

Fuel NOx Mass emitted (kg) = 32.86 × MPNITROGEN × FN2CONTENT × M

where:
MPNITROGEN = Mass Percentage of Nitrogen in the fuel combusted (see note below).
FN2CONTENT = Adjustment factor for nitrogen content. Values are given in Table 17.
M = Mass of fuel combusted (in tonnes)

Note: the mass percentage of nitrogen in gaseous fuels only relates to the nitrogen bound in the combustible components in the fuel (e.g. ammonia) and does not apply to molecular nitrogen (N2) where present as a gaseous fuel component.

Reference: [60].

14.2. GAS TURBINES

14.2.1. Natural Gas Combustion

Mass emitted (kg) = 1.53E-01 × M × NCV

where:
$M =$ mass of fuel gas burnt (in tonnes)
$NCV =$ net calorific value of the fuel burnt (in MJ/kg)

Reference: [37], Table 3.1-1. Factor derived from turbines operating at high loads ($\geq 80\%$).

14.2.2. Distillate Oil Combustion

Mass emitted (kg) = $3.98E-01 \times M \times NCV$

where:
$M =$ mass of distillate oil burnt (in tonnes)
$NCV =$ net calorific value of the fuel burnt (in MJ/kg)

Reference: [37], Table 3.1-1. Factor derived from turbines operating at high loads ($\geq 80\%$).

14.3. GAS ENGINES (4 STROKE, LEAN BURN)

Mass emitted (kg) = $4.05E-01 \times M \times NCV$

where:
$M =$ mass of fuel gas burnt (in tonnes)
$NCV =$ net calorific value of the fuel burnt (in MJ/kg)

Reference: [37], Table 3.2-2. Factor derived from engines operating at $< 90\%$ load.

14.4. DIESEL ENGINES (LARGE, STATIONARY)

Mass emitted (kg) = $1.45E+00 \times M \times NCV$

where:
$M =$ mass of diesel fuel burnt (in tonnes)
$NCV =$ net calorific value of the fuel burnt (in MJ/kg)

Reference: [37], Table 3.4-1.

14.5. COMBUSTION OF AUXILIARY AND PILOT FUELS

Auxiliary fuels are used to support combustion in, for example, CO boilers and incinerators. Pilots are used to initiate combustion in flares.

Mass emitted (kg) = $6.22E-02 \times M \times NCV$

where:
$M =$ mass of auxiliary/pilot fuel burnt (in tonnes)
$NCV =$ net calorific value of the fuel burnt (in MJ/kg)

This assumes emissions are equivalent to burning natural gas with dry combustion air in an uncontrolled furnace – see Section 14.1.

Reference: [60].
14.6. DESTRUCTION OF GASEOUS STREAMS

14.6.1. Flares

The following algorithms are for emissions from the combustion of the flare gas. For emissions from the combustion of the pilot gas fuel used to initiate flare combustion, use the algorithm in Section 14.5.

14.6.1.1. Flare Stream Details Known

If the mass and composition of the flare stream are known:

\[\text{Mass emitted (kg)} = 3.25 \times 10^{-2} \times M \times NCV \]

where:
- \(M \) = mass of flare gas burnt (in tonnes)
- \(NCV \) = net calorific value of the flare gas burnt (in MJ/kg)

Reference: [47], Table 13.5-1.

14.6.1.2. Flare Stream Details Unknown

If the mass and composition are not known and a flare gas recovery system is not installed, a conservative factor based on refinery feed can be used:

\[\text{Mass emitted (kg)} = 5.40 \times 10^{-2} \times \text{Refinery Feed (in m}^3\text{)} \]

Reference: [27], Activity 090203, Section 8, Table 2.

If a flare gas recovery system is installed it can be considered to be an emissions control device. The equation in Section 6.1 can be used (with \(EFF \) = flare gas recovery system efficiency) to adjust the emissions estimate obtained from the algorithm above.

14.6.2. Incineration of hydrocarbon gas streams

Use the algorithms in Section 14.1, assuming that the ‘fuel’ is low joule gas and that \(F_{\text{CONTROL}} \), \(F_{\text{PREHEAT}} \), \(F_{\text{LOAD}} \) and \(F_{\text{BURN}} \) all have a value of 1.0.

For emissions from the combustion of the auxiliary gas fuel used to support incinerator combustion, use the algorithm in Section 14.5.

14.7. FLUID CATALYTIC CRACKING UNIT REGENERATORS

For CCU regenerators, both with and without CO boilers:

\[\text{Mass emitted (kg)} = 2.04 \times 10^{-1} \times \text{Volume of fresh feed to unit (in m}^3\text{)} \]

Reference: [36], Section 5.1, Table 5.1-1.
15. SULPHUR HEXAFLUORIDE (SF$_6$)

Emissions of sulphur hexafluoride (SF$_6$) may occur due to its use as a tracer gas or from leaks from high voltage electrical equipment where this gas is used as an insulator.

Emissions are assumed to equal the amount used and not recovered during test procedures and/or the mass used to top-up or refill equipment.

\[\text{Mass emitted (kg)} = \text{Mass used (in kg)} \]
16. OXIDES OF SULPHUR (SOx)

The E-PRTR requires estimates of the total oxides of sulphur (SO$_2$ and SO$_3$) reported as SO$_2$.

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in incinerators and flares
- Fluid catalytic cracking unit regenerators
- Catalytic reforming units

Note that the Refinery BREF [26], Section 5.1.4, BAT 4 requires monitoring of SO$_x$ emissions, using the techniques and frequencies specified, from all combustion units, fluid catalytic cracking units and sulphur recovery units.

16.1. COMBUSTION

For all fuel combustion, the following algorithm applies:

\[
\text{Mass emitted (kg)} = 1000 \times M \times MF_s \times SF_{MW}
\]

where:
- \(M\) = mass of fuel burnt (in tonnes)
- \(MF_s\) = mass fraction of sulphur in fuel
- \(SF_{MW}\) = Molecular weight conversion from S to SO$_2$ = 64/32

This assumes that all the sulphur in the fuel is converted to SO$_2$.

For refinery oil and gaseous fuels:

\[
\text{Mass emitted (kg)} = 2.00E+03 \times M \times MF_s
\]

Reference: [31], Section 4.1.1.1.

16.2. DESTRUCTION OF GASEOUS STREAMS

16.2.1. Flares

The following algorithms are for emissions from the combustion of the flare gas. For emissions from the combustion of the pilot gas fuel used to initiate flare combustion, use the algorithm in Section 16.1.

16.2.1.1. Flare Stream Details Known

If the mass and composition of the flare stream are known, use algorithm in Section 16.1, where:
- \(M\) = mass of flare gas burnt (in tonnes)
- \(MF_s\) = mass fraction of sulphur in flare gas
16.2.1.2. **Flare Stream Details Unknown**

If the mass and composition are not known, a conservative factor based on refinery feed can be used. This assumes that a flare gas recovery system is not installed:

\[
\text{Mass emitted (kg)} = 7.70 \times 10^{-2} \times \text{Refinery Feed (in m}^3)\]

Reference: [27], Activity 090203, Section 8, Table 2.

If a flare gas recovery system is installed it can be considered to be an emissions control device. The equation in Section 6.1 can be used (with EFF = flare gas recovery system efficiency) to adjust the emissions estimate obtained from the algorithm above.

16.2.2. **Incinerators**

For the incineration of gas streams, including that from a sulphur plant if the gas composition is known, use the algorithm in Section 16.1, where:

\[
M = \text{mass of gas incinerated} \\
MF_S = \text{mass fraction of sulphur in gas incinerated}
\]

For emissions from the combustion of the auxiliary gas fuel used to support incinerator combustion, also use the algorithm in Section 16.1.

16.2.2.1. **Sulphur Plant Tail Gas Incinerator**

For a sulphur plant, if the composition of the gas stream is unknown, emissions can be determined from the sulphur balance across the plant.

\[
\text{Mass emitted (kg)} = \frac{(100 - \text{ERC} \times \text{EFF})}{\text{ERC} \times \text{EFF}} \times \text{PROD} \times SF_{\text{MW}} \times 1000
\]

where:

\[
\text{ERC} = \text{recovery efficiency (in %)} \\
\text{PROD} = \text{sulphur production (in tonnes)} \\
SF_{\text{MW}} = \text{Molecular weight conversion from S to SO}_2 = 64/32
\]

Reference: [43], Section 8.13, Table 8.13-1.

16.3. **FLUID CATALYTIC CRACKING UNIT REGENERATORS**

For CCU regenerators, the emissions can be determined using coke sulphur content data. If these are not available, a less accurate emission factor can be used.

Where DeSOx catalyst additive is used, the abatement effect of this on the emissions should be taken into account using the algorithm in Section 6.1 with the value of EFF being the SOx percentage removal efficiency.

The following emission estimation algorithms are applicable both with and without CO boilers.

16.3.1. **Coke sulphur content known**

\[
\text{Mass emitted (kg)} = 2.00 \times 10^3 \times M \times MF_{\text{SFEED}} \times MF_{\text{SCOKE}}
\]

where:

\[
M = \text{mass of feed to unit (in tonnes)}
\]
MF_{FEED} = mass fraction of sulphur in feed
MF_{SCoke} = mass fraction of sulphur in coke

Reference: [12], Section 15.3.1.4.

16.3.2. Coke sulphur content not known

Mass emitted (kg) = 1.41E+00 × Volume of fresh feed to unit (in m³)

Reference: [36], Section 5.1, Table 5.1-1.

16.4. CATALYTIC REFORMING UNITS

Mass emitted (kg) = 3.63E-03 × Volume of feed to unit (in m³)

Reference: [11], Table 1. This reference uses data from a number of units with varying degrees of abatement equipment installed - see Section 6.3.
17. HYDROCHLOROFLUOROCARBONS (HCFC)

Hydrochlorofluorocarbons (HCFCs) may be used as refrigerants in refinery thermal exchange equipment.

Emissions are assumed to equal the amount used during the reporting period to top-up systems to replenish losses due to uncontrolled leakage.

Mass emitted (kg) = Mass used to top-up refrigerant systems (in kg)

Usage where the systems have been fully or partially drained and refrigerants collected for recycling or destruction should not be reported.
18. **ARSENIC (As)**

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in flares and incinerators
- Fluid catalytic cracking unit regenerators
- Fluid cokers

18.1. **COMBUSTION OF FUELS**

Mass emitted (kg) = \((EF_{NCV} \times M \times NCV) / 1000 \)

where:
- \(EF_{NCV} \) = Emission factor (in g/GJ)
- \(M \) = mass of fuel combusted (in tonnes)
- \(NCV \) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(EF_{NCV} \) are provided in Table 18.

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(EF_{NCV}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>1.81E-03</td>
<td>[38] Section 1.3, Table 1.3-10</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil(^1)</td>
<td>3.98E-03</td>
<td>[38] Section 1.3, Table 1.3-11</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.20E-04</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>3.52E-04</td>
<td>[23]</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (gas oil)</td>
<td>2.30E-06</td>
<td>[28] Section 1.A.1 Table 3.18</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.20E-04</td>
<td>[28] Section 1.A.1 Table 3.17</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>5.00E-05</td>
<td>[28] Section 1.A.1 Table 4-7</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>Natural Gas</td>
<td>1.20E-04</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
</tbody>
</table>

Notes:
1. It is recommended that, where available, the arsenic content of the fuel oil is used to estimate emissions, making the assumption that all of the arsenic is emitted to atmosphere.

18.2. **DESTRUCTION OF HYDROCARBON GAS STREAMS**

For flare and incinerator hydrocarbon gas streams, use the algorithm in Section 18.1 with an emission factor \(EF_{NCV} \) equal to that for fuel gas combustion in a furnace.
For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 18.1.

18.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS

\[\text{Mass emitted (kg)} = 1.39 \times 10^{-5} \times \text{Volume of fresh feed to unit (in m}^3) \]

This algorithm has been derived from speciation data for total particulate matter in FCCU vents. It is for a unit with cyclone systems installed inside the regenerator vessel - see Section 6.2.

Reference: [31], Section 4.2.3, Tables 10 and 11.

18.4. FLUID COKERS

\[\text{Mass emitted (kg)} = 2.16 \times 10^{-3} \times \text{Volume of fresh feed to unit (in m}^3) \]

This algorithm has been derived from speciation data for total particulate matter in fluid coker vents.

Reference: [31], Section 4.2.3, Tables 10 and 11.
19. **CADMIUM (Cd)**

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in flares and incinerators
- Fluid catalytic cracking unit regenerators

19.1. **COMBUSTION OF FUELS**

Mass emitted (kg) = \((\text{EF}_{\text{NCV}} \times M \times \text{NCV}) / 1000 \)

where:
- \(\text{EF}_{\text{NCV}} \) = Emission factor (in g/GJ)
- \(M \) = mass of fuel combusted (in tonnes)
- \(\text{NCV} \) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(\text{EF}_{\text{NCV}} \) are provided in Table 19.

Table 19
Cd Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(\text{EF}_{\text{NCV}}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>1.36E-03</td>
<td>[38] Section 1.3, Table 1.3-10</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil (^1)</td>
<td>1.20E-03</td>
<td>[38] Section 1.3, Table 1.3-11</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>2.50E-07</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>2.19E-03</td>
<td>[23]</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (gas oil)</td>
<td>1.20E-06</td>
<td>[28] Section 1.A.1 Table 3.18</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>2.50E-07</td>
<td>[28] Section 1.A.1 Table 3.17</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas (^2)</td>
<td>2.52E-03</td>
<td>[1], [2]</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>3.00E-06</td>
<td>[28] Section 1.A.1 Table 4-7</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>Natural Gas</td>
<td>2.50E-07</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
</tbody>
</table>

Notes:
1. It is recommended that, where available, the cadmium content of the fuel oil is used to estimate emissions, making the assumption that all of the cadmium is emitted to atmosphere.
2. Reference [1] is base document, but reference [2] provides the same emission factors to more significant figures.
3. Factor derived from gas turbines without duct burners.
19.2. DESTRUCTION OF HYDROCARBON GAS STREAMS

For flare and incinerator hydrocarbon gas streams, use the algorithm in Section 19.1, with an emission factor E_{NCV} equal to that for fuel gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 19.1.

19.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS

Mass emitted (kg) = 6.25E-05 × Volume of fresh feed to unit (in m3)

This algorithm has been derived from speciation data for total particulate matter in FCCU vents. It is for a unit with cyclone systems installed inside the regenerator vessel - see Section 6.2.

Reference: [31], Section 4.2.3, Tables 10 and 11.
20. CHROMIUM (Cr)

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in flares and incinerators

20.1. COMBUSTION OF FUELS

\[
\text{Mass emitted (kg)} = \left(\text{EF}_{\text{NCV}} \times M \times \text{NCV} \right) / 1000
\]

where:
- \(\text{EF}_{\text{NCV}} \) = Emission factor (in g/GJ)
- \(M \) = mass of fuel combusted (in tonnes)
- \(\text{NCV} \) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(\text{EF}_{\text{NCV}} \) are provided in Table 20.

Table 20 Cr Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(\text{EF}_{\text{NCV}}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>1.36E-03</td>
<td>[38] Section 1.3, Table 1.3-10</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil(^1)</td>
<td>1.48E-02</td>
<td>[1], [2](^2)</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>7.60E-07</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>6.69E-03</td>
<td>[23]</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (gas oil)</td>
<td>2.80E-04</td>
<td>[28] Section 1.A.1 Table 3-18</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>7.60E-07</td>
<td>[28] Section 1.A.1 Table 3-17</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas(^3)</td>
<td>6.26E-03</td>
<td>[1], [2](^2)</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>5.00E-05</td>
<td>[28] Section 1.A.1 Table 4-7</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>Natural Gas</td>
<td>7.60E-07</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
</tbody>
</table>

Notes:
1. It is recommended that, where available, the chromium content of the fuel oil is used to estimate emissions, making the assumption that all of the chromium is emitted to atmosphere.
2. Reference [1] is base document, but reference [2] provides the same emission factors to more significant figures.
3. Factor derived from gas turbines without duct burners.
20.2. DESTRUCTION OF HYDROCARBON GAS STREAMS

For flare and incinerator hydrocarbon gas streams, use the algorithm in Section 20.1 with an emission factor EF_NCV equal to that for fuel gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 20.1.
21. COPPER (Cu)

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in flares and incinerators
- Fluid catalytic cracking unit regenerators
- Fluid cokers

21.1. COMBUSTION OF FUELS

Mass emitted (kg) = ($EF_{NCV} \times M \times NCV$) / 1000

where:
EF_{NCV} = Emission factor (in g/GJ)
M = mass of fuel combusted (in tonnes)
NCV = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor EF_{NCV} are provided in Table 21.

Table 21: Cu Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distillate (gas oil)</td>
</tr>
<tr>
<td>Refinery Fuel Oil¹</td>
</tr>
<tr>
<td>Natural Gas</td>
</tr>
<tr>
<td>Refinery Fuel Gas</td>
</tr>
<tr>
<td>Distillate (gas oil)</td>
</tr>
<tr>
<td>Natural Gas</td>
</tr>
<tr>
<td>Refinery Fuel Gas³</td>
</tr>
<tr>
<td>Natural Gas</td>
</tr>
<tr>
<td>Natural Gas</td>
</tr>
</tbody>
</table>

Notes:
1. It is recommended that, where available, the copper content of the fuel oil is used to estimate emissions, making the assumption that all of the copper is emitted to atmosphere.
2. Reference [1] is base document, but reference [2] provides the same emission factors to more significant figures.
3. Factor derived from gas turbines without duct burners.
21.2. **DESTRUCTION OF HYDROCARBON GAS STREAMS**

For flare and incinerator hydrocarbon gas streams, use the algorithm in Section 21.1 with an emission factor \(\text{EF}_{\text{NCV}} \) equal to that for fuel gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 21.1.

21.3. **FLUID CATALYTIC CRACKING UNIT REGENERATORS**

Mass emitted (kg) = \(1.39\times10^{-4} \times \text{Volume of fresh feed to unit (in m}^3\text{)} \)

This algorithm has been derived from speciation data for total particulate matter in FCCU vents. It is for a unit with cyclone systems installed inside the regenerator vessel - see Section 6.2.

Reference: [31], Section 4.2.3, Tables 10 and 11.

21.4. **FLUID COKERS**

Mass emitted (kg) = \(1.50\times10^{-5} \times \text{Volume of fresh feed to unit (in m}^3\text{)} \)

This algorithm has been derived from speciation data for total particulate matter in fluid coker vents.

Reference: [31], Section 4.2.3, Tables 10 and 11.
22. MERCURY (Hg)

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in flares and incinerators
- Fluid catalytic cracking unit regenerators
- Fluid cokers

22.1. COMBUSTION OF FUELS

Mass emitted (kg) = \((EF_{NCV} \times M \times NCV) / 1000\)

where:
- \(EF_{NCV}\) = Emission factor (in g/GJ)
- \(M\) = mass of fuel combusted (in tonnes)
- \(NCV\) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(EF_{NCV}\) are provided in Table 22.

Table 22 Hg Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(EF_{NCV}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>1.36E-03</td>
<td>[38] Section 1.3, Table 1.3-10</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>Not Detected(^1)</td>
<td>[1], [2](^2)</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.00E-04</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>3.72E-04</td>
<td>[23]</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (gas oil)</td>
<td>5.30E-05</td>
<td>[28] Section 1.A.1 Table 3-18</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.00E-04</td>
<td>[28] Section 1.A.1 Table 3-17</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas(^3)</td>
<td>7.31E-03</td>
<td>[1], [2](^2)</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>1.00E-04</td>
<td>[28] Section 1.A.1 Table 4-7</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>Natural Gas</td>
<td>1.00E-04</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
</tbody>
</table>

Notes:
1. Compound was not detected. Emission factor stated in reference [1] represents the detection limit. For the purposes of this report the emission factor is considered to be zero as the source is not proven (See Section 5.2 of this report).
2. Reference [1] is base document, but reference [2] provides the same emission factors to more significant figures.
3. Factor derived from gas turbines without duct burners
22.2. **DESTRUCTION OF HYDROCARBON GAS STREAMS**

For flare and incinerator hydrocarbon gas streams, use the algorithm in Section 22.1 with an emission factor \(E_{FNCV}\) equal to that for fuel gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 22.1.

22.3. **FLUID CATALYTIC CRACKING UNIT REGENERATORS**

\[
\text{Mass emitted (kg)} = 6.95E-05 \times \text{Volume of fresh feed to unit (in m}^3\text{)}
\]

This algorithm has been derived from speciation data for total particulate matter in FCCU vents. It is for a unit with cyclone systems installed inside the regenerator vessel - see Section 6.2.

Reference: [31], Section 4.2.3, Tables 10 and 11.

22.4. **FLUID COKERS**

\[
\text{Mass emitted (kg)} = 3.00E-05 \times \text{Volume of fresh feed to unit (in m}^3\text{)}
\]

This algorithm has been derived from speciation data for total particulate matter in fluid coker vents.

Reference: [31], Section 4.2.3, Tables 10 and 11.
23. **NICKEL (Ni)**

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in flares and incinerators
- Fluid catalytic cracking unit regenerators
- Fluid cokers

Note that the Refinery BREF [26, Section 5.1.4, BAT 4 requires monitoring, at the specified frequencies, of nickel emissions from all combustion units firing liquid fuels and from fluid catalytic cracking units.

23.1. COMBUSTION OF FUELS

Mass emitted (kg) = (EF\(_{\text{NCV}}\times M \times \text{NCV}) / 1000

where:
- \(\text{EF}_{\text{NCV}}\) = Emission factor (in g/GJ)
- \(M\) = mass of fuel combusted (in tonnes)
- \(\text{NCV}\) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(\text{EF}_{\text{NCV}}\) are provided in **Table 23**.

Table 23
Ni Emission Factors for Combustion Sources

| SOURCE | FUEL | \(\text{EF}_{\text{NCV}}\)
\(\text{g/GJ}\) | REF |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>1.36E-03</td>
<td>[38] Section 1.3, Table 1.3-10</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil(^1)</td>
<td>7.73E-01</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>5.10E-07</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>7.37E-03</td>
<td>[23]</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (gas oil)</td>
<td>2.30E-06</td>
<td>[28] Section 1.A.1 Table 3-18</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>5.10E-07</td>
<td>[28] Section 1.A.1 Table 3-17</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas(^2)</td>
<td>7.93E-02</td>
<td>[1, 2]</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>5.00E-05</td>
<td>[28] Section 1.A.1 Table 4-7</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>Natural Gas</td>
<td>5.10E-07</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
</tbody>
</table>

Notes:
1. It is recommended that, where available, the nickel content of the fuel oil is used to estimate emissions, making the assumption that all of the nickel is emitted to atmosphere.
2. Factor derived from gas turbines without duct burners.
3. Reference [1] is base document, but reference [2] provides the same emission factors to more significant figures.
23.2. DESTRUCTION OF HYDROCARBON GAS STREAMS

For flare and incinerator hydrocarbon gas streams, use the algorithm in Section 23.1 with an emission factor E_{FNCV} equal to that for fuel gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 23.1.

23.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS

Mass emitted (kg) = 6.12E-04 × Volume of fresh feed to unit (in m3)

This algorithm has been derived from speciation data for total particulate matter in FCCU vents. It is for a unit with cyclone systems installed inside the regenerator vessel - see Section 6.2.

Reference: [31], Section 4.2.3, Tables 10 and 11.

23.4. FLUID COKERS

Mass emitted (kg) = 5.70E-04 × Volume of fresh feed to unit (in m3)

This algorithm has been derived from speciation data for total particulate matter in fluid coker vents.

Reference: [31], Section 4.2.3, Tables 10 and 11.
24. LEAD (Pb)

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in flares and incinerators
- Fluid catalytic cracking unit regenerators
- Fluid cokers

24.1. COMBUSTION OF FUELS

\[
\text{Mass emitted (kg)} = \left(\frac{\text{EF}_{\text{NCV}} \times M \times \text{NCV}}{1000} \right)
\]

where:
- \(\text{EF}_{\text{NCV}}\) = Emission factor (in g/GJ)
- \(M\) = mass of fuel combusted (in tonnes)
- \(\text{NCV}\) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(\text{EF}_{\text{NCV}}\) are provided in Table 24.

Table 24 Pb Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(\text{EF}_{\text{NCV}}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>4.07E-03</td>
<td>[38] Section 1.3, Table 1.3-10</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil(^{1})</td>
<td>4.56E-03</td>
<td>[38] Section 1.3, Table 1.3-11</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.50E-06</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>1.61E-03</td>
<td>[23]</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (gas oil)</td>
<td>6.90E-06</td>
<td>[28] Section 1.A.1 Table 3-18</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.50E-06</td>
<td>[28] Section 1.A.1 Table 3-17</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas(^{2})</td>
<td>1.36E-02</td>
<td>[1], [2]</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>4.00E-05</td>
<td>[28] Section 1.A.1 Table 4-7</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>Natural Gas</td>
<td>1.50E-06</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
</tbody>
</table>

Notes:
1. It is recommended that, where available, the lead content of the fuel oil is used to estimate emissions, making the assumption that all of the lead is emitted to atmosphere.
2. Factor derived from gas turbines without duct burners.
3. Reference [1] is base document, but reference [2] provides the same emission factors to more significant figures.
24.2. DESTRUCTION OF HYDROCARBON GAS STREAMS

For flare and incinerator hydrocarbon gas streams, use the algorithm in Section 24.1 with an emission factor EF_{NCV} equal to that for fuel gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support incineration, also use the algorithm in Section 24.1.

24.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS

Mass emitted (kg) = $3.20E-04 \times$ Volume of fresh feed to unit (in m3)

This algorithm has been derived from speciation data for total particulate matter in FCCU vents. It is for a unit with cyclone systems installed inside the regenerator vessel - see Section 6.2.

Reference: [31], Section 4.2.3, Tables 10 and 11.

24.4. FLUID COKERS

Mass emitted (kg) = $4.50E-05 \times$ Volume of fresh feed to unit (in m3)

This algorithm has been derived from speciation data for total particulate matter in fluid coker vents.

Reference: [31], Section 4.2.3, Tables 10 and 11.
25. **ZINC (Zn)**

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in flares and incinerators
- Fluid catalytic cracking unit regenerators
- Fluid cokers

25.1. **COMBUSTION OF FUELS**

Mass emitted (kg) = \((E_{\text{NCV}} \times M \times NCV) / 1000 \)

where:
- \(E_{\text{NCV}} \) = Emission factor (in g/GJ)
- \(M \) = mass of fuel combusted (in tonnes)
- \(NCV \) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(E_{\text{NCV}} \) are provided in Table 25.

Table 25
Zn Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(E_{\text{NCV}}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>1.81E-03</td>
<td>[38] Section 1.3, Table 1.3-10</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil(^1)</td>
<td>4.93E-02</td>
<td>[1], [2](^2)</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.50E-06</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>1.70E-02</td>
<td>[23]</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (gas oil)</td>
<td>4.40E-04</td>
<td>[28] Section 1.A.1 Table 3-18</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>1.50E-06</td>
<td>[28] Section 1.A.1 Table 3-17</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas(^3)</td>
<td>2.38E+00</td>
<td>[1], [2](^2)</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>2.91E-03</td>
<td>[28] Section 1.A.1 Table 4-7</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>Natural Gas</td>
<td>1.50E-06</td>
<td>[28] Section 1.A.1, Table 4-6</td>
</tr>
</tbody>
</table>

Notes:
1. It is recommended that, where available, the zinc content of the fuel oil is used to estimate emissions, making the assumption that all of the zinc is emitted to atmosphere.
2. Reference [1] is base document, but reference [2] provides the same emission factors to more significant figures.
3. Factor derived from gas turbines without duct burners.
25.2. DESTRUCTION OF HYDROCARBON GAS STREAMS

For flare and incinerator hydrocarbon gas streams, use the algorithm in Section 25.1 with an emission factor E_{HC}^{NCV} equal to that for fuel gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support flaring or incineration, also use the algorithm in Section 25.1.

25.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS

Mass emitted (kg) = $1.18\times10^{-4} \times \text{Volume of fresh feed to unit (in m}^3\text{)}$

This algorithm has been derived from speciation data for total particulate matter in FCCU vents. It is for a unit with cyclone systems installed inside the regenerator vessel - see Section 6.2.

Reference: [31], Section 4.2.3, Tables 10 and 11.

25.4. FLUID COKERS

Mass emitted (kg) = $4.50\times10^{-5} \times \text{Volume of fresh feed to unit (in m}^3\text{)}$

This algorithm has been derived from speciation data for total particulate matter in fluid coker vents.

Reference: [31], Section 4.2.3, Tables 10 and 11.
26. **DIOXINS AND FURANS (PCDD AND PCDF)**

Dioxins and furans are only produced during combustion processes under specific conditions and where chlorine is present. Estimation methods are provided for emissions from:
- Combustion of fuel oil
- Catalytic reforming units

The emission factors for each of the 17 isomers of PCDD and PCDF have been multiplied by the Toxic Equivalence Factor (TEF) in Table 26 to give the emission factor in g I-TEQ (Toxic Equivalent to the most toxic isomer 2,3,7,8-CDD).

26.1. COMBUSTION OF FUEL OIL

Mass emitted (kg) = \((\text{EF}_{\text{NCV}} \times M \times \text{NCV}) / 1000\)

where:
- \(\text{EF}_{\text{NCV}}\) = Emission factor (in g I-TEQ/GJ)
- \(M\) = mass of fuel combusted (in tonnes)
- \(\text{NCV}\) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(\text{EF}_{\text{NCV}}\) are provided in Table 26.

Table 26

<table>
<thead>
<tr>
<th>ISOMER</th>
<th>I-TEF</th>
<th>Emission Factor (lb/MMBtu (HHV))</th>
<th>Emission Factor (g I-TEQ/GJ (NCV))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxin 4D 2378</td>
<td>1</td>
<td>Not detected</td>
<td>0</td>
</tr>
<tr>
<td>Dioxin 5D 12378</td>
<td>0.5</td>
<td>Not detected</td>
<td>0</td>
</tr>
<tr>
<td>Dioxin 6D 123478</td>
<td>0.1</td>
<td>Not detected</td>
<td>0</td>
</tr>
<tr>
<td>Dioxin 6D 123678</td>
<td>0.1</td>
<td>2.50E-12</td>
<td>1.13E-10</td>
</tr>
<tr>
<td>Dioxin 6D 123789</td>
<td>0.1</td>
<td>2.50E-12</td>
<td>1.13E-10</td>
</tr>
<tr>
<td>Dioxin 7D 1234678</td>
<td>0.01</td>
<td>2.12E-11</td>
<td>9.59E-11</td>
</tr>
<tr>
<td>Dioxin 8D</td>
<td>0.001</td>
<td>5.10E-10</td>
<td>2.31E-10</td>
</tr>
<tr>
<td>Furan 4F 2378</td>
<td>0.1</td>
<td>5.54E-12</td>
<td>2.51E-10</td>
</tr>
<tr>
<td>Furan 5F 12378</td>
<td>0.05</td>
<td>Not detected</td>
<td>0</td>
</tr>
<tr>
<td>Furan 5F 23478</td>
<td>0.5</td>
<td>Not detected</td>
<td>0</td>
</tr>
<tr>
<td>Furan 6F 123478</td>
<td>0.1</td>
<td>2.48E-12</td>
<td>1.12E-10</td>
</tr>
<tr>
<td>Furan 6F 123678</td>
<td>0.1</td>
<td>1.86E-12</td>
<td>8.42E-11</td>
</tr>
<tr>
<td>Furan 6F 123789</td>
<td>0.1</td>
<td>Not detected</td>
<td>0</td>
</tr>
<tr>
<td>Furan 6F 234678</td>
<td>0.1</td>
<td>3.74E-12</td>
<td>1.69E-10</td>
</tr>
<tr>
<td>Furan 7F 1234678</td>
<td>0.01</td>
<td>9.79E-12</td>
<td>4.43E-11</td>
</tr>
<tr>
<td>Furan 7F 1234789</td>
<td>0.01</td>
<td>Not detected</td>
<td>0</td>
</tr>
<tr>
<td>Furan 8F</td>
<td>0.001</td>
<td>4.86E-11</td>
<td>2.20E-11</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>1.24E-09</td>
</tr>
</tbody>
</table>

Notes:
1. Compound was not detected. The emission factor stated in reference [1] is based on the detection limit. For the purposes of this report, the emission factor is considered to be zero as the source was not proven (See Section 5.2 of this report).

Reference: [1].
26.2. CATALYTIC REFORMING UNIT REGENERATORS

There are very few data available for the emissions from these units. The US EPA [40] provides emission factors derived from tests on units with different modes of catalyst regeneration – continuous and semi-regenerative.

Note that the Refinery BREF [26], Section 5.1.4, BAT 4 requires direct measurement of PCCD/F emissions, at the frequency specified, from catalytic reformers.

26.2.1. Continuous Regeneration Mode

Mass emitted (kg I-TEQ) = 1.91E-11 × Volume of feed to unit (in m³)

Reference: [40], Table 5-9.

26.2.2. Semi-Regenerative Mode

Mass emitted (kg [40]-TEQ) = 6.35E-15 × Volume of feed to unit (in m³)

Reference: [40], Table 5-9.
27. **BENZENE (C₆H₆)**

Benzene is emitted as a constituent of VOC evaporative or leakage (fugitive) emissions and from the combustion of flare streams, fuels e.g. in boilers and furnaces, and coke in FCCU regenerators and cokers.

Combustion emissions are typically negligible compared to fugitive emissions.

Fugitive emissions are diffuse in a large facility like a refinery. Although those from pressurised equipment can be determined from speciation data for each stream in the refinery and leak monitoring surveys, this requires considerable effort and does not cover emissions from systems such as tanks, drains, oil-water separators, etc. One measurement technique is to monitor occasionally the composition of NMVOCs in the ambient air at the fence line to determine the average benzene mass fraction.

Where this technique is not undertaken, an estimation method for fugitives is provided using a default value for the mass fraction of benzene. For completeness, algorithms are also provided for the minor sources.

27.1. **SPECIATED FENCELINE NMVOC DATA AVAILABLE**

In general, VOC fugitive sources are numerous but individually small e.g. from valves, drain systems, etc. To determine the benzene emitted by a facility, one approach is to take occasional ambient air samples at regular points around the boundary fence and establish the average benzene mass fraction of the NMVOCs measured. Care must be taken in the positioning of the samplers to ensure that they are not located near to local emission sources that may skew the results. Full details of a methodology are given in an EI Protocol [29].

The mass of benzene emitted by the facility is then calculated from:

\[
\text{Mass emitted (kg)} = \text{SUMCALC}_\text{NMVOC} \times \text{MF}_{\text{BENZENE}}
\]

where:
- \(\text{SUMCALC}_\text{NMVOC}\) = sum of the individual calculated masses of NMVOCs emitted (in kg) within the facility, as per Section 13.
- \(\text{MF}_{\text{BENZENE}}\) = Mass fraction of benzene (from fence line monitoring survey).

27.2. **NO SPECIATED FENCELINE NMVOC DATA AVAILABLE**

Where fence line monitoring is not undertaken, a value of \(\text{MF}_{\text{BENZENE}} = 1.72\% \text{ mass}\) can be used.

\[
\text{Mass emitted (kg)} = 1.72\text{E-02} \times \text{SUMCALC}_\text{NMVOC}
\]

where:
- \(\text{SUMCALC}_\text{NMVOC}\) = sum of the individual calculated masses of NMVOCs emitted (in kg) within the facility, as per Section 13.

Reference: [12], Section 15.5.3.3, Table 15-7.
27.3. ESTIMATION BY SOURCE

For completeness, algorithms are provided below for combustion sources and uncontrolled blowdown systems. The emission from the following combustion sources are typically negligible compared to fugitive sources:

- Combustion of fuels
- Destruction of gaseous streams in flares and incinerators
- Fluid catalytic cracking unit regenerators
- Fluid cokers

If some or all of the following algorithms are used, then the emissions are:

\[
\text{Mass emitted (kg)} = \text{Sum of emissions using algorithms below} + \text{Sum of emissions from all other sources using algorithms in Section 27.1 or 27.2}
\]

27.3.1. Combustion of Fuels

\[
\text{Mass emitted (kg)} = \left(EF_{NCV} \times M \times NCV \right) / 1000
\]

where:

- \(EF_{NCV} \) = Emission factor (in g/GJ)
- \(M \) = mass of fuel combusted (in tonnes)
- \(NCV \) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(EF_{NCV} \) are provided in Table 27.

Table 27 Benzene Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(EF_{NCV}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Refinery Fuel Oil</td>
<td>6.47E-04</td>
<td>[38] Section 1.3, Table 1.3-9</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>9.84E-04</td>
<td>[38] Section 1.4, Table 1.4-3</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>2.13E-03</td>
<td>[1]</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (Gas Oil)</td>
<td>2.49E-02</td>
<td>[37] Section 3.1, Table 3.1-4</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>5.73E-03</td>
<td>[37] Section 3.1, Table 3.1-3</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>2.10E-01</td>
<td>[37] Section 3.2, Table 3.2-2</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Gas</td>
<td>6.21E-01</td>
<td>[1], [21]</td>
</tr>
<tr>
<td>Diesel Engine Large, Stationary</td>
<td>Distillate (Gas Oil)</td>
<td>3.22E-01</td>
<td>[1], [21]</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>Natural Gas</td>
<td>9.84E-04</td>
<td>[38] Section 1.4, Table 1.4-3</td>
</tr>
</tbody>
</table>
Notes:
1. Factor represents the median value as the ratio of mean to median value > 10. See Section 5.3.
2. Factor derived from turbines operating at high (≥ 80%) loads.
4. Reference [1] is base document, but reference [2] provides the same emission factors to more significant figures.

27.3.2. Destruction of Hydrocarbon Gas Streams

The following algorithms are for emissions from the combustion of the flare or incinerator gas. For emissions from the combustion of the pilot gas fuel used to support flaring or incineration, use the algorithm in Section 27.3.1.

27.3.2.1. Flare Stream Details Known

If the mass and composition of the flare hydrocarbon gas stream are known:

\[
\text{Mass emitted (kg)} = 5.00 \times 10^{-3} \times M \times MF_{\text{BENZ}}
\]

where:
- \(M\) = total mass of gas flared (in tonnes)
- \(MF_{\text{BENZ}}\) = mass fraction of benzene in gas flared

This algorithm assumes that 0.5% of the hydrocarbons remain unburned in “well designed and operated flares, such as in refineries”.

Reference: [6], Section 4.6.

27.3.2.2. Flare Stream Details Unknown

If the mass and composition are not known and a flare gas recovery system is not installed, a conservative factor based on refinery feed can be used:

\[
\text{Mass emitted (kg)} = 1.66 \times 10^{-6} \times \text{Refinery Feed (in m}^3\text{)}
\]

Reference: Emission factor derived from [27], Activity 090203, Section 8, Table 2, and [31], Section 4.22, Table 9.

If a flare gas recovery system is installed it can be considered to be an emissions control device. The equation in Section 6.1 can be used (with \(EFF\) = flare gas recovery system efficiency) to adjust the emissions estimate obtained from the algorithm above.

27.3.2.3. Incinerators

If the destruction efficiency of the incinerator and the mass and composition of the hydrocarbon gas stream are known:

\[
\text{Mass emitted (kg)} = (100 - DE) \times 10 \times M \times MF_{\text{BENZ}}
\]

where:
- \(DE\) = incinerator destruction efficiency (%)
- \(M\) = total mass of gas incinerated (in tonnes)
- \(MF_{\text{BENZ}}\) = mass fraction of benzene in gas incinerated

Otherwise, use the algorithm in Section 27.3.1 with an emission factor \(EF_{\text{NCV}}\) equal to that for natural gas combustion in a furnace.
27.3.3. Fluid Catalytic Cracking Unit Regenerators

27.3.3.1. Full Burn Regeneration
Emissions of NMVOCs, and hence benzene, are considered negligible.

27.3.3.2. Partial Burn with CO Boiler
Emissions of NMVOCs, and hence benzene, are considered negligible.
Reference: [36], Table 5.1-1.

27.3.3.3. Partial Burn without CO Boiler
If the off-gas is not fed to a CO boiler, or it is not in operation:
\[
\text{Mass emitted (in kg)} = 8.04E-04 \times \text{Mass of coke burned (in tonnes)}
\]
Reference: [10], Table 1. This reference provides data on the number of data points both above and below the limit of detection. The emission factor is a weighted value using both sets of data - see Section 5.2 of this report.

27.3.4. Fluid Cokers

27.3.4.1. Emissions Controlled with CO or Fired Waste Heat Boiler
Emissions of NMVOCs, and hence benzene, are considered negligible.
Reference: [36], Table 5.1-1.

27.3.4.2. Non-Controlled Emissions
If the off-gas is not fed to a CO or fired waste heat boiler, or it is not in operation:
\[
\text{Mass emitted (in kg)} = 1.75E-04 \times \text{Feed to unit (in m}^3\text{)}
\]
This assumes that benzene makes up 0.38% by mass of the VOCs in the vented gas.
Reference: [31], Section 4.2.1, Table 8 and Section 4.2.2, Table 9.

27.3.5. Uncontrolled Blowdown System
The gaseous emissions from blowdown systems in EU refineries are recovered and/or flared.

If these controls are not operational and all of the emissions are released to atmosphere, the benzene emissions can be conservatively estimated using the factor provided in EPA publication AP-42 [36], Table 5.1-1 to determine total hydrocarbon (THC) emissions and assuming that benzene makes up 0.38% by mass of the THCs in the blowdown gas (reference [31], Section 4.2.2, Table 9).
28. POLYCYCLIC AROMATIC HYDROCARBONS (PAH)

The E-PRTR requires the total emissions of the four PAHs listed below:
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Indeno(1,2,3-cd)pyrene

Estimation methods are provided for emissions from:
- Combustion of fuels
- Destruction of gaseous streams in incinerators
- Fluid catalytic cracking unit regenerators

Speciated values are provided for the four individual PAHs in addition to the summation of the emission factors.

Emission factors for total PAH emissions are available for the combustion of distillate fuel in gas turbines (reference [37], Section 3.1, Table 3.1-15) and for flare gas (reference [31], Section 4.2.2, Table 9). These factors are not reproduced in this report as E-PRTR requires the emissions to be reported of only the four compounds listed above.

28.1. COMBUSTION OF FUELS

Mass emitted (kg) = \(\frac{EF_{\text{NCV}} \times M \times NCV}{1000} \)

where:
- \(EF_{\text{NCV}} \) = Emission factor (in g/GJ)
- \(M \) = mass of fuel combusted (in tonnes)
- \(NCV \) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(EF_{\text{NCV}} \) are provided in Sections 28.1.1 to 28.1.5.

28.1.1. Refinery Fuel Oil Combustion in Boilers and Furnaces

Table 28 PAH Emission Factors for Fuel Oil Combustion

<table>
<thead>
<tr>
<th>PAH</th>
<th>(EF_{\text{NCV}}) g/GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>0'</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>3.67E-06</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>0'</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>0'</td>
</tr>
<tr>
<td>Total</td>
<td>3.67E-06</td>
</tr>
</tbody>
</table>

Note:
1. Compound was not detected. The emission factor stated in reference [1] represents the detection limit. The emission factor is thus considered to be zero as the source is not proven (see Section 5.2).
For CO boilers and fired waste heat boilers, the algorithm should only be applied to the support fuel fired.

Reference: [1], [2].

28.1.2. Gas Combustion in Boilers and Furnaces

28.1.2.1. Natural Gas

The emission factors for all four of the PAHs stated in EPA publication AP-42 [38], Table 1.4-3 represent detection limit values. The emission factors are thus considered to be zero as the source is not proven (See Section 5.2 of this report).

28.1.2.2. Refinery Fuel Gas

Table 29 PAH Emission Factors for Refinery Fuel Gas Combustion in Boilers and Furnaces

<table>
<thead>
<tr>
<th>PAH</th>
<th>EF_{NCV} g/GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>$6.688E-07^j$</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>$1.137E-06^j$</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>$6.306E-07^j$</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>$6.306E-07^j$</td>
</tr>
<tr>
<td>Total</td>
<td>$3.07E-06$</td>
</tr>
</tbody>
</table>

Note:
1. Ratio of mean to median value > 10. Median value used. See Section 5.3.

For CO boilers and fired waste heat boilers, the algorithm should only be applied to the support fuel fired.

Reference: [1], [2].
28.1.3. Gas Combustion in Gas Turbines

Table 30
PAH Emission Factors for Gas Combustion in Gas Turbines

<table>
<thead>
<tr>
<th>PAH</th>
<th>$E_{F_{NCV}}$ g/GJ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>02</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>1.576E-06</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>1.113E-06</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>8.360E-07</td>
</tr>
<tr>
<td>Total</td>
<td>3.53E-06</td>
</tr>
</tbody>
</table>

Notes:
1. Emission factors for gas turbine without duct burners.
2. No data available.

Reference: [1], [2].

28.1.4. Gas Combustion in Gas Engines

Table 31
PAH Emission Factors for Gas Combustion in Gas Engines

<table>
<thead>
<tr>
<th>PAH</th>
<th>$E_{F_{NCV}}$ g/GJ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>1.615E-05</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>1.486E-04</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>2.408E-04</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>5.446E-05</td>
</tr>
<tr>
<td>Total</td>
<td>4.60E-04</td>
</tr>
</tbody>
</table>

Note:
1. Emission factors for 4-stroke, lean-burn gas engine.

Reference: [1], [2].
28.1.5. Distillate Oil Combustion in Diesel Engines

Table 32 PAH Emission Factors for Distillate Oil Combustion in Diesel Engines

<table>
<thead>
<tr>
<th>PAH</th>
<th>EF$_{NCV}$ g/GJ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>1.127E-04</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>4.888E-04</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>9.640E-05</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>1.815E-04</td>
</tr>
<tr>
<td>Total</td>
<td>8.79E-04</td>
</tr>
</tbody>
</table>

Notes:
1. Emission factors for large stationary engine with stack gas oxygen concentration < 13%.

Reference: [1], [2].

28.1.6. Incinerator Support Fuel and Flare Pilot Fuel

Use values of EF$_{NCV}$ provided in Section 28.1.2.

28.2. DESTRUCTION OF HYDROCARBON GAS STREAMS

If the destruction efficiency of the flare or incinerator and the mass and composition of the gas stream are known:

\[
\text{Mass emitted (kg)} = (100 - \text{DE}) \times 10 \times M \times M_{PAH}
\]

where:
- DE = flare or incinerator destruction efficiency (%)
- M = total mass of gas flared or incinerated (in tonnes)
- \(M_{PAH}\) = mass fraction of PAH in gas flared or incinerated

Otherwise, use the algorithm in Section 28.1, with values of EF$_{NCV}$ provided in Section 28.1.2.2.

28.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS

Mass emitted (kg) = \(EF_{FCC} \times \text{Mass of coke burned (in tonnes)}\)

where:
- \(EF_{FCC}\) = emission factor from *Table 33*
Table 33 PAH Emission Factors for CCU Regenerators

<table>
<thead>
<tr>
<th>PAH</th>
<th>EF_{FCC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>7.072E-07</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>1.223E-06</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>8.212E-07</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>6.238E-07</td>
</tr>
<tr>
<td>Total</td>
<td>3.38E-06</td>
</tr>
</tbody>
</table>

Reference: [10], Table 1. This reference provides data on the number of data points both above and below the limit of detection. The emission factor is a weighted value using both sets of data - see Section 5.2.
29. **CHLORINE AND INORGANIC CHLORINE COMPOUNDS**

The E-PRTR requires estimates of the emissions of chlorine and inorganic chlorine compounds reported as HCl.

The major source of these pollutants is the catalytic reforming unit.

29.1. **CATALYTIC REFORMING UNITS**

The source of these compounds is the reactivation of the catalyst in the catalytic reforming unit. The catalyst is reactivated, following the burning off of coke deposits, using chlorine, chlorinated compounds or a chlorinated solvent. The emissions can be abated, for example using a caustic or water wash system, chloride trap or driers where HCl is present in water vapour.

A review of data from units without flue gas abatement systems installed indicate that for very high throughput units the emissions may be greater than the E-PRTR reporting threshold of 10 000 kg/year. For units with abatement systems the emissions were below the threshold value.

There are emission factors related to reformer feed rate for both chlorine and HCl available in a paper by Bertrand et al [11], Table 1. This reference uses combined data from reformer units both with and without flue gas abatement systems installed. Due to the corresponding very wide scatter of emissions data, the emission factor for HCl has a variance between the median and average values of four orders of magnitude.

It is not possible, therefore, to provide reliable emission factors for uncontrolled emissions from the reformer catalyst reactivation process.

The uncontrolled emissions could be estimated from knowledge of the mass of chlorine or chlorinated compound injected, the efficiency of the reactivation process and any conversion of the compound that takes place during the activation process.

For reporting purposes, the calculated mass emitted needs to be converted to equivalent mass of HCl. This is obtained by multiplying the mass of chlorinated compound emitted by the ratio of the molecular weight of HCl to the molecular weight of the compound.
30. HYDROGEN CYANIDE (HCN)

Hydrogen cyanide is formed during the combustion of coke in fluid catalytic cracking unit (FCCU) regenerators and emissions depend upon the mode of operation.

30.1. FLUID CATALYTIC CRACKING UNIT REGENERATORS

30.1.1. Full Burn Regeneration

\[\text{Mass emitted (kg)} = 5.80 \times 10^{-1} \times \text{Mass of coke burned (in tonnes)} \]

Reference: [25], Table 5.

30.1.2. Partial Burn with CO Boiler

\[\text{Mass emitted (kg)} = 4.20 \times 10^{-2} \times \text{Mass of coke burned (in tonnes)} \]

Reference: [25], Table 5.
31. **PARTICULATE MATTER WITH DIAMETER <10 µM (PM$_{10}$)**

Estimation methods are provided for emissions of PM$_{10}$ due to:
- Combustion of fuels
- Destruction of gaseous streams in incinerators and flares
- Fluid catalytic cracking unit regenerators
- Fluid cokers

PM$_{10}$ from industrial sources is defined by the UNECE Task Force on Emission Inventories and Projections as particulate matter which is measured after passing through a size selective inlet with a 50% efficiency cut-off at 10 µm aerodynamic diameter. Emission factors derived from US EPA reference sources are for 'filterable' particulate matter i.e. collected on or prior to a filter of an EPA Method 5 (or equivalent) sampling train.

Note that the Refinery BREF [26], Section 5.1.4, BAT 4 requires monitoring of “dust” (i.e. total suspended particulate) emissions, using the techniques and frequencies specified, from all combustion units and from fluid catalytic cracking units.

31.1. **COMBUSTION OF FUELS**

Mass emitted (kg) = \((EF_{NCV} \times M \times NCV) / 1000\)

where:
- \(EF_{NCV}\) = Emission factor (in g/GJ)
- \(M\) = mass of fuel combusted (in tonnes)
- \(NCV\) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(EF_{NCV}\) are provided in **Table 34**.

Table 34 **PM$_{10}$ Emission Factors for Combustion Sources**

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(EF_{NCV}) g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers and Furnaces < 10 MW (for CO Boilers and Fired Waste Heat Boilers only applies to the support fuel firing)</td>
<td>Distillate (gas oil)</td>
<td>3.49E+00</td>
<td>[38] Section 1.3, Table 1.3-7</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>1.50E+01</td>
<td>[28] Section 1.A.1, Table 4-4</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>9.89E-01</td>
<td>[38] Section 1.5, Table 1.5-1</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>8.90E-01</td>
<td>[38] Section 1.4, Table 1.4-2</td>
</tr>
<tr>
<td>SOURCE</td>
<td>FUEL</td>
<td>EF_{NCV} g/GJ</td>
<td>REF</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>Boilers and Furnaces 10 MW to 100 MW</td>
<td>Distillate (gas oil)</td>
<td>3.23E+00</td>
<td>[38] Section 1.3, Table 1.3-6</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>1.50E+01</td>
<td>[28] Section 1.A.1, Table 4-4</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>9.89E-01</td>
<td>[38] Section 1.5, Table 1.5-1</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>8.90E-01</td>
<td>[38] Section 1.4, Table 1.4-2</td>
</tr>
<tr>
<td>Boilers and Furnaces > 100 MW</td>
<td>Distillate (gas oil)</td>
<td>3.23E+00</td>
<td>[46] SCC 10100501</td>
</tr>
<tr>
<td></td>
<td>Refinery Fuel Oil</td>
<td>1.50E+01</td>
<td>[28] Section 1.A.1, Table 4-4</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>7.84E-01</td>
<td>[46] SCC 10101002</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>8.90E-01</td>
<td>[38] Section 1.4, Table 1.4-2</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (gas oil)</td>
<td>1.95E+00</td>
<td>[37] Section 3.1, Table 3.1-2a</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>2.00E-01</td>
<td>[28] Section 1.A.1, Table 3-17</td>
</tr>
<tr>
<td>Gas Engine 4-stroke, Lean Burn</td>
<td>Natural Gas</td>
<td>3.68E-02</td>
<td>[37] Section 3.2, Table 3.2-2</td>
</tr>
<tr>
<td>Diesel Engine Large, Stationary</td>
<td>Diesel Fuel</td>
<td>2.24E+01</td>
<td>[37] Section 3.4, Table 3.4-2</td>
</tr>
<tr>
<td>Incinerator Support Fuel or Flare Pilot Fuel</td>
<td>LPG</td>
<td>9.89E-01</td>
<td>[38] Section 1.5, Table 1.5-1</td>
</tr>
<tr>
<td></td>
<td>Natural Gas</td>
<td>8.90E-01</td>
<td>[38] Section 1.4, Table 1.4-2</td>
</tr>
</tbody>
</table>

Notes:
1. Factor is for both butane and propane combustion
2. Factor is for propane combustion
3. Factors based on combustion turbines using water-steam injection.

Estimation of PM$_{10}$ emissions from measurement of ‘dust’ (total suspended particulates (TSP))

Where measurements of TSP are made for dual-fired combustion units, the mass of PM$_{10}$ can be derived from:

Mass emitted of PM$_{10} = 7.50E-01 \times \text{mass of TSP}

based on an emission factor for TSP from RFO combustion of 20 g/GJ [28].
31.1.1. Other Fuels

In the absence of specific emission factors for other gaseous fuels (e.g. refinery fuel gas, low joule gas) it is recommended to use the value of EF_{NCV} for natural gas from Table 34.

31.2. DESTRUCTION OF HYDROCARBON GAS STREAMS

For flare and incinerator hydrocarbon gas streams, use the algorithm in Section 30.1 with an emission factor EF_{NCV} equal to that for natural gas combustion in a furnace.

For emissions from the combustion of the auxiliary fuel used to support flaring or incineration, also use the algorithm in Section 30.1.

31.3. FLUID CATALYTIC CRACKING UNIT REGENERATORS

Mass emitted (in kg) = $5.49E-01 \times \text{Feed to unit (in m}^3\text{)}$

Reference: [31], Section 4.2.1, Table 8.

This algorithm is for a unit with cyclone systems installed inside the regenerator vessel - see Section 6.2.

31.4. FLUID COKERS

Mass emitted (in kg) = $7.65E-01 \times \text{Feed to unit (in m}^3\text{)}$

Reference: [31], Section 4.2.1, Table 8.
32. REFERENCES

54. ExxonMobil (2006) Private communication with the chairman of the CONCAWE Special Task Force STF-69

60. Takacs, T. J. et al (2004) Method estimates NO\textsubscript{X} from combustion equipment. Oil & Gas Journal 102, 23, 48-52

APPENDIX 1 E-PRTR AIR POLLUTANTS

Table A1.1 lists the air pollutants that must be reported under the E-PRTR Regulation if annual emissions exceed the threshold values shown. It indicates those pollutants on the sector specific indicative lists in the EU Guidance Document [51] which are considered “likely” to be emitted by refineries and combustion installations (> 50 MW). It also shows those pollutants which have been estimated by at least one refinery to exceed the E-PRTR reporting threshold.

Table A1.1 List of E-PRTR Air Pollutants

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>REPORTING THRESHOLD kg/year</th>
<th>POLLUTANT ON INDICATIVE LIST Ref [51], Appendix 5</th>
<th>POLLUTANTS ESTIMATED BY OIL INDUSTRY THAT MAY EXCEED PRTR THRESHOLDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mineral Oil and Gas Refineries</td>
<td>Combustion Installations (> 50 MW)</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>100 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>500 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Carbon dioxide (CO₂)</td>
<td>100 000 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hydrofluorocarbons (HFCs)</td>
<td>100</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nitrous oxide (N₂O)</td>
<td>10 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ammonia (NH₃)</td>
<td>10 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non-methane volatile organic compounds (NMVOCs)</td>
<td>100 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>100 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Perfluorocarbons (PFCs)</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sulphur hexafluoride (SF₆)</td>
<td>50</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Sulphur oxides (SOx)</td>
<td>150 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hydrochlorofluorocarbons (HCFCs)</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chlorofluorocarbons (CFCs)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Halons</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arsenic + compounds</td>
<td>20</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cadmium + compounds</td>
<td>10</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chromium + compounds</td>
<td>100</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Copper + compounds</td>
<td>100</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mercury + compounds</td>
<td>10</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nickel + compounds</td>
<td>50</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lead + compounds</td>
<td>200</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Zinc + compounds</td>
<td>200</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>POLLUTANT</td>
<td>REPORTING THRESHOLD kg/year</td>
<td>POLLUTANT ON INDICATIVE LIST Ref [51], Appendix 5</td>
<td>POLLUTANTS ESTIMATED BY OIL INDUSTRY THAT MAY EXCEED PRTR THRESHOLDS</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mineral Oil and Gas Refineries Combustion Installations (> 50 MW)</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlordane</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlordecone</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DDT</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,2-dichloroethane</td>
<td>1000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>1000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Endrin</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,2,3,4,5,6-hexachlorocyclohexane</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lindane</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mirex</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCDD + PCDF (dioxins and furans) (as TEQ)</td>
<td>0.0001</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polychlorinated biphenyls (PCBs)</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>2000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tetrachloromethane</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trichlorobenzenes</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,1,2,2-tetrachloroethane</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>2000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trichloromethane</td>
<td>500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anthracene</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benzene</td>
<td>1000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>1000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
POLLUTANT

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>REPORTING THRESHOLD kg/year</th>
<th>POLLUTANT ON INDICATIVE LIST Ref [51], Appendix 5</th>
<th>POLLUTANTS ESTIMATED BY OIL INDUSTRY THAT MAY EXCEED PRTR THRESHOLDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mineral Oil and Gas Refineries</td>
<td>Combustion Installations (> 50 MW)</td>
</tr>
<tr>
<td>Di-(2-ethyl hexyl) phthalate</td>
<td>10</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbons (PAHs)</td>
<td>50</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chlorine + inorganic compounds (as HCl)</td>
<td>10 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asbestos</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fluorine + inorganic compounds (as HF)</td>
<td>5000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydrogen cyanide (HCN)</td>
<td>200</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Particulate matter < 10 micron diameter (PM<sub>10</sub>)</td>
<td>50 000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hexabromobiphenyl</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALS of 60 E-PRTR air pollutants</td>
<td>22</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Notes:

1. These halocarbons have been banned under EU Regulations [49] and would not be used to top-up existing equipment.
2. Trichloroethylene is not a product of combustion. The inclusion of this pollutant in the indicative sector specific list of air pollutants for thermal power stations and other combustion installations in reference [51] appears to be due to an anomaly in the EPER database.
3. The possible magnitude of emissions of anthracene and naphthalene are reviewed in Appendix 3.
4. Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene.
APPENDIX 2 UPDATES IN EMISSION ALGORITHMS AND FACTORS

The following changes in emission algorithms and factors have been made from the predecessor CONCAWE report No. 4/17 [24].

Nitrogen Oxides

Revised emission factor for:
- Flares.

HCN

New emission factors for:
- FCCU regenerators
APPENDIX 3 ANTHRACENE AND NAPHTHALENE

Anthracene and naphthalene are pollutants known to be emitted by refineries, but neither is included on the sector specific indicative lists in the EU E-PRTR Guidance [51]. Emission estimation methods for these two pollutants are provided in this Appendix. It is demonstrated that emissions of neither pollutant are likely to exceed their respective E-PRTR reporting threshold, even at the largest of refineries.

A3.1 ANTHRACENE

Estimation methods are provided for emissions from:
- Combustion of fuels
- Fluid catalytic cracking units

A3.1.1 Combustion of Fuels

Mass emitted (kg) = \(\frac{(EF_{\text{NCV}} \times M \times NCV)}{1000} \)

where:
- \(EF_{\text{NCV}} \) = Emission factor (in g/GJ)
- \(M \) = mass of fuel combusted (in tonnes)
- \(NCV \) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(EF_{\text{NCV}} \) are provided in Table A3.1.

Reference: [1].

Table A3.1 Anthracene Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>(EF_{\text{NCV}}) g/J</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnaces and Boilers</td>
<td>Refinery Fuel Oil</td>
<td>9.37E-07</td>
<td>[1], [2]'</td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td>2.26E-06</td>
<td>[1], [2]'</td>
</tr>
<tr>
<td>Gas Turbine(^2)</td>
<td>Gas</td>
<td>1.64E-05</td>
<td>[1], [2]'</td>
</tr>
<tr>
<td>Gas Engine 4-Stroke, Lean-Burn</td>
<td>Refinery Fuel Gas</td>
<td>1.17E-04</td>
<td>[1], [2]'</td>
</tr>
<tr>
<td>Diesel Engine Large, Stationary(^3)</td>
<td>Distillate (Gas Oil)</td>
<td>5.43E-04</td>
<td>[1], [2]'</td>
</tr>
</tbody>
</table>

Notes:
2. Factor derived from gas turbines without duct burners.
3. Factor for stack oxygen concentration < 13%
A3.1.2 Fluid Catalytic Cracking Unit Regenerator

Mass emitted (kg) = 3.06E-06 × Mass of coke burned (in tonnes)

Reference: [10], Table 1. This reference provides data on the number of data points both above and below the limit of detection. The emission factor is a weighted value using both sets of data - see Section 5.2 of this report.

A3.1.3 Emissions from a Very Large Refinery

To establish if anthracene could be emitted in excess of the E-PRTR reporting threshold, emissions have been calculated for a very large refinery. The fuel consumed at the refinery is assumed to be 8.4E+07 GJ/year, of which 3.6E+07 GJ is due to fuel oil use. The same refinery has a FCCU with a capacity of 2.9E+06 m³/year, with a resultant coke burn of about 140 000 t/year.

- Fuel oil combusted = 3.6E+07 GJ/year
- Fuel gas combusted = 4.8E+07 GJ/year
- FCCU coke combusted = 1.4E+05 tonnes/year

The emissions from this very large refinery would be:

\[
\text{Emissions from oil and gas combustion} = [(9.37E-07 × 3.6E+07) + (2.26E-06 × 4.8E+07)] × 1.0E-03 = 1.42E-01 \text{ kg}
\]

\[
\text{Emissions from coke burn} = 3.06E-06 × 1.4E+05 = 4.28E-01 \text{ kg}
\]

Total emissions = 0.57 kg/year

These emissions are significantly less than the E-PRTR reporting threshold of 50 kg/year.

A3.2 NAPHTHALENE

Estimation methods are provided for emissions from:
- Combustion of fuels
- Fluid catalytic cracking units

A3.2.1 Combustion of Fuels

\[
\text{Mass emitted (kg)} = \left(\frac{\text{EF}_{\text{NCV}} \times M \times \text{NCV}}{1000} \right)
\]

where:
- \(\text{EF}_{\text{NCV}}\) = Emission factor (in g/GJ)
- \(M\) = mass of fuel combusted (in tonnes)
- \(\text{NCV}\) = net calorific value of the fuel combusted (in MJ/kg)

Values for the emission factor \(\text{EF}_{\text{NCV}}\) are provided in Table A3.2.

Reference: [1].
Table A3.2 Naphthalene Emission Factors for Combustion Sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>FUEL</th>
<th>EF$_{NCV}$ g/GJ</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnaces and Boilers</td>
<td>Refinery Fuel Oil</td>
<td>1.83E-04</td>
<td>[1], [2]'</td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td>1.86E-04</td>
<td>[1], [2]'</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>Distillate (Gas Oil)2</td>
<td>1.58E-02</td>
<td>[37], Section 3.1, Table 3.1-4</td>
</tr>
<tr>
<td></td>
<td>Gas3</td>
<td>3.48E-04</td>
<td></td>
</tr>
<tr>
<td>Gas Engine</td>
<td>Refinery Fuel Gas</td>
<td>5.54E-02</td>
<td>[1], [2]'</td>
</tr>
<tr>
<td>4-Stroke, Lean-Burn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Engine</td>
<td>Distillate (Gas Oil)4</td>
<td>5.75E-02</td>
<td>[1], [2]'</td>
</tr>
<tr>
<td>Large, Stationary</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
2. Factor derived from turbines operating at high (≥ 80%) loads.
 Factor provided in reference [37] derived using HHV of 139 MBtu/103 US gal.
3. Factor derived from gas turbines without duct burners.
4. Factor for stack oxygen concentration < 13%

A3.2.2 Fluid Catalytic Cracking Unit Regenerator

Mass emitted (kg) = 5.59E-05 × Mass of coke burned (in tonnes)

Reference: [10], Table 1. This reference provides data on the number of data points both above and below the limit of detection. The emission factor is a weighted value using both sets of data - see Section 5.2 of this report.

A3.2.3 Emissions from a Very Large Refinery

To establish if naphthalene could be emitted in excess of the E-PRTR reporting threshold, emissions have been estimated for the very large refinery described in Section A3.1.3.

- Fuel oil combusted = 3.6E+07 GJ/year
- Fuel gas combusted = 4.8E+07 GJ/year
- FCCU coke combusted = 1.4E+05 tonnes/year

The emissions from this refinery would be:

- Emissions from combustion = [(1.83E-04 × 3.6E+07) + (1.86E-04 × 4.8E+07)] × 1.0E-03 = 1.55E+01 kg
- Emissions from FCCU coke burn = 5.59E-05 × 1.4E+05 = 7.83E+00 kg

Total emissions = 23.3 kg/year

These emissions are less than the E-PRTR reporting threshold of 100 kg/year.
APPENDIX 4 NMVOC EMISSIONS FROM GASOLINE MARKETING FACILITIES

Neither marketing distribution terminals (i.e. road tanker gasoline loading facilities which are not located on a refinery site) nor service stations are regulated under the terms of the IPPC Directive [48] and hence are not required to submit data for the E-PRTR.

Algorithms are provided in this Appendix, however, as emission estimates for distribution terminals and service stations may be made by oil companies for their own environmental reporting purposes.

A 4.1 DISTRIBUTION Terminals

The major sources of emissions at terminals are the storage and loading of gasolines. As there is negligible methane in refined transport fuels, it can be assumed that there are no emissions of CH₄.

A 4.1.1 Storage Tanks

Use the methodologies provided in Section 13.9.

A 4.1.2 Loading of Mobile Containers

Use the methodologies provided in Section 13.8.

A 4.1.3 Fugitive Emissions from Components

Emissions can occur due to leakage past seals, flanges, etc., on components installed in product pipelines and loading systems e.g. pump seals, connectors.

The emissions from fugitives at terminals are very much lower than at refineries because the systems do not operate at such high pressures. The emission factors provided in Section 13.5, which were derived from measurements on refinery process plants, should not be used to estimate fugitive emissions at distribution terminals. Equivalent emission factors for terminal equipment are provided in an EPA Protocol [35], Table 2-3. Emissions from this source are typically less than 1 tonne/year for high throughput terminals.

A 4.1.4 Oil-Water Separators

The emission factors provided in Section 13.6 have been derived from measurements on oil-water separators at refineries and are not appropriate for facilities at distribution terminals due to the differences in inlet conditions.

Emissions can be considered to be negligible if good maintenance and operating procedures are in place.

A 4.2 SERVICE STATIONS

Algorithms are provided for the following sources:
- Storage tanks
- Automobile refuelling

Gasoline vapour emissions at service stations can be controlled using “vapour balancing” techniques:-
Storage tank filling: When the storage tank is filled the vapours normally vented to atmosphere can be fed back into the tanker cargo tank (compartment) from which the gasoline is being off-loaded. This technique is called “Stage 1b” vapour balancing.

Automobile Refuelling: When an automobile is being refuelled, the vapours normally vented to atmosphere from the fuel tank can be fed back to the service station storage tank from which the gasoline was dispensed. This technique has been mandated in the EU and is called “Stage 2” vapour balancing. An alternative, which has been mandated in the USA, is to enlarge the carbon canister fitted on the automobile to control fuel system hot-soak emissions so that refuelling emissions can also be captured.

Other emissions comprise storage tank “breathing” due to evaporation of the gasoline in the tank, and drips and minor spillage during automobile refuelling.

The emissions can be estimated from:

\[
\text{Mass emitted (kg)} = EF \times VOL_{\text{DISP}} \times TVP
\]

where:
EF = Emission Factor from Table A4.3 depending on source and activity.
\(VOL_{\text{DISP}}\) = Volume of gasoline dispensed (in \(m^3\)).
TVP = True Vapour Pressure of gasoline at storage temperature (in kPa).

Reference: [30], Section 3.

Table A4.3 NMVOC Emission Factors for Service Stations

<table>
<thead>
<tr>
<th>SOURCE / ACTIVITY</th>
<th>EMISSION FACTOR (EF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/m(^3)/kPa</td>
</tr>
<tr>
<td>Storage Tank</td>
<td></td>
</tr>
<tr>
<td>Filling without Stage 1b</td>
<td>2.44E-02</td>
</tr>
<tr>
<td>Filling with Stage 1b in operation</td>
<td>1.10E-03</td>
</tr>
<tr>
<td>Breathing</td>
<td>3.30E-03</td>
</tr>
<tr>
<td>Automobile Refuelling</td>
<td></td>
</tr>
<tr>
<td>Refuelling with no emission controls in operation</td>
<td>3.67E-02</td>
</tr>
<tr>
<td>Refuelling with Stage 2 in operation</td>
<td>5.50E-03</td>
</tr>
<tr>
<td>Drips and minor spillage</td>
<td>2.20E-03</td>
</tr>
</tbody>
</table>
Gasoline TVP can be calculated from:

\[TVP = RVP \times 10^{[(7.047E-06 \times RVP + 1.392E-02) \times TEMP + (2.311E-04 \times RVP - 5.236E-01)]} \]

where:
- \(RVP \) = Reid Vapour Pressure (in kPa)
- \(TEMP \) = Gasoline storage temperature (in degrees Centigrade)

If the storage tank temperature is unknown, for the estimation of annual emissions \(TEMP \) can be assumed to equal the average annual ambient temperature.

Reference: [30], Annex 1.
APPENDIX 5 CONVERSION FACTORS AND DEFAULT FUEL VALUES

To convert from Higher Heating Value (HHV) to Net Calorific Value (NCV), the following approach, as used in reference [6], was taken.

\[
\text{NCV} = \text{HHV} \times \text{Correction Factor for heat of vaporisation of water in the fuel (CF}_{\text{H}_2\text{O}})
\]

For Liquid Fuels, Correction Factor (CF\text{H}_2\text{O}) = 0.95
For Gaseous Fuels, Correction Factor (CF\text{H}_2\text{O}) = 0.9

Reference: [6], Section 4.2.

To convert Emission Factor from lb/MBtu\text{(HHV)} to g/GJ\text{(NCV)}

\[
\text{EF g/GJ\text{(NCV)}} = \frac{\text{EF lb/MBtu\text{(HHV)}}}{\text{CF}\text{H}_2\text{O}}} \times (g / \text{lb}) \times (\text{MBtu} / \text{GJ})
\]

To convert Emission Factor from lb/10^3 gal to g/GJ\text{(NCV)}

\[
\text{EF g/GJ\text{(NCV)}} = \frac{\text{EF lb/10}^3 \text{ gal}}{\text{MBtu\text{(NCV)}}} \times (10^3 \text{ gal} / \text{MBtu\text{(NCV)}}) \times (g / \text{lb}) \times (\text{MBtu} / \text{GJ})
\]

To convert Emission Factor from lb/10^6 scf to g/GJ\text{(NCV)}

\[
\text{EF g/GJ\text{(NCV)}} = \frac{\text{EF lb/10}^6 \text{ scf}}{\text{MBtu\text{(NCV)}}} \times (10^6 \text{ scf} / \text{MBtu\text{(NCV)}}) \times (g / \text{lb}) \times (\text{MBtu} / \text{GJ})
\]

Unless otherwise stated, emission factors were calculated using the following heating values expressed in their original units.

<table>
<thead>
<tr>
<th>FUEL</th>
<th>HIGHER HEATING VALUE (HHV)</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distillate (gas oil)</td>
<td>140 MBtu / 10^3 gal</td>
<td>[33]</td>
</tr>
<tr>
<td>Diesel Fuel</td>
<td>137 MBtu / 10^3 gal</td>
<td>[33]</td>
</tr>
<tr>
<td>Refinery Fuel Oil</td>
<td>150 MBtu / 10^3 gal</td>
<td>[33]</td>
</tr>
<tr>
<td>LPG</td>
<td>94 MBtu / 10^3 gal</td>
<td>[33]</td>
</tr>
<tr>
<td>Propane</td>
<td>91.5 MBtu / 10^3 gal</td>
<td>[38] Section 1.5.3.1</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1020 MBtu / 10^6 scf</td>
<td>[38] Section 1.4.1</td>
</tr>
</tbody>
</table>

Some useful conversion factors

Refinery Fuel Oil

1 lb/10^3 US gal = 3.017 g/GJ\text{(NCV)}
1 lb/10^6 Btu\text{(HHV)} = 453 g/GJ\text{(NCV)}
Distillate (Gas Oil)

1 lb/10^3 US gal = 3.233 g/GJ\textsubscript{(NCV)}
1 lb/10^6 Btu\textsubscript{(HHV)} = 453 g/GJ\textsubscript{(NCV)}

LPG

1 lb/10^3 US gal = 4.815 g/GJ\textsubscript{(NCV)}

Propane

1 lb/10^3 US gal = 4.946 g/GJ\textsubscript{(NCV)}

Natural Gas

1 lb/10^6 scf = 0.468 g/GJ\textsubscript{(NCV)}
1 lb/10^6 Btu\textsubscript{(HHV)} = 478 g/GJ\textsubscript{(NCV)}