

Fuel and Recharging Effects on Regulated and Unregulated Emissions from a Gasoline and a Diesel Plug-in Hybrid Electric Vehicle

> SAE PF&L meeting - 6th September 2022 - Krakow SAE Paper # 2022-01-1125

<u>R. Dauphin (</u>Concawe), J. Kermani, P. Degeilh (IFP Energies nouvelles), C. Fittavolini (ENI), A. Smith, R. Uitz-Choi (Shell), C. Callu (TotalEnergies), S. Chrysafi (BP), K. Kar (ExxonMobil)

Reproduction permitted with due © Concawe acknowledgement

- About Concawe
- Motivation and objectives
- Test matrix and experimental setup
- Chassis-dyno results
- On-road results
- Conclusions
- Perspectives

About Concawe

- Concawe is the scientific body of the European refining industry
- Concawe's mission is to perform scientific studies related to the refining industry, and to share the knowledge with our stakeholders and the public
 - Our reports and papers are available in openaccess on our website: <u>www.concawe.eu</u>
- Concawe represents 38 Member Companies ≈ 95% of EU Refining capacity

- About Concawe
- Motivation and objectives
- Test matrix and experimental setup
- Chassis-dyno results
- On-road results
- Conclusions
- Perspectives

Motivation

- Plug-in hybrid vehicles (PHEVs) are regularly mentioned as a relevant option for
 - Low life-cyle CO₂ emissions
 - And low pollutant emissions... <u>in homologation</u> <u>conditions</u>
- PHEVs can also relieve some of the pressure
 - On the implementation of fast charging infrastructures for Battery Electric Vehicles (BEVs)
 - On the availability of raw materials to produce batteries, smaller than BEVs' ones
 - On the consumption of liquid fuels and the availability of low-carbon fuels

NW

Motivation and objectives

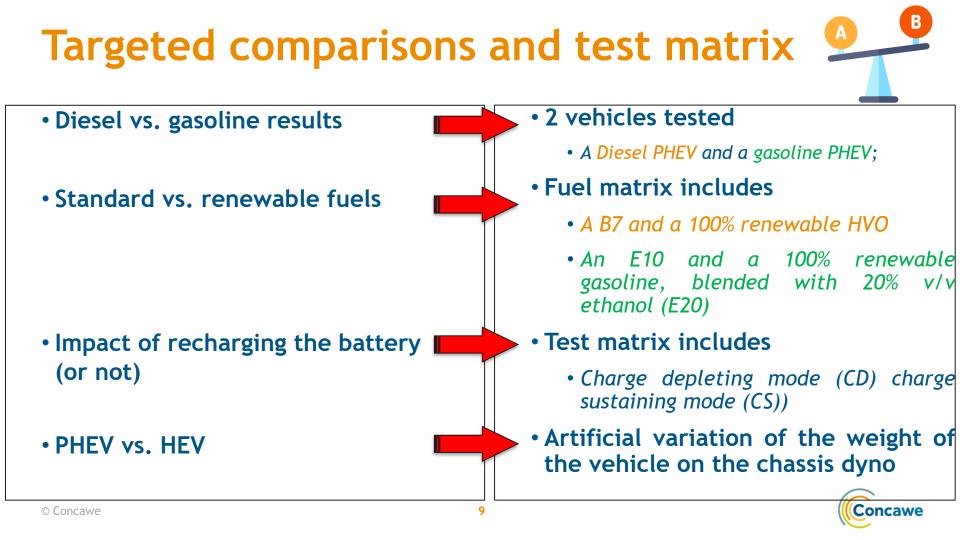
- <u>Question 1</u>: Intermittent thermal/electric drive can be challenging for PHEVs aftertreatment
 - Do they maintain low pollutant emissions <u>under real-world conditions</u>?
- <u>Question 2</u>: PHEVs life-cycle CO₂ emissions are sensitive to their use cases
 - e.g. recharging frequency, trips distance, electricity carbon intensity
 - Can PHEVs life-cycle CO2 emissions be predicted depending on their use case?

- <u>Objective 1</u>: Provide data on pollutant emissions of 2 PHEVs
 - In lab: chassis-dyno
 - On-road
- <u>Objective 2</u>: By using the experimental data, set up a simulator that allows calculating PHEVs life-cycle CO₂ emissions depending on their use case

Motivation and objectives

- <u>Question 1</u>: Intermittent thermal/electric drive can be challenging for PHEVs aftertreatment
 - Do they maintain low pollutant emissions <u>under real-world conditions</u>?

- <u>Objective 1</u>: Provide data on pollutant emissions of 2 PHEVs
 - In lab: chassis-dyno
 - On-road

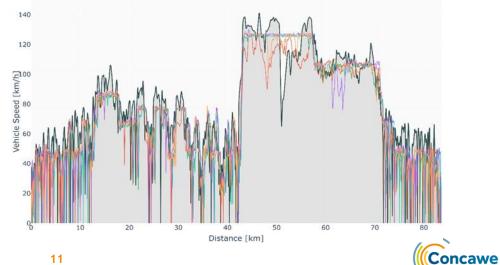

- <u>Question 2</u>: PHEVs life-cycle CO₂ emissions are sensitive to their use cases
 - e.g. recharging frequency, trips distance, electricity carbon intensity
 - Can PHEVs life-cycle CO2 emissions be predicted depending on their use case?

 <u>Objective 2</u>: By using the experimental data, set up a simulator that allows calculating PHEVs life-cycle CO₂ emissions depending on their use case

- About Concawe
- Motivation and objectives
- Test matrix and experimental setup
- Chassis-dyno results
- On-road results
- Conclusions
- Perspectives

Test vehicles

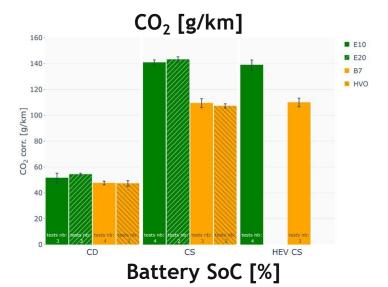
	C300e EQ Power	C300de EQ Power
Regulation	Euro 6d-temp	
Fuel type	Gasoline	Diesel
Test mass [kg]	1885	1970
Thermal Engine	2.0L 4cyl 155 kW turbo	2.0L 4cyl 143 kW turbo
	Direct injection	Direct injection
Battery	13.5 kWh 365V	
Electric motor	90 kW	
Hybridization	P2 parallel hybrid architecture	
Aftertreatment system	2 TWC + GPF	DOC + SCRF + SCR

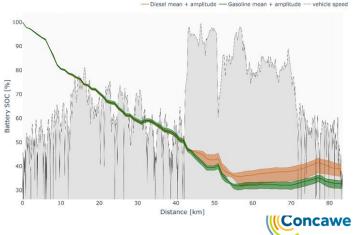

Driving cycle

- RDE compliant
- Speed profile used the on chassis dyno from the same trip driven on-road
 - Allowing back-to-back comparisons of lab and on-road results

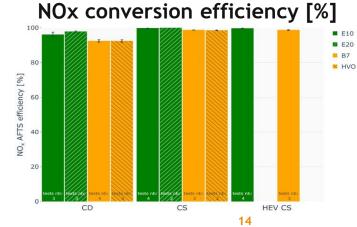
Trip duration [min]	93
Total distance [km]	83.4
urban share [%]	30.8
rural share [%]	31.9
motorway share [%]	37.2
total cumulated positive	620
altitude [m/100km]	

oller bench - ROAD #1 - ROAD #2 - ROAD #3 - ROAD #4




- About Concawe
- Motivation and objectives
- Test matrix and experimental setup
- Chassis-dyno results
- On-road results
- Conclusions
- Perspectives

CO₂ emissions


- In <u>CS mode</u>, Diesel PHEV emits 22% less CO₂ emissions than gasoline PHEV
 - Mainly explained by engine efficiency difference
- In <u>CD mode</u>, only 8% gap in CO₂ emissions for Diesel vs. gasoline
 - Mainly explained by different hybrid control strategies: bigger depth of discharge in gasoline vs. Diesel
- HVO emits 2% less CO₂ emissions than B7
 - Explained by fuel properties (higher H/C ratio)
 - No impact on engine efficiency
- In CS mode, PHEV has similar CO₂ emissions to HEV
 - No impact of vehicle weight: more energy expended during accelerations is compensated by more energy recovered during decelerations
- CH₄ and N₂O contribute to an increase of 1% (gasoline) and 3% (Diesel) of GHG emissions

NOx emissions

- Low tailpipe NOx emissions overall
- Lower tailpipe NOx emissions for Diesel vs. gasoline
 - Explained by lower engine-out NOx with fairly good aftertreatment conversion efficiency
- Higher tailpipe NOx emissions in CD mode vs. CS mode
 - Counter-intuitive result, explained by a higher aftertreatment conversion efficiency in CS mode (see next 2 slides)
- Lower tailpipe NOx emissions for E20 vs. E10
 - Explained by a higher aftertreatment conversion efficiency

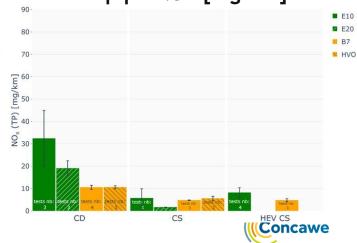
E10 E20

B7

N HVO

Engine-out NOx [mg/km]

3000

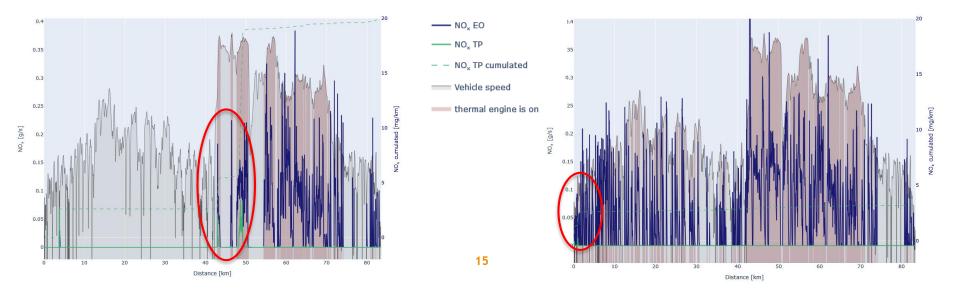

2500

2000 1500 (EO) [mg/km]

9 1000

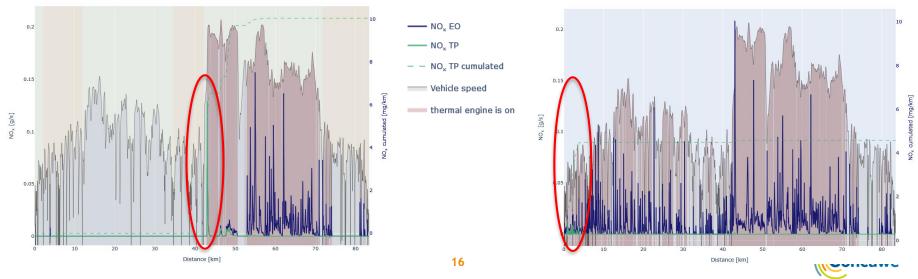
500

CD CS HEV CS Tailpipe NOx [mg/km]


Time-based NOx measurements (E10)

- In CD mode, cold engine start in highway conditions creates challenging conditions for NOx conversion
 - Leading to a higher peak on NOx tailpipe emissions, although the engine is off most of time

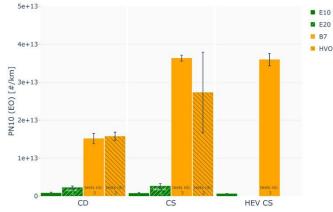
CD mode


- In CS mode, engine start in soft driving conditions leads to a good management on NOx emissions by the TWC
 - Leading to lower NOx tailpipe emissions, although the engine runs most of time, with higher engine-out NOx emissions

CS mode

Time-based NOx measurements (B7)

- In CD mode, cold engine start in highway conditions creates challenging conditions for NOx conversion
 - Leading to a higher peak on NOx tailpipe emissions, although the engine is off most of time
- In CS mode, engine start in soft driving conditions leads to low engine-out NOx emissions during SCR light-off
 - Leading to lower NOx tailpipe emissions, although the engine runs most of time, with higher engine-out NOx emissions


CD mode

CS mode

Particulates number emissions

- Low tailpipe PN10 emissions overall
- Lower tailpipe PN10 emissions for Diesel vs. gasoline
 - Explained by a higher filtration of the DPF vs. GPF, although Diesel engine-out PN10 emissions are higher
- No impact of renewable fuels on tailpipe PN10 emissions
 - Higher PN10 engine-out emissions from E20 vs E10 are compensated by a better filtration efficiency of the GPF

Tailpipe PN10 [#/km]

CS

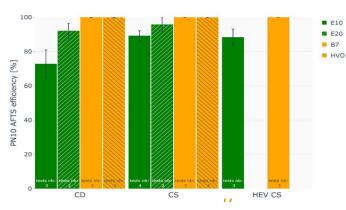
E10E20

B7

N HVO

7e+11

6e+11

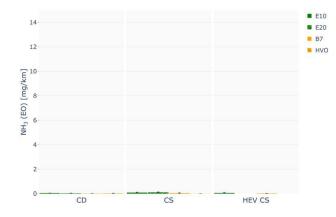

5e+11 [Ly/#] 4e+11

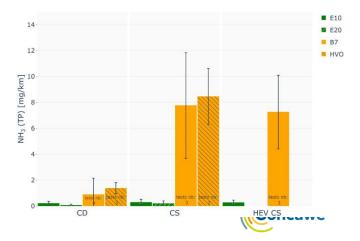
2e+11

1e+11

CD

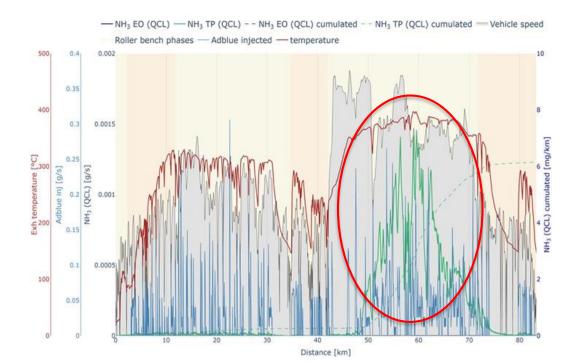
(TP) 01Nq (TP) 36+11




Ammonia emissions

- No NH₃ emissions engine-out
 - NH₃ is formed in the aftertreatment system
 - Reactions in the TWC for the gasoline PHEV
 - NH₃-slip for the Diesel PHEV
- Higher tailpipe NH₃ emissions for Diesel vs. gasoline
- No impact of renewable fuels on NH₃ tailpipe emissions

Engine-out NH₃ [mg/km]

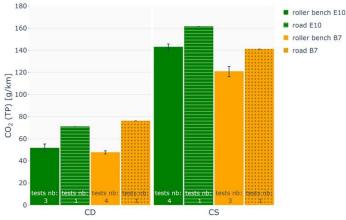


Tailpipe NH₃ [mg/km]

Time-based NH₃ measurements (B7)

- NH3-slip typically occurs in highway conditions
 - Above a level of exhaust temperature
 - Gas hourly space velocity is probably too high

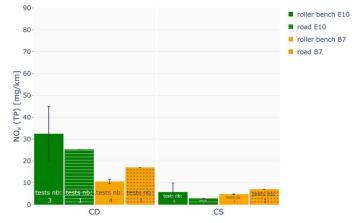
© Concawe


- About Concawe
- Motivation and objectives
- Test matrix and experimental setup
- Chassis-dyno results
- On-road results
- Conclusions
- Perspectives

CO₂ emissions: on-road vs. chassis-dyno

- CO₂ on-road emissions are significantly higher than measured in-lab
 - +29% CO₂ emissions for Diesel PHEV
 - +14% CO₂ emissions for gasoline PHEV
- Further analysis shows that road law used on chassisdyno was not severe enough
 - This aspect is corrected in the next steps of the study
- CO₂ emissions from Diesel PHEV become closer/similar to gasoline PHEV

$CO_2 [g/km]$



NOx emissions: on-road vs. chassis-dyno

• NOx emissions are consistent between on-road and chassis dyno measurements

Tailpipe NOx [mg/km]

- About Concawe
- Motivation and objectives
- Test matrix and experimental setup
- Chassis-dyno results
- On-road results
- Conclusions
- Perspectives

Key take-away

Comparison of

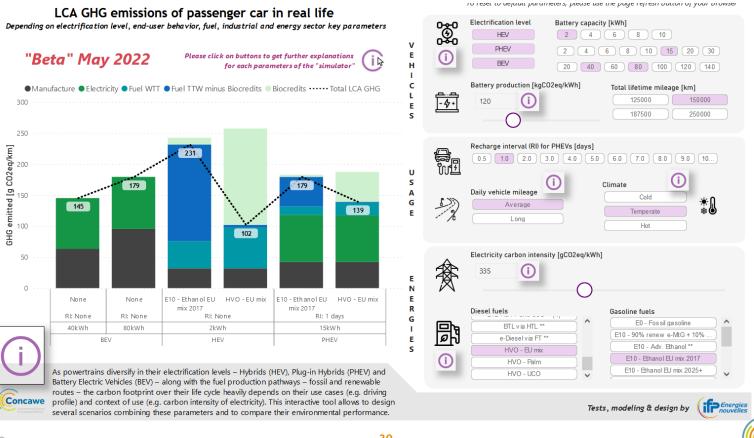
- Diesel vs. gasoline PHEVs vs. Diesel and gasoline HEVs
- Charge depleting vs. charge sustaining mode
- Standard (B7, E10) vs. renewable fuels (HVO, E20)
- Chassis-dyno vs. on-road results

Pollutant emissions

- Low regulated emissions, well below Euro 6d limits
- Non-regulated emissions in the range of Euro 7 proposals
- Lower emissions for the Diesel PHEV, except for NH_3 and N_2O
- Switching from a standard (B7, E10) to renewable fuel (HVO, E20) has no significant impact on tailpipe emissions

GHG emissions

- Much lower CO₂ emissions from Diesel PHEV vs. gasoline PHEV on chassis dyno, but closer/similar on-road
- CO₂ emissions significantly higher on-road (corrected for the next steps of the study)
- CH_4 and N_2O add 1% to 3% to GHG emissions
- HVO decreases CO₂ emissions by 2% (TtW)
- No stated impact of vehicle mass (PHEV vs. HEV)


- About Concawe
- Motivation and objectives
- Test matrix and experimental setup
- Chassis-dyno results
- On-road results
- Conclusions
- Perspectives

Generating real-world use cases with a calibrated PHEV simulator

Vehicle LCA GHG on-line simulator

oncawe

Want to know more?

- Full Concawe report available on our website
 - <u>https://www.concawe.eu/wp-content/uploads/Rpt-10-22.pdf</u>

Evaluation of plug-in hybrid vehicles in realworld conditions

www.concawe.eu

Thank you for your attention

Roland Dauphin roland.dauphin@concawe.eu fuels@concawe.eu