Prepared for

Concawe

LOW CARBON PATHWAYS DEEP DIVE ON HEAVY DUTY TRANSPORTATION SECTOR

Aachen, April 2019 FEV Consulting GmbH

Roadmap of widespread CO_2 reduction measures: Europe, HD sector, long-haul and regional haul

OVERVIEW ROADMAP OF WIDESPREAD CO₂ REDUCTION MEASURES 2020 2030 2040 2050 -30% **EURO VI POST EURO VI*** "NEAR ZERO EMISSIONS" Fully automated / Platooning, Pilot Chauffeur driverless trucks Usage Cargo optimization (e.g. backhauling), Cargo optimization (e.g. co-loading), Cargo optimization (shared and Hub and Spoke model for road transport High-capacity vehicles connected transport systems) Powertrain electrification (48 V), Hotel load Powertrain electrification (>=350 V) Powertrain electrification (800 V) management (APU or plug) Battery electric truck (gen. 1)**, Battery electric truck (gen. 2) Electrification Fuel cell electric truck (gen. 1, 2030)** Fuel cell electric truck (gen. 2, 2040) Electrified roads (conductive and inductive systems) Vehicle efficiency increase (aerodynamics, Further aerodynamic, lightweight and rolling resis-Advanced measures lightweight, rolling resistances reduction) tance reduction measures (e.g. new cabin design) (e.g. driverless cabin) Diesel ICE efficiency improvements (e.g. rightsizing, Diesel ICE efficiency improvements (e.g. Miller cycle, Advanced and Efficiency Increase friction reduction, adv. boosting concepts) combustion rate shaping, VCR in niche applications) alternative concepts Waste heat recovery systems Waste heat recovery systems (Turbocompound, ORC) (ORC, TEG) Ramp-up paraffinic fuels, first usage of methanol and All: higher blends / pure Uptake of HVO long chain alcohols usage; ethanol uptake **Energy Carriers** Electricity**, DME**, Hydrogen; Broader hydrogen Methane (from fossils) Methane (2030+, from renewables) roll-out

* FEV scenario; **In dedicated use-cases only Source: FEV

Roadmap of widespread CO_2 reduction measures: Europe, HD sector, long-haul and regional haul; focus group: Usage

USAGE – ROADMAP OF WIDESPREAD CO₂ REDUCTION MEASURES 2030 2020 2040 2050 -30% **EURO VI POST EURO VI*** "NEAR ZERO EMISSIONS" Platooning Internal Automation Fully automated / Chauffeur Pilot driverless trucks Driving Driver behavior optimization Cargo optimization Cargo optimization Cargo optimization (step 3, e.g. shared (step 1, e.g. backhauling) (step 2, e.g. co-loading) and connected transport systems) External Logistic Hub and Spoke model High-capacity vehicles

* FEV scenario Source: FEV

Roadmap of widespread CO_2 reduction measures: Europe, HD sector, long-haul and regional haul; focus group: Electrification

ELECTRIFICATION – ROADMAP OF WIDESPREAD CO₂ REDUCTION MEASURES 2020 2030 2040 2050 -30% **EURO VI POST EURO VI*** "NEAR ZERO EMISSIONS" Powertrain electrification Powertrain electrification Powertrain electrification (step 1, e.g. 48 V) (step 2, e.g. ~350 V) (step 3, e.g. ~800 V) Hybridization Internal Hotel load management (auxiliary power unit or plug) Battery electric truck Battery electric truck (generation 1)** (generation 2)** **Full electric** Fuel cell electric truck Fuel cell electric truck (generation 1)** (generation 2)** External Conductive road systems (e.g. overhead catenary) Infrastructure Inductive road systems

* FEV scenario; ** In dedicated use-cases only Source: FEV

© by FEV – all rights reserved. Confidential – no passing on to third parties | 4

Roadmap of widespread CO_2 reduction measures: Europe, HD sector, long-haul and regional haul; focus group: Efficiency increase

EFFICIENCY INCREASE – ROADMAP OF WIDESPREAD CO₂ REDUCTION MEASURES

		2020	2030	2040	2050
		EURO VI POST EL	JRO VI* -30%	"NE	AR ZERO EMISSIONS"
	Vehicle	Demand controlled auxiliaries (m	nechanical / electric) Demand controlle	d auxiliaries (electric only)	
		Lightweight measures (step 1, e. on aluminum parts)	g. increased focus Lightweight meas of advanced mate	ures (step 2, e.g. increased usage rials or 3D printed cabin parts)	Lightweight measures (step 3, new concepts)
rnal		Aerodynamic measures (step 1, fairings and covers)	e.g. integration of Aerodynamic means new (body-in-white)	asures (step 2, e.g. introduction of e) cabin designs)	Aerodynamic measures (step 3, new concepts)
Inte		Rolling resistance reduction mea increased axle efficiency)	asures (step 1, e.g. Rolling resistance further improvement	e reduction measures (step 2, e.g. ents in low resistance tires)	RR reduction measures (step 3, new concepts)
-	Engine	Diesel ICE efficiency improveme rightsizing, friction reduction, adv	nts (step 1, e.g. Diesel ICE efficient Miller concepts or	ncy improvements (step 2, e.g. VCR in niche applications)	Advanced concepts with BTE towards 60%
	Exhaust system	w	covery systems (TEG***)		

* FEV scenario; ** ORC: Organic Rankine Cycle; *** TEG: Thermo-Electric Generator; Source: FEV

Roadmap of widespread CO_2 reduction measures: Europe, HD sector, long-haul and regional haul; focus group: Energy carriers

ENERGY CARRIERS – ROADMAP OF WIDESPREAD CO2 REDUCTION MEASURES

	2020	2	2030	2040	2050	
	EURO VI PO	ST EURO VI*	-30%		"NEAR ZERO EMISSIONS"	
Paraffinic	Uptake of HVO		Ramp-up of blen	d shares	High blend shares up to pure usage	
Short chain alcohols			Methano	ol in low blend shares	Increase blends / pure methanol; ethanol uptake	
Long chain alcohols			Up to maraffini	edium blend shares together with c components	Increase of blend shares	
Hydrogen			Ramp-up of usag	ge	Broader usage	
Methane	Mainly from fossil sources		From renewables	s in dedicated applications		
Ether		DME used purely in dedicated applications				
Electricity		Electricity used in dedicated applications				

* FEV scenario Source: FEV

Platooning affects the competitive position of on-road transport positively and is expected to be applied once regulation has been adapted

USAGE – PLATOONING

Characteristics

Coupling of vehicles using information exchange via Wi-Fi or cell network, to

	close the gap between them and to Truck to truck as well as truck to ca	reduce the air drag r connection is possible			assessme	nt		
•	Step-by-step market introduction ex - Starting with small platoons, th - Starting with OEM specific plat	pected (2023 and beyond): then increasing number of vehicles toons, then standardized interfaces	C re	O_2 emissions eduction ¹	1-10%	⁶		\mathbf{n}
•	Vehicle technology impact: – Vehicle to vehicle communicat – Sensors and actuators to perfo	ion orm driving functions by driver and	R	televance for ong-haul	Hig	h		
	 Software Human-machine interface to corprovision of current status 	oordinate on- and off-docking as well as	R re	elevance for egional-haul	Lo	N		
	-				2020	2030	2040	2050
	Key advantages	Key challenges	C	Technical Maturity ommercial Maturity				
	Increase of productivity and ride	Regulation needs to be adapted					I	
	comfort for the driver, since the	according to technology maturity		Cro	oss impacts a	nd further (comments	
_	rest	Only vehicles equipped with platooning technology can participate in a platoon	-	Installed technolo with other automa	ogy increases in ation measures.	vestment cos	ts, however, if imp Id be partially leve	plemented eraged
	fuel savings can be realized	 Standardization for communication 		Increase on-road	transport's com	petitiveness:		
	Decrease of down-time since safety can be enhanced	between vehicles of different OEMs		 Cost per km Ride comfor 	decreases t for drivers incr	eases		
•	Potential to reduce traffic-jams after the technology has been widely rolled out		-	 Travelled kild If fewer congestic 	ometers might ir on can be achiev	crease, thus ed, this redu	mitigate specific	fuel savings ition

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

FEV CONSULTING

Chauffeur function is expected to be combined with Platooning and will increase productivity and comfort of the driver

USAGE – CHAUFFEUR

.

Charac	teristics		In
Chauffeur function to automate drive certain boundary conditions (e.g. no Step by step market introduction ex	ng on highways and in cities within n-critical situations, equipped roads)		Quantitativ assessmei
 Traffic jam chauffeur Highway chauffeur City chauffeur 	CO ₂ emissions reduction ¹	1-3%	
Vehicle technology impact: Vehicle-to-vehicle communicat Sensors and actuators to performed	Relevance for long-haul	Medium	
 Software Human-machine interface to concern status 	Relevance for regional-haul	Low	
provision of our on status			2020
Key advantages	Key challenges	Technical Maturity Commercial Maturity	
Increase of ride comfort for the driver since he can rest when the vehicle is in chauffeur mode Increase of productivity if the driver can account time in chauffeur mode as rest time, thus increases daily mileage Decrease of down-time since safety can be enhanced	 Functional safety Regulation needs to be adapted according to technology maturity 	Cr Installed technol with other autom Increase on-road - Cost per km - Ride comfo - Travelled ki	oss impacts ar ogy increases inv lation measures, t d transport's comp n decreases rt for drivers incre flometers might in ion can be achieved

н.

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

nd further comments

- estment costs, however, if implemented the cost could be partially leveraged
- petitiveness:
 - ases
 - crease, thus mitigate specific fuel savings
- If fewer congestion can be achieved, this reduces fuel consumption
- Change of cabin design (living / working space) would be introduced

Eco-Coaches have the potential to leverage proven gamification elements and further push fuel savings

USAGE - DRIVER BEHAVIOR OPTIMIZATION

Characteristics

- Application of Eco-coach software to engage and motivate the driver for specific driving goals, e.g. low fuel consumption
- Driver training and feedback devices to monitor and reward more fuelefficient driving
- "Human-focused design" tangents human feelings, insecurities and motivations
- Eco-Coaches are already used in trucks but score very low in "Gamification" discipline
- Top computer games are using nearly five times as many game mechanics as today's Eco-Coaches

Cross impacts and further comments

- Eco-Coach relevance is expected to decrease over time due to the growth of trucks' automation
- Still, CO₂ emissions could be reduced on a short horizon
- Together with an adapted legislation and system of "Eco-credits", this technology has a good potential on a fleet scale

growth rates until 2025, mainly driven by evolving buying criteria, vehicle electrification and an ecological mind shift Eco-Coach software is highly scalable

Key challenges

Technology needs to improve in terms of personalization, customization, flexibility / adaptability, connectivity and incorporate latest research of human behavioral decision psychology

- Official recognition / legislation is missing (no "Eco-credits")
- Increase drivers acceptance and awareness

 $^1\,\text{CO}_2$ emission reduction potential vehicle-wise Source: FEV

Key advantages

Promising future: double digit

of road accidents

Good CO₂ cost-benefit ratio and

the potential to reduce up to 20%

level:

An improved logistic management (backhauling) can further reduce the share of "empty" transports on European roads

USAGE - CARGO OPTIMIZATION (STEP 1)

Key advantages	Key challenges
 Good CO₂ cost-benefit ratio as no additional hardware is required Potential to reduce the road traffic High potential in regions where logistics and supply chain operations are less optimized 	 Requires collaboration across shippers / operators Requires a high level of logistic management Currently no existing measures to discourage "empty-runs"

Characteristics Implementation of measures allowing to increase cargos' average filling

No additional hardware costs because such measures refer to the

usage of vehicles (closely linked to a proper planning) Currently about 20% of kilometers are run "empty" in EU

Backhauling: postponing or extending "standard journey" to deliver freight also on the returning trip, avoiding a full empty-cargo trip.

 $^1\,\text{CO}_2$ emission reduction potential system-wise (for the entire transport sector) Sources: Eurostat; FEV

2020/30

		Imp	act			
	Qua	antitative essment	2			
CO ₂ emissions reduction ¹		~2%	2		н	
Relevance for long-haul		Low				н. т. И.
Relevance for regional-haul		Low	1			11. 1. u.
	2020	2	030	20	40	2050
Technical Maturity						
Commercial Maturity	/				1 	

Cross impacts and further comments

- Lower transportation costs per freight unit could shift an amount of goods from rail to road, determining a final increment in road traffic and emissions
- Although backhauling is already used on a small scale, further improvement margins are still expected
- However, due to vehicle-cargo mismatches and delivery constraints, it is not avoidable to have some empty-cargo trips

The hub and spoke model reorganizes logistics in cities, can save fuel and improves air quality by electrification of inner city rides

USAGE - HUB AND SPOKE MODEL

 approached by heavy-duty vehicles or with bulky products Hubs are central distribution centers outside of the city center but in the main city area – medium-duty vehicles distribute from spokes to hubs and light commercial vehicles from hubs to customers / city centers Further increase of the use-case oriented design of trucks, e.g. high payload long-haul heavy-duty trucks and agile city light commercial vehicles Specialized use-case eases the automated operation of delivery to spokes 						
Key advantages	Key challenges		Cc			
Fewer heavy-duty vehicles drive	Locations for the hubs and spokes					
into the city which reduces congestion	needs to be available at places where they are required and at					
Air quality in the city can be	competitive costs					
vehicles for intra-city delivery from	 Increase of complexity Drop-off spaces for delivery need 					
spokes to hubs and from hubs to customers is easier	to be defined to avoid congestion by 2 nd row parking					
	1					

Characteristics

Spokes are drop-off points in the outskirts of the city and are typically

Cross impacts and further comments

- Further potential with the roll-out of a common "freight container modularization system"
- Potential for electrification of vehicles that move goods between hubs and spokes and to the customers / city centers
- Fuel consumption of trucks altered by changed mission profiles: heavy-duty more long-haul with lower specific fuel consumption, medium-duty and light vehicles more city traffic and higher specific fuel consumption
- Overall vehicle kilometers travelled will (probably) increase

 $^1\,\text{CO}_2$ emission reduction potential system-wise (for the entire transport sector) Source: FEV

More flexible delivery time and

(potentially) quicker delivery

Vehicle miles travelled are expected to increase due to the positively affected competitive position and the decrease of down-time

USAGE – PILOT

Characteristics

- System performs all safety-critical functions
- System monitors the roadway condition
- The driver is only required to maneuver the truck during specific operations (e.g. loading, unloading)
- Expected to be introduced on selected routes and highways first
- Technology installed increases costs: .
 - Cameras, lidar and radar technology necessary _
 - Increased computing power to process data gathered by sensors
 - Sensors and actuators to perform driving functions

Key advantages Key challenges Increase of productivity and ride Technology needs to be developed further to ensure a safe operation comfort for the driver since the Cross impacts and further comments driver of can rest, thus increases in all situations Installed technology increases investment costs, however, if implemented . Regulation needs to be adapted mileage with other automation measures, the cost could be partially leveraged Decrease of down-time since according to technology maturity Increase on-road transport's competitiveness: safety can be enhanced Vehicles need to be equipped with Cost per km decreases Fewer congestion since significant amount of technology Ride comfort for drivers increases transportation tasks can be shifted Travelled kilometers might increase, thus mitigate fuel savings to night times more easily If fewer congestion can be achieved, this reduces fuel consumption Change of cabin design (living / working space) would be introduced

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

Collaboration across shippers could lead to an important abatement in CO_2 emissions at relatively small costs

USAGE - CARGO OPTIMIZATION (STEP 2)

Characteristics

- Implementation of measures allowing to increase cargos' average filling level:
 - Co-loading: regrouping of freight with similar shipment characteristics (e.g. departure point, destination) without regard to product's categories; implemented through common route planning and warehouse facilities sharing, between shippers / operators
 - Freight container modularization: all freight transport modes share the same interfaces and are able to use the same freight modules. Small freight modules that will typically be used for urban transport can be combined into bigger ones for long-distance transport and vice-versa

Key challenges

Requires collaboration across

Requires a high level of logistic

A common "modular system" for

freight containers has to be

shippers / operators

management

regulated

Cross impacts and further comments

- Further decrease in CO₂ emissions could be achieved if implemented together with other logistics' measures (e.g. high capacity vehicle or hub and spoke model)
- Lower transportation costs per freight unit could shift an amount of goods from rail to road, determining a final increment in road traffic and emissions

$^1\mathrm{CO}_2$ emission reduction potential system-wise (for the entire transport sector) Sources: IEA, FEV

traffic

Key advantages

Good CO₂ cost-benefit ratio and

the potential to reduce the road

commercial transportation sector

Positive effect on the entire

Logistics business claims increase in truck load, safety and infrastructure issues restrain implementation

USAGE – HIGH-CAPACITY VEHICLES

Characteristics

- Larger trucks with heavier payload .
- The fuel consumption increases with a slower rate in comparison to the increase of vehicle's weight / payload
- Unlikely to be applied to regional-haul vehicles
- High barriers on legal level due to infrastructural and safety issues (length and weight per axis):
 - Highway and bridge conditions, narrow curves, overtaking process
- Northern European countries are experienced into this practice:
 - In 1990, Finland limited trucks total weight to 60 tons _
 - In 2013, Finland allowed 9 axles-, 76 tons-trucks on selected routes _

be modified

be solved

Key challenges

gas stations, parking areas)

and investments necessary

Safety issues (overtaking) have to

In 2017, Sweden allowed 74 tons-trucks on selected routes

- Further decrease in CO₂ emissions could be achieved if implemented together with other logistics' measures (e.g. high capacity vehicle or hub and spoke model)
- A wide adoption of longer and bigger trucks, pushed by the legislation, could promote the shift to a "Hub and Spoke model"
- Lower transportation costs per freight unit could shift an amount of goods н. from rail to road, determining a final increment in road traffic and emissions

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

Key advantages

Decrease in number of trucks

needed to transport the same

amount of freight; subsequently:

Positive business case especially

for vast transportation distances

with lack of alternatives to road

Less CO₂ emissions

Less traffic

transportation

Depending on various external factors fully automated driving may be realistic within the next 20-25 years – preliminary for selected routes

USAGE - FULLY AUTOMATED / DRIVERLESS TRUCKS

Characteristics

- Full-time performance of all aspects of the driving task under all roadway and environmental conditions by automated driving system:
 - System is performing all safety-critical driving functions
 - System is monitoring all roadway conditions
- Step-by-step introduction expected:
 - Starting with specifically equipped roads, then roll-out to all sort of routes
- As no driver is required, also infrastructures have to be adapted in order to allow the truck to autonomously load, unload and refuel easily
- A considerable amount of technology (all type of hardware and smart / Al software) has to be implemented into the vehicle / roads

Key challenges Key advantages Increase of productivity and ride Technology needs to be developed further to ensure a safe operation efficiency in all situations Decrease of down-time since . safety can be enhanced Regulation needs to be adapted according to technology maturity Fewer congestions since transportation tasks can be shifted Vehicles need to be equipped with н. to night times; no "rest" is required significant amount of technology Significant investments into No driver's costs infrastructure has to be done Fast operations

 $^1\,\text{CO}_2$ emission reduction potential vehicle-wise Source: FEV

2040/50

Cross impacts and further comments

- Installed technology increases investment costs, however, if implemented with other automation measures, the cost could be partially amortized
- Could significantly promote a high level of logistics
- Positively affects competitive position of on-road transport:
 - Cost per km is expected to decrease
- If fewer congestions can be achieved, this reduces fuel consumption

filling level:

efficient way

.

The concept of physical internet, although hard to realize, must be the objective to pursue in order to push freight transportation to the next level

USAGE - CARGO OPTIMIZATION (STEP 3)

Characteristics Implementation of advanced measures allowing to increase cargos' average

Physical internet: commercial vehicles, train, flights and ships

connected to a shared platform allowing to deliver any good in the most

Key advantages	Key challenges	
 Excellent CO₂ cost-benefit ratio and the potential to reduce the overall commercial traffic Positive effect on the entire commercial transportation sector Minimizes the total amount of kilometers required to ship any freight within all transports Delivery costs and time reduction Optimizes single trip length 	 Requires collaboration across shippers Requires an extremely high level of logistic management Requires real-time tracking / status updates of all commercial vehicles Regulations may be required to monitor collaborations and to ensure that reduced costs of shipping are passed through to consumers 	

 $^1\,\rm{CO}_2$ emission reduction potential system-wise (for the entire transport sector) Sources: IEA, FEV

	Imp	act		
	Quantitative assessment	2		
CO ₂ emissions reduction ¹	< 15%			
Relevance for long-haul	High			n
Relevance for regional-haul	High	Ľ		11a] , n.
	2020 2	2030	2040	2050
Technical Maturit	у			
Commercial Maturit	у	I		

Cross impacts and further comments

- Further decrease in CO₂ emissions could be achieved if implemented together with automation measures
- Requires the implementation of a common "freight container modularization system" and a widely rolled-out "hub and spoke model"

For long-haul HD applications the impact of hybridization measures is less important compared to that for regional-haul ones

	Charac	icteristics			Impact		
=	Implementation of first measures to (combined with electrified auxiliaries – 48 V hybrid system – Boosting functionality	Quantitative assessment 3					
	 (Limited) ICE operating point s (Limited) recuperation 	shift	reduction ¹	1-3	^{1%} 2		
	CO ₂ and other emission limits / loca performance will drive electrification	Relevance for long-haul	L	ow k			
	deceleration events, combined with For long-haul HD applications busir	Relevance for regional-haul	Hi	gh 1			
				2020	2030	2040	2050
			Technical Maturity				
	Key advantages	Key challenges	Commercial Maturity				
	Reduces overall fuel consumption	Additional costs in comparison to					
	through the optimization of ICE in transient phases	pure ICE venicle	Cr	oss impacts	and further	comments	
-	Combined with predictive driving, further fuel economy potentials can be leveraged (e.g. sailing function with engine off) Increased low-end torque (support from e-motor) Potentially high degree of standard components	 in HD applications limited (limitations in terms of power) No "pure electric drive" mode possible (limited power to 20-35 kW) Additional integration effort 	 Full potential of transmission (such as predictive) 48 V system can (positive impact of Load cycle shifts potential (positive) Mentioned potential 	echnology is hi ve cruise contro have positive s on emissions d can reduce no e) impact on af tials require a s	ghly related to side-effects, e ue to reduced t only CO ₂ - bu tertreatment s system view /	 o other functions on g. electrically heated warm-up period) ut also NO_x-emissic system costs optimization 	the vehicle ed catalyst on – with a

 $^{1}\,\text{CO}_{2}\,\text{emission}$ reduction potential vehicle-wise Source: FEV

Hotel load management with a battery auxiliary power unit or with a connection to the power grid avoids engine idling at places of rest

ELECTRIFICATION - HOTEL LOAD MANAGEMENT

Characteristics

•	 Refers to the power load of convenit truck with a sleeper cabin as a place. Two possible solutions: An auxiliary power unit (APU) of related to propulsion. Conventit advanced APUs are mostly batt being considered, too Off beard power (above power) 	CO ₂ emission reduction ¹ Relevance for		
	 Off-board power (shore power) connection between the grid ar periods 	long-haul Relevance fo regional-haul		
	Key advantages		Key challenges	Commercial
	 Hotel load management: No engine idle time during resting periods or extended standstill periods Can also offer significant pollutant emission benefits 	-	Hotel load management: – Development and integration The use of off-board power is highly dependent on the coverage of the infrastructure and the number of electrified parking spaces; furthermore, the vehicle's electrical architecture must	 Infrastructure Infrastructure the anticiture motorway Penetratiture credits, a

AC power

accommodate the use of off-board

Cross impacts and further comments

- Infrastructure to be build-up for the plug solution could be connected with the anticipated investment in electric vehicle chargers at rest stops along motorways
- Penetration of e.g. battery APU is closely linked to legal boundaries (ecocredits, allowed rest time in cabin)

 $^1\,\text{CO}_2$ emission reduction potential vehicle-wise Source: FEV

_

The implementation of e-drive functionality into long-haul HD trucks is strongly dependent on the quantity of inner city rides of such vehicles

Characteristics

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

Cross impacts and further comments

- Full potential of technology is highly related to other functions on the vehicle (such as predictive cruise control)
- Such measures increase their potential if implemented together with "Electrified roads" infrastructures

Battery electric HD trucks are more likely to be adopted for regional-haul applications than for long-haul solutions

ELECTRIFICATION – BATTERY ELECTRIC TRUCK (GENERATION 1)

Characteristics

-	Fully electric trucks for specific app – For long-haul HD applications based decision process – cha	plications: s business potential is limited (clear TCO allenges in terms of battery weight /	Quantitative assessment				2 1
	package / costs and energy c — Regional-haul applications are entrances (also here: limited r	CO ₂ emissions reduction ¹ 100%					
-	logistic hubs) Until today, prototypes from leadin usage as "urban" HD or MD mobili	g CV manufacturers clearly indicate the ity concepts (e.g. Daimler Urban eTruck)	Relevance for long-haul	Low			
			Relevance for regional-haul	Medium			
				2020	2030	2040	2050
	Key advantages	Key challenges	Technical Maturity				
:	No tank-to-wheel emissions Strong reduction of acoustic pollution during inner city rides	 Battery's packaging, weight, costs and charging time as well as usable lifespan Planned operations have to consider the battery status, infrastructural boundaries and the way of operating the vehicle Limited usage under extreme conditions (e.g. cold regions) Higher costs than ICE vehicle (dependent on system specs.) 	Commercial Maturity Crc Such measures in "Electrified roads The way the ener well-to-wheel imp	oss impacts and ncrease their poter " infrastructures "gy provided to the pact of such measu	d further cor ntial if impleme truck is gener ures on the ove	nments ented together rated, strongly erall CO ₂ fleet	with affects the 's footprint

¹CO₂ emission reduction potential vehicle-wise Source: FEV

2030/40

Impact

н.

Hydrogen powered commercial vehicles have no pollutant and carbon emissions; today, infrastructure barely exists and product is expensive

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

Higher energy density in storage

compared to battery electric

vehicles

- based on fossil methane
- Sustainable production route via electrolysis of renewable power is expensive
- Fuel cell powertrains benefit from technological advancement in both fuel cell and battery storage technologies

Real benefits for HD applications come from recuperation in hilly areas, predictive drive systems and electrification of accessories

ELECTRIFICATION – POWERTRAIN ELECTRIFICATION (STEP 3)

Characteristics

Functionalities identical to above mentioned points (powertrain electrification

Hence, for long-haul HD applications business potential seems to be not as

Implementation of highly efficient hybrid powertrains on 800 V

Highest potential in drive cycles with stop / start and acceleration /

step 2) such as ICE operating point shift or recuperation

deceleration events, combined with predictive cruise control

•	 higher hybridization level will be introduced on trucks: Electric engine covering all highway working conditions Battery allowing full electric drive on small distances (e.g. between two main electrified roads) 								
	Key advantages		Key challenges	Ľ					
•	Further reduction of overall fuel consumption through improved 800 V hybrid system	-	Additional costs in comparison to pure ICE vehicle / previous hybrid versions (hence commercial attractiveness starting in 2040 timeframe) Additional R&D / integration / safety efforts						

FEV Consulting, April 2019

large as for regional-haul vehicles

Cross impacts and further comments

- Full potential of technology is highly related to other functions on the vehicle (such as predictive cruise control)
- Such measures increase their potential if implemented together with electrified roads infrastructures

Second generation of battery electric HD trucks will come with increased driving ranges at lower production costs

 $^1\,\text{CO}_2\,\text{emission}$ reduction potential vehicle-wise Source: FEV

Second generation of hydrogen powered commercial vehicles are commercially more attractive and come with increased efficiencies

ELECTRIFICATION – FUEL CELL ELECTRIC TRUCK (GENERATION 2)

	Charao	cteri	stics				Im	oact		
•	In general, 2 concepts exist: – Small battery and large fuel ce – Larger battery and smaller fue	ell (~ el cel	300 kW) (∼200 kW)			Qu ass	antitative sessment			
1	Trucks using hydrogen stored in a with a fuel cell for on-board power	pres gene	surized tank (~70MPa) and equipped eration		CO ₂ emissions reduction ¹		100%			
	which also reduces peak demand f enables optimization of operational	rom l effic	the fuel cell during acceleration and siency		Relevance for ong-haul		Medium			88
	Currently, several fuel cell trucks a market) or already in usage (e.g. ir In that second generation, fuel cell lowered due to a wider penetration	I fuel cell trucks are announced (e.g. Nikola in the US y in usage (e.g. in US harbors, unit production) neration, fuel cell efficiency is further increased; costs are wider penetration (driven also by passenger car industry)			Relevance for regional-haul		Medium			
		(···		Technical Maturit	y 2020	2	2030	2040	205
	Key advantages		Key challenges	0	Commercial Maturit	у				
-	No tailpipe pollutant emissions Potential for zero well-to-wheel carbon emissions if hydrogen is produced from renewable power Smaller battery compared to battery electric vehicles Higher energy density in storage compared to battery electric vehicles	-	Expensive refueling infrastructure Expensive vehicles due to low economies of scale and expensive materials, e.g. platinum Unsustainable hydrogen production still predominant based on fossil methane Sustainable production route via electrolysis of renewable power is expensive	•	C The way hydrog such measures Fuel cell powert cell and battery	ross impa jen is prod on the ove trains bene storage te	acts and uced stro rall CO ₂ fit from te chnologie	d further c ngly affects fleet's footp echnologica	comments the well-to-wheel print I advancement in	impact of both fuel

¹CO₂ emission reduction potential vehicle-wise Source: FEV

2040/50

2

2050

Overhead catenary:

Charging rails:

FEV expects overhead catenary vehicles to be limited to selected freight routes only

ELECTRIFICATION - CONDUCTIVE ROAD SYSTEMS

Characteristics

Energy supply by overhead catenaries on dedicated routes / lanes only

-	 every sort of equipped vehicle (e.g. including passenger cars) Current plans indicate an "electrification" of main routes in selected regions Main driver is to overcome the disadvantage of limited driving ranges for battery electric vehicles Supply trucks have to be connected via pantographs 								
Co	Key advantages mpared to diesel vehicle: Zero emissions when travelling		Key challenges Infrastructures require high investments		Techni Commere				
	under an overhead catenary line mpared to battery electric vehicle: Enables long-distance driving No down-time for recharging No energy losses due to on-board energy storage		Coverage of all freight routes with infrastructure unlikely Vehicle-to-infrastructure interface necessary or at least helpful Requires according space for installation (catenary); interference with other infrastructure to be considered		 The velocity well-to well-towell-to well-to well-to well-to well-to well-to well-to well-				
Sou	\mathcal{D}_2 emission reduction potential system-wis	se (to	or the entire transport sector)						

Cross impacts and further comments

- The way the energy provided to the truck is generated, strongly affects the well-to-wheel impact of such measures on the overall CO₂ fleet's footprint
- In contrary to overhead catenaries, charging rails offers further potentials in terms of business case / payback period (passenger cars usage, no limitation to HD trucks only)
- All vehicles using such infrastructures must be Plug-In hybrids (PHEVs), BEVs or FCEVs, as the electric motor should be dimensioned to fulfill all highway's conditions

Continuous charging on electrified roads offers great potentials but is challenged by significant infrastructural investments

Key challenges

Coverage of all freight routes

Standardized truck to

of inductive energy flow

investments

unlikelv

Infrastructure requires significant

infrastructure interface necessary

Safety and security requirements

ELECTRIFICATION - INDUCTIVE ROAD SYSTEMS

Characteristics

- Energy supply by wireless charging through the road surface via magnetic induction:
 - Power supply station in surface creates magnetic field and induces power flow
 - Energy is transferred to truck by pick-up coil and provides energy to battery and / or engine
- Most solutions rely on fix charging spots

Key advantages

Compared to battery electric vehicle:

without use of large battery

No down-time for recharging

Enables long-distance driving

Zero emissions when travelling on

No energy losses due to on-board

Compared to diesel vehicle:

an electrified road

н.

 Potentials are foreseen for regional applications, still major challenges exist (refer to below section)

.

		Imp	act		
	Qu as	uantitative sessment			
CO ₂ emissions reduction ¹] electric	Driver for solutions			•)))
Relevance for long-haul		Low	(C	
Relevance for regional-haul		Medium			
	2020	2	030	2040	2050
Technical Maturit	y 📃				
Commercial Maturi	у			1	

Cross impacts and further comments

- The way the energy provided to the truck is generated, strongly affects the well-to-wheel impact of such measures on the overall CO₂ fleet's footprint
- All vehicles using such infrastructures must be Plug-In hybrids (PHEVs), BEVs or FCEVs, as the electric motor should be dimensioned to fulfill all highway's conditions

$^1\mathrm{CO}_2$ emission reduction potential system-wise (for the entire transport sector) Source: FEV

energy storage

Demand controlled auxiliaries move away from steady-state operations and help to increase fuel efficiency

EFFICIENCY INCREASE – DEMAND CONTROLLED AUXILIARIES

Characteristics

-	 Depending on specific requirements of auxiliaries (often implemented via Often, demand (electrified) auxiliarie combined with a 48 V mild hybrid) Variable / Electric pumps: Mechanical decoupling, electric displacement / electric coolant No connection to the belt or cha flexibility for positioning Electric A/C compressor: No connection to the belt or cha 	 i load point, demand controlled usage a electric actuators) is come with a hybrid powertrain (e.g. c power steering and variable speed and and oil pumps ain drive required and thus higher 	CO ₂ emissions reduction ¹ Relevance for long-haul Relevance for regional-haul	Quantitative assessment ~2% High High			
			Technical Maturity	2020 2	2030	2040	2050
	Key advantages	Key challenges	Commercial Maturity				
	Efficiency increase due to reduced	Increased technology's costs	,		I	I	
	losses	 (Partly) increased system 	Cro	oss impacts and	d further co	mments	
-	 Enables demand-based control independent from engine speed Electric A/C compressor: Operation independent from engine speed Free positioning 	 Integration efforts 	Together with the of electric auxiliar	e increase of electr ries is expected	ification level	in trucks, a majc	or adoption

¹CO₂ emission reduction potential vehicle-wise Source: FEV

Impact

2020/30

Reduced vehicle weight does allow higher payloads, hence increases operational efficiency; baseline CO_2 emissions can be reduced

EFFICIENCY INCREASE - LIGHTWEIGHT MEASURES (STEP 1)

Characteristics Impact Lightweight in commercial vehicles is mainly driven by freight potentials . Quantitative (increased payloads) and a positive impact on CO₂ emissions assessment Also, further vehicle and powertrain measures which increase the weight (hybrid powertrain, additional aerodynamic elements) can be compensated CO₂ emissions ~1% Implementation of measures to reduce trucks' weight are (examples): reduction¹ Use of aluminum for cabin's doors, floor, roof and wall _ Hybrid aluminum-steel cabin body _ Relevance for Low Advanced steel body long-haul Introduction of aluminum rims Relevance for Low regional-haul 2020 2030 2050 2040 **Technical Maturity** Key advantages Key challenges **Commercial Maturity** Potential to increase the payload Increased costs due to extensive Potential to compensate for weight usage of aluminum / new materials Cross impacts and further comments increase driven by other measures Increased manufacturing Changes in material within truck cabin come with high efforts in terms of complexity (e.g. connections (see above, hybrid, etc.) product validation (safety / durability) for series applications between aluminum and steel) Cabin. body: Aluminum is less rigid, therefore connected parts and their corresponding No corrosion for aluminum stability needs to be checked carefully High strength steel is very _ Integration effort, impact on manufacturing and material costs require a rigid clear "benefit" analysis for lightweight measures Decision on lightweight measures must follow a "full system" view; different CO₂ measures (aero, weight, powertrain) compete with each other

 1 CO₂ emission reduction potential vehicle-wise Source: FEV

_

_

_

_

Improvement of aerodynamics can lead to benefits; as a first step, small improvements (e.g. additional fairings) are expected

Connection problems to the

cameras are a safety risk

Active components:

Durability

Decision on aerodynamic measures must follow a "full system" view; different CO₂ measures (aero, weight, powertrain) compete with each other

¹ CO ₂ emission	reduction	potential	vehicle-wise
Source: FEV			

an active grill shutter

Rather easy integration into

management and cooling with

existing tractor

Improved thermo-

Active components:

Active grill shutter

extenders:

2050

Rolling friction reduction can be achieved with improved axles and tires

EFFICIENCY INCREASE - ROLLING RESISTANCE REDUCTION MEASURES (STEP 1)

Characteristics

highway, ~15% of fuel energy is lost in rolling friction

Efficiency improvements can be realized, seals, weight and oil management

Implementation of first measures to reduce rolling f

General axle efficiency improvements:

In a steady-state operation point of a heavy-duty commercial vehicle on the

riction are, e.g.:				2	
e.g. through bearings,	CO ₂ emissions reduction ¹		2-3%	$\hat{}$	
dual tires): ecture and design of the	Relevance for long-haul		Medium	$\hat{\mathbf{z}}$	
ween 6x4 and 6x2	Relevance for regional-haul		Low	1	-
		2020	2	030	
, aballangaa	Technical Maturity				
y challenges	Commercial Maturity				

Cross impacts and further comments General axle improvements: Fuel efficiency benefit is lower for vocational vehicles Overall tire improvements: Slow progress compared to passenger cars due to low market volume Axle disconnect: Fuel efficiency benefit for vocational vehicles is lower Decision on RR measures must follow a "full system" view; different CO₂ measures (aero, weight, powertrain) compete with each other

Impact

Quantitative

assessment

 $^1\,\text{CO}_2$ emission reduction potential vehicle-wise Source: FEV

2040

2020/30

2050

Further engine improvements are expected until 2030; key measures are e.g. rightsizing or friction reduction (cranktrain optimization)

EFFICIENCY INCREASE – DIESEL ICE'S INTERNAL EFFICIENCY IMPROVEMENTS (STEP 1)

 $^{1}\,\text{CO}_{2}\,\text{emission}$ reduction potential vehicle-wise Source: FEV

The optimization of the truck's weight will go on and is expected in a second step for the timeframe 2030/2040

EFFICIENCY INCREASE – LIGHTWEIGHT MEASURES (STEP 2)

Relevance for Low 2020 2030 2040 **Technical Maturity Commercial Maturity** usage of new materials Cross impacts and further comments Increased manufacturing Changes in material within truck cabin come with high efforts in terms of complexity for advanced materials; product validation (safety / durability) for series applications comes with required investments Integration effort, impact on manufacturing and material costs require a into new production facilities clear "benefit" analysis for lightweight measures All "-by-wire" systems (e.g. brake-by-wire) require legal changes (not clearly discussed / foreseen as of today) Decision on lightweight measures must follow a "full system" view; different CO₂ measures (aero, weight, powertrain) compete with each other

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

increase driven by other measures

(see above, hybrid, etc.)

Impact

Quantitative

assessment

~2%

Low

2030/40

2050

_

_

_

_

Also on the aerodynamic side a second step of improvements is foreseen, including (partly) new cabin designs

Decision on aerodynamic measures must follow a "full system" view; different CO₂ measures (aero, weight, powertrain) compete with each other

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

2030/40

2050

2040

Further measures to reduce the rolling resistances are expected for the timeframe 2030/2040

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

Alternative combustion processes as Miller cycle help to reduce the fuel consumption and pollutant emissions in part load

Characteristics					Impact		
The brake thermal efficiency of today's heavy-du with highly sophisticated measures, up to 60% a			Quant asses	titative sment			
 Increased PFP (up to 250 bar) and injection Miller cycle: Intake valve closes before the piston re 	CO ₂ redu	emissions action ¹		6-8%			
center thus lowering the effective comp allowing higher geometrical CR, thus h efficiency	Rele long	evance for J-haul		High	μ ^π η	ևղ	
 Requires a valve train variability and in Further technologies (e.g. combustion rate compression ratio in niche applications) 	Rele regi	evance for onal-haul		High		ل ر)	
				2020	2030	2040	2050
Key advantages	Key challenges	Te Com	echnical Maturity Imercial Maturity				
Increased peak firing pressures:	sed peak firing pressure:					· · ·	
 Potential for higher power Additional 	daption of conrod, piston,		Cro	oss impac	ts and further	comments	
A Reduced exhaust enthalpy Increased injection pressure: A Reduced exhaust enthalpy Increased injection pressure: A Hit Increased	arings, liner, cylinder nead nd gaskets igher friction		Specialized engir pressures with in Increased peak f	ne oil additiv creasing po ring pressu	es may be requi wer densities an re:	ired for the high co d friction reduction	ntact strategies
emissions with better thermal – M efficiency er	inimal leakage to be nsured		 Fuel efficien Increased injection 	cy benefits a on pressure:	are lower for voc	ational vehicles	
Miller cycle:	cycle:		- FIRST UEINS : Miller cycle:	aneady appl	$y \ge 700$ bar fuel	injection pressure	
Increase of the thermal efficiency in part load co	creased boost level for onstant load required		 Alternative to 	o variable co	ompression ratio	and also combina	tion possible

 $^{1}\,\text{CO}_{2}\,\text{emission}$ reduction potential vehicle-wise Source: FEV

Turbocompound, organic Rankine cycle and thermoelectric generators recover waste heat and thus mitigate the vehicles demand for energy

EFFICIENCY INCREASE - WASTE HEAT RECOVERY SYSTEM

Characteristics Impact Turbocompound: Quantitative Waste energy recovered from exhaust through secondary turbine assessment connected to crankshaft with fluid coupling and clutch Alternative concepts: turbogenerator and electric turbocharger CO₂ emissions 1-5% Organic rankine cycle: reduction¹ Heat energy from tailpipe exhaust and/or exhaust gas recirculation used to evaporate and superheat a working fluid in a closed circuit Relevance for High which is expanded to generate mechanical power long-haul Thermoelectric generator: Utilizes the Seebeck effect to generate electricity by using the heat flow Relevance for Medium from the hot exhaust side to the cold intake side Turbocompound regional-haul 2020 2030 2040 2050 **Technical Maturity** Key advantages Key challenges Commercial Maturity Significant fuel economy benefits High technology costs possible (depending on cycle) Turbocompound: Cross impacts and further comments Turbocompound: Lower temperature in Organic Rankine Cycle: aftertreatment system Higher maturity _ Highly transient operation quite challenging Less complex system Organic rankine cycle: Turbocompound: Can be used to drive EGR Low maturity Electric turbocharger can be used for both performance boost as well Organic Rankine cycle and Complex system and as waste heat recovery thermoelectric generator: transient control Highly-linked to the exhaust aftertreatment system Usage of excess heat to Thermoelectric generator: Thermoelectric generator is expected to be adopted post 2030, together generate electric power Very low maturity with an improved ORC (2nd generation) Increases fuel efficiency Limited efficiency

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

In the far future, further lightweight potentials will be achieved – in line with new cabin design (e.g. driverless truck cabin)

	Charac	teristics		Imp	pact				
	Lightweight in commercial vehicles (increased payloads) and a positive Also, further vehicle and powertrain	is mainly driven by freight potentials impact on CO_2 emissions measures which increase the weight	Quantitative assessment						
-	(hybrid powertrain, additional aerod FEV expects the implementation of the trucks' weight through a wide us	lynamic elements) can be compensated advanced measures to further reduce se of innovative materials and designs	CO ₂ emissions reduction ¹	~3%	2				
-	Due to strong changes in cabin des driverless trucks, lightweight efforts	Relevance for long-haul	Low						
			Relevance for regional-haul	Low	L.				
				2020 2	2030	2040	2050		
	Key advantages	Key challenges	Technical Maturity Commercial Maturity		1				
	Further reduction of CO ₂	 Additional costs and 			1	I			
	emissions due to another step of	implementation efforts are	Cro	oss impacts and	further	comments			
	entirely new cabin design	loreseen	Not yet assessable	ble					
	, , , , , , , , , , , , , , , , , , , ,								
100									

 $^{1}\,\text{CO}_{2}\,\text{emission}$ reduction potential vehicle-wise Source: FEV

By 2050, the truck will look totally different (e.g. driverless cabin) which will lead to another leap in terms aerodynamic drag reduction potential

CO₂ emissions

Relevance for

reduction¹

EFFICIENCY INCREASE - AERODYNAMIC MEASURES (STEP 3)

Characteristics

future targets and fuel economy standards

cabin designs (driverless cabin)

Aerodynamic truck and trailer measurements are key technologies to meet

In a steady-state operation point of a heavy-duty commercial vehicle on the

FEV expects the implementation of advanced measures to further reduce

aerodynamic drag; this comes e.g. with the introduction of innovative / new

highway, ~30% of fuel energy are roughly lost in aerodynamic drag

Key advantages Key challenges Further reduction of CO2 emissions due to another step of improved aerodynamics Additional costs and implementation efforts are foreseen	naui	
Key advantages Key challenges Further reduction of CO2 emissions due to another step of improved aerodynamics Additional costs and implementation efforts are foreseen	vance for mal-haul	
 Further reduction of CO₂ emissions due to another step of improved aerodynamics Additional costs and implementation efforts are foreseen N 	chnical Maturit mercial Maturit	y y
	Ci lot yet assessa	ros

¹ CO₂ emission reduction potential vehicle-wise Source: FEV 2040

Impact

Quantitative

assessment

9-15%

High

Low

2030

Cross impacts and further comments

2020

2040/50

2050

In 2050, the reduction of rolling resistances is still foreseen to be considered within the area of axles and tires

EFFICIENCY INCREASE – ROLLING RESISTANCE REDUCTION MEASURES (STEP 3)

¹ CO₂ emission reduction potential vehicle-wise Source: FEV

FEV expects future ICEs to reach a brake thermal efficiency of nearly 60% (close to the theoretical maximum of the reference process)

EFFICIENCY INCREASE - DIESEL ICE'S INTERNAL EFFICIENCY IMPROVEMENTS (STEP 3)

Characteristics

- 60% BTE is close to the theoretical maximum of the reference Seiliger process (depending on peak pressures and compression ratios)
- Considered future engine can't be specified in terms of expected technologies, only thermodynamic and combustion relevant boundaries are defined
- Also, alternative engine's concepts are in discussion for 2040+:
 - Opposed piston engine: two pistons move opposed to each other in a cylinder, within a two-stroke process (no cylinder head, no valve train)
 - Split cycle: separation of compression and expansion stroke into different cylinders

Key advantages	Key challenges
 Further reduction of CO₂ due to increased BTE in best-point operations 	 Increase of ICE's efficiency is linked to significant R&D efforts and costs – in an (increasingly)
 Opposed piston engine: Fewer heat losses No complex cylinder head Less weight Split cycle: 	 un-proportional way Opposed piston engine: Higher emissions Durability issues New manufacturing facilities
 Reduced parasitic work More energy from one cycle compared to a diesel cycle 	 Split cycle: Complex set-up, more parts Packaging problem
compared to a diesel cycle ¹ CO ₂ emission reduction potential vehicle-wis	 Packaging problem

Source: FEV

Impact Quantitative assessment CO₂ emissions 7-9% reduction¹ Relevance for High long-haul Relevance for High regional-haul 2020 2030 2040 2050 **Technical Maturity Commercial Maturity**

Cross impacts and further comments

- Increased efficiencies towards the theoretical maximum of the reference process lead to significant requirements / cross effects (e.g. adaptation of materials, combustion system, boosting system)
 Such efficiency increase reduces the exhaust enthalpy; hence, related systems (e.g. Waste-Heat Recovery) are becoming less relevant
- Alternative engines are still in pre-development (only theoretical values)
- High costs for R&D and new manufacturing facilities need to be afforded in parallel to actual strong electrification trends

Paraffinic fuels are drop-in capable and can be blended up to 100% while reducing pollutant emissions; production is still expensive

ENERGY CARRIER – PARAFFINIC FUELS

- Pollutant emissions can be reduced: HC, CO and particles; NO_x by re-calibration
- CO₂ emissions can be cut by ~ 5% thanks to a favorable C/H ratio, over EN 590 diesel
- Further CO₂ emission reduction possible with dedicated calibration

- Not compliant with the EN590 due to a lower density
- CO₂ emission reduction from favorable C/H ratio can only be accounted to the OEMs if the regulation allows EN 15940 for certification

Cross impacts and further comments

- Pure usage expected beginning after 2040, blending in the whole timeframe
- Blending with fossil fuel and FAME is an option to increase the content of fuels from renewables, e.g. with a B33 consisting of 7 vol.-% FAME, 26 vol.-% paraffinic fuel and 67% fossil fuel

¹ For typical biomass materials and power from renewables, assessed in well-to-wheel plus carbon sink balance in 2050 compared to fossil fuel in 2018 Source: FEV

CH₃OH

Methanol is considered as a potential fuel in spark and compression ignition engines – limited adaptions of infrastructure and vehicles necessary

CO₂ emissions

reduction¹

ENERGY CARRIER – METHANOL

Characteristics

Methanol is the simplest and shortest alcohol with the structure formula

Methanol can be used in on-road transport in blends or purely and with a

a spark and compression ignition engine considered)

spark ignition, a compression ignition engine and a fuel cell (note: usage in

-	Methanol blending of up to 20 vol9 to the infrastructure and vehicles / p Production of methanol from Power MENA region and be transported to		Relevance for long-haul		High		5			
	Methanol is expected to be used in the marine sector				Relevance for regional-haul		High		0040	
	Key advantages		Key challenges]	Technical maturity	2020	2		2040	20
•	Limited adaptions to vehicles and infrastructure at >20 vol% blend Production from Power-to-Liquid is cheaper than paraffins Methanol is already produced on a large scale for the chemical industry (45 bn kg per year) High thermal efficiency possible Bio-degradable Trials running, e.g. in China	-	Rather low energy density Development of according fuel standards Invisible flame may be an issue since detection of hazardous fire of could be delayed		Commercial maturity Cro Methanol is expensive energy industry	oss impa	acts and	further c	omments of the future che	emical and

¹ For typical biomass materials and power from renewables, assessed in well-to-wheel plus carbon sink balance in 2050 compared to fossil fuel in 2018 Source: FEV

Impact

Quantitative

assessment

75-97%

2030/40

2050

Long chain alcohols can be blended at up to 50% without adaptions to vehicles and infrastructure; production is still expensive

ENERGY CARRIER - LONG-CHAIN ALCOHOLS

lengths of seven to twelve, heptanol to dodecanol:

powertrains and infrastructure

system is required

Characteristics

Long chain alcohols describes the class of alcoholic compounds with chain

Handling up to 50 vol.-% blending is possible without adaptions to

> 50 vol.-% blending a more resistant fuel line and an adapted injection

•	 Production can be established using fossils, biomass and Power-to-Liquid: Mass production is already established in the chemical industry mostly based on fossil inputs Long chain alcohols are expected to be blended with paraffinic and fossil fuels 					
	Key advantages		Key challenges			
-	Combustion efficiency can be increased by using a dedicated engine calibration Pollutant emissions can be reduced significantly, especially soot emissions but also CO and HC Particulate matter / NO _x trade-off eased, for octanol the trade-off disappears	-	To date high production costs, both from biomass and Power-to- Liquid: — More expensive than paraffins Some aspects of the production and usage are still in research phase			

Cross impacts and further comments

Combustion behavior and handling impacts in blends with components other than fossil fuel needs to be examined

¹ For typical biomass materials and power from renewables, assessed in well-to-wheel plus carbon sink balance in 2050 compared to fossil fuel in 2018 Source: FEV

Ethanol has the advantage of being available, further supported by stakeholders; production is still expensive

ENERGY CARRIER – ETHANOL

	Ethanol can be used as a fuel in spark and compression ignition engines:					
	 In spark ignition engines blends with up to 10 vol% ethanol do not require changes in the engine or infrastructure 					
	 High blend shares, e.g. E85 require updates to engines and infrastructure but already significant experience is available 					
	 In compression ignition engines, e.g. ED95 can be used with 95 vol% of ethanol 					
•	Ethanol can be produced from a wide range of feedstocks, yet production processes are expected to be limited to Biomass-to-Liquid and Power-to-Liquid only in small scale, if any					
	Key advantages Key challenges					
	Ethanol production from Production is challenging:					

Characteristics

Too expensive and limited in volume, if produced from cellulosic feedstock

 Import from the USA based on corn expected to get more difficult in the future due to increasing domestic demand

Cross impacts and further comments

- Technical maturity has already been proven for the usage of ethanol in spark ignition engines at all levels of blending up to pure usage
- Technical maturity of ED95 has already been proven in compression ignition engines, e.g. by Scania
- Commercial maturity is expected only in dedicated applications, within the discussed time horizon

¹ For typical biomass materials and power from renewables, assessed in well-to-wheel plus carbon sink balance in 2050 compared to fossil fuel in 2018; ² Renewable Energy Directive Source: FEV

that produce Ethanol

renewables is established

introduced

Scania

High share of renewables can be

Support from selected OEM as

Support from industry stakeholders

Hydrogen can reduce CO_2 emissions significantly, especially when produced by electrolysis, yet there is a lack of fueling infrastructure

ENERGY CARRIER – HYDROGEN

and transport systems

Combustion engine in first usage

Key advantages		Key challenges
No CO ₂ emissions in a tank-to- wheel balance		Lack of fueling infrastructure High costs of the fuel cell system
Pollutant emissions are: Zero in a fuel cell application 		 Costs scale with the system power
 Very low in a combustion engine application with a 		Pressure level of the fueling infrastructure not harmonized:
simple aftertreatment Electrolysis enables very low CO ₂		 Busses require 350 bar predominantly
emissions in a well-to-wheel balance, at low costs		 Passenger cars require 700 bar predominantly

Characteristics

applications and then developing towards higher power levels

Fuel cell expected in the ramp-up of hydrogen, starting at low power

Due to these characteristics, there are high requirements for storage

Hydrogen can be used as a fuel in two ways of energy conversion:

Hydrogen is the simplest, smallest and lightest element:

CO₂ emissions

hydrogen in blends

reduction¹

¹ For steam methane reforming and electrolysis with power from renewables, assessed in well-to-wheel plus carbon sink balance in 2050 compared to fossil fuel in 2018 Source: FEV

Impact

Quantitative

assessment

30-97%

2030/40

2050

2040

Methane combustion can reduce the CO_2 emissions in the tank-to-wheel and with production from renewables also in the well-to-wheel balance

ENERGY CARRIER – METHANE

Key advantages	Key challenges
 Production from biomass and Power-to-Liquid enables a high well-to-wheel CO₂ emission reduction Tank-to-wheel CO₂ emission reduction of 10-20% can be realized with all feedstocks, including fossil 	 Lack of fueling infrastructure CNG has a low energy density LNG is expensive and needs sophisticated handling Expensive storage systems necessary to enable long-haul applications Methane slip in the whole value chain needs to be avoided

Characteristics

Methane is the simplest paraffinic fuel with the molecular structure CH₄:

ratio, thus emitting the least carbon per energy content Methane can be produced from fossils, biomass and Power-to-Liquid

Combustion in spark- and compression-ignition engines is possible

Compared to other hydrocarbon fuels, methane has the lowest C-to-H

Cross impacts and further comments

Commercial maturity is expected only in dedicated applications, until 2030

¹ For typical biomass materials and power from renewables, assessed in well-to-wheel plus carbon sink balance in 2050 compared to fossil fuel in 2018 Source: FEV

DME already has a fuel standard in the USA and is supported by selected OEMs; costs are still high and challenge a wider roll-out

ENERGY CARRIER – DME

Key advantages

Fuel standard already realized in

Characteristics

- DME can be produced from multiple carbon feedstocks, including coal, natural gas, oil, biomass and air
- Production processes include synthesis based on dehydration of methanol
- Usage of DME in a truck is considered an option in a dual-fuel engine with diesel:
 - Blending of DME and diesel is not considered to have a high market penetration, since all powertrain changes for a pure DME system are necessary, but only part of the CO₂ and pollutant emission reduction can be realized

Impact							
	Quantitative assessment						
CO ₂ emissions reduction ¹	75	-97%	0,-				
Relevance for long-haul		Low			0		
Relevance for regional-haul		Low					
	2020	2020 2030		2040	2050		
Technical Maturit	y						
Commercial Maturit	y 📕	· · · · · · · · · · · · · · · · · · ·					

Cross impacts and further comments

A production with methanol as an intermediate product would have the potential to produce DME and methanol in one synthesis location

¹ For typical biomass materials and power from renewables, assessed in well-to-wheel plus carbon sink balance in 2050 compared to fossil fuel in 2018 Source: FEV

Key challenges

Production costs are still not

the USA competitive OEM support, especially from Additional costs of the second storage and injection system Volvo Combustion efficiency can be Set-up of fuel standards in Europe increased by up to 3% Gaseous at ambient conditions: Pollutant emissions can be Fuel pump, tank, injection reduced significantly, especially system and combustion soot and by re-calibration also NO_x process need to be adapted

FEV Consulting, April 2019

source to the vehicle

Electricity is one potential energy carrier also for the heavy-duty on-road transport, yet TCO is disadvantageous in most applications

ENERGY CARRIER – ELECTRICITY

بمعاربهم الممطرب مقالم

	 Increase of electricity production from renewables is required in Europ since the energy sector has a target of net zero greenhouse gas emissions by 2050 in the European Energy Roadmap 					
	Key advantages	Key challenges		0		
-	Lower operating costs High energy efficiency from well-to-wheel point of view Less maintenance required compared to a diesel powertrain Excellent controllability of power conversion leads to synergies when deploying automated driving features	 Disadvantageous in TCO for most applications due to production costs of the battery: TCO advantages only in use- cases with consistent and few kilometers driven between recharging as well as high amount of kilometers driven per day 				

Characteristics

Electricity is considered as an energy carrier if it is supplied from an external Quantitative assessment Plug-in vehicles can be both hybrid and battery electric vehicles Production of electricity will be considered based on the European mix CO₂ emissions 90-100% reduction¹ Development of electricity production processes determines the Relevance for Medium ong-haul Relevance for High egional-haul 2020 2030 2040 **Technical Maturity** Commercial Maturity

Cross impacts and further comments

Impact

- Commercial maturity will only be reached for specific applications:
 - Short and regional haul including the usage of heavy-duty trucks
- For long haul applications commercial maturity is not expected until 2050

¹ For typical biomass materials and power from renewables, assessed in well-to-wheel plus carbon sink balance in 2050 compared to fossil fuel in 2018 Source: FEV

2030/40

2050