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Abstract: Technical complexity associated with biodegradation testing, particularly for substances of unknown or variable
composition, complex reaction products, or biological materials (UVCB), necessitates the advancement of non‐testing methods
such as quantitative structure–property relationships (QSPRs). Models for describing the biodegradation of petroleum hydro-
carbons (HCs) have been previously developed. A critical limitation of available models is their inability to capture the variability
in biodegradation rates associated with variable test systems and environmental conditions. Recently, the Hydrocarbon
Biodegradation System Integrated Model (HC‐BioSIM) was developed to characterize the biodegradation of HCs in aquatic
systems with the inclusion of key test system variables. The present study further expands the HC‐BioSIM methodology to soil
and sediment systems using a database of 2195 half‐life (i.e., degradation time [DT]50) entries for HCs in soil and sediment.
Relevance and reliability criteria were defined based on similarity to standard testing guidelines for biodegradation testing and
applied to all entries in the database. The HC‐BioSIM soil and sediment models significantly outperformed the existing bio-
degradation HC half‐life (BioHCWin) and virtual evaluation of chemical properties and toxicities (VEGA) quantitative Mario Negri
Institute for Pharmacological Research (IRFMN) models in soil and sediment. Average errors in predicted DT50s were reduced by
up to 6.3‐ and 8.7‐fold for soil and sediment, respectively. No significant bias as a function of HC class, carbon number, or test
system parameters was observed. Model diagnostics demonstrated low variability in performance and high consistency of
parameter usage/importance and rule structure, supporting the generalizability and stability of the models for application to
external data sets. The HC‐BioSIM provides improved accuracy of Persistence categorization, with correct classification rates of
83.9%, and 90.6% for soil and sediment, respectively, demonstrating a significant improvement over the existing BioHCWin
(70.7% and 58.6%) and VEGA (59.5% and 18.5%) models. Environ Toxicol Chem 2024;00:1–12. © 2024 Concawe. Environmental
Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
The biodegradability of a chemical speaks directly to its ability

to accumulate in the environment, or persist, and potentially

cause unpredictable harm. This is an important aspect of the
Stockholm Convention (United Nations Environment Pro-
gramme, 2019) and multiple chemicals management regulations
worldwide, such as the European Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH) regulation
(European Union, 2006), the Plant Protection Products regulation
(European Union, 2009), the Toxic Substances Control Act (US
Environmental Protection Agency (USEPA), 1976), and the
Canadian Environmental Protection Act (Environment and Cli-
mate Change Canada, 1999), with the objective to protect
human health and the environment. Under these regulations,
biodegradation assessment generally starts with a screening
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assessment, such as the Organisation for Economic Co‐
operation and Development (OECD) series 301 of Ready Bio-
degradability tests (OECD, 1992). Chemicals that fail the ready
biodegradability screening tests generally undergo higher tier
testing in multiple environmental compartments including soil
and sediment. The outcomes of the biodegradation tests are
compared against Persistence criteria (Table 1) to determine
whether further scrutiny of the chemical is warranted.

The objective of Persistence assessment is not to measure
the intrinsic biodegradability of a chemical, that is, the ability of
the chemical to be broken down by microbial processes, but to
identify chemicals that should be prioritized for further as-
sessment. Chemicals are identified as Persistent when they
meet the regulatory half‐life criteria, given the external factors
that would amend the intrinsic biodegradability (Redman
et al., 2021; Schäffer et al., 2022). Under REACH, according to
the R.11 guidance (European Chemicals Agency [ECHA], 2023),
these half‐life values are calculated from standardized bio-
degradation simulation tests, specifically OECD test guidelines
307, 308, and 309, or from a weight‐of‐evidence assessment
using available data that often include nonstandard data
(ECHA, 2023). Simulation testing is often costly and not always
feasible due to limitations in the applicability of the test
guidelines for substances that are difficult to test (Redman
et al., 2021; Shrestha et al., 2020). The REACH R.11 guidance
(ECHA, 2023) defines a degradation half‐life (DT50) as the time
required for a test substance to reduce to 50% of its initial
concentration in a test system in which the degradation can be
described by (pseudo‐) first‐order reaction kinetics.

Half‐lives derived from biodegradation tests can be highly
variable, which is often attributed to the flexibility of the test
set‐up, allowing high variability in key external factors (Seller
et al., 2021). These extrinsic factors that alter apparent bio-
degradability are difficult to standardize and are thus poorly
accounted for in experimental test systems (Schäffer
et al., 2022). Thus integration of these extrinsic factors/envi-
ronmental properties to account for the differences in bio-
degradation seen in the different environmental media and
across different tests is not yet well understood.

Extrapolation of biodegradation half‐lives from one com-
partment to another is common practice in fate and exposure
modeling. These intermedia extrapolation factors (IMEFs)

provide a quick way to estimate biodegradation half‐lives in
compartments for which no data are available. In 1995, Boethling
et al. suggested factors of 1:1:4 for extrapolation between water,
soil, and sediment systems based on relative rates of bio-
degradation in the respective environmental compartments
(Boethling et al., 1995). This was revised in 2006 to 1:2:9, as
incorporated in the USEPA EPI Suite model (Aronson
et al., 2006). However, these IMEFs are rough estimations based
on highly variable test data or on expert judgment. Hence there
remains a need for methods to obtain biodegradation data for
the soil and sediment compartments beyond simulation testing,
particularly for difficult to test substances.

Another option for Persistence screening in soil and sediment
is the use of quantitative structure–property relationships (QSPRs)
for biodegradation based on empirical data. Such QSPR models
use structural, chemical, or environmental properties to develop
a quantitative relationship for predicting a given property of in-
terest (in this case, biodegradation rates in the environment).
They are similar to quantitative activity–structure relationships
(QSARs), in which the specific “property” used is an activity (e.g.,
log(KOW) to predict membrane–water partitioning; Endo &
Goss, 2014). Numerous biodegradation QSPRs exist for aqueous
systems (Pavan & Worth, 2006; Singh et al., 2021), but there are
far fewer available for soil and sediment systems. The outputs of
the QSPRs can range from indications of “ready biodegrad-
ability” to calculations of biodegradation half‐lives. Many bio-
degradation QSPRs generate semiquantitative biodegradation
half‐lives for water, soil, and sediment, and are generally based
solely on molecular structure (Lombardo et al., 2022). However,
recent work by Davis et al. (2022) has shown that molecular
structure information alone is not sufficient to reliably predict the
primary biodegradation of hydrocarbons (HCs), and that test
system parameters play a key role in biodegradation estimation
for aqueous systems. This assessment informed the development
and the application of the Hydrocarbon Biodegradation System
Integrated Model (HC‐BioSIM) to predict biodegradation in
freshwater and seawater test systems (Davis et al., 2022). In more
complex soil and sediment systems, it is expected that test
system parameters will similarly play a critical role in the pre-
diction of the biodegradation. For example, in one soil bio-
degradation QSPR model for phthalate esters, soil pH and
organic matter content were recognized as soil properties

TABLE 1: Persistent and very persistent criteria under REACH, TSCA and CEPA

Half‐life criteria

Persistence REACH TSCA CEPA

Persistent (P) >60 days in marine water
>40 days in fresh or estuarine water

>180 in marine sediment
>120 days in fresh or estuarine sediment

>120 days in soil

≥60 days in water, sediment, and soil
≥2 days in air

≥2 days in air
≥182 days in water

≥365 days in sediment
≥182 days in soil

Very Persistent (vP) >60 days in marine, fresh, or estuarine water
>180 days in marine, fresh, or estuarine

sediment
>180 days in soil

>180 days in water, soil, and sediment —

REACH= Registration, Evaluation, Authorisation and Restriction of Chemicals regulation; TSCA= Toxic Substances Control Act; CEPA=Canadian Environmental
Protection Act.
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impacting chemical partitioning and thereby impacting pre-
dictions of phthalate biodegradation rates (Bai et al., 2021).

As stated previously, Persistence assessment under REACH
requires biodegradation half‐lives for all relevant environmental
compartments (water, soil, and sediment), which could be
generated by QSPR (REACH Annex XI). The aims of our study
were (1) to expand a recently constructed database of aerobic
HC biodegradation half‐lives in water from Brown et al. (2020) to
include aerobic HC biodegradation in soil and sediment; and (2)
to generate an HC‐specific soil and sediment biodegradation
QSPR including system parameters, building off of the
HC‐BioSIM water model (Brown et al., 2020; Davis et al., 2022).

MATERIALS AND METHODS
Database collation for HC biodegradation in soil
and sediment systems

The HC biodegradation half‐life database was compiled
using aerobic biodegradation half‐life data from peer‐reviewed
literature, obtained predominantly through a systematic search
of scientific literature repositories (i.e., PubMed, Science
Direct, Google Scholar, Deepdyve) using relevant keywords
(Supporting Information Database SI, Table S3). Gray literature
was also identified using relevant keyword searches of Google
and the reference lists of known HC biodegradation databases,
such as the USEPA's biodegradation HC half‐life (BioHCWin)
and Aerobic Biodegradation of Organic Chemicals (Aronson
et al., 1999; European Centre for Ecotoxicology and Toxicology
of Chemicals, 2009; Howard et al., 2005). The full database is
available as an Excel sheet in the Supporting Information titled
“Database SI.”

A title and abstract screening process was undertaken,
followed by a second round of review of the full texts. The
following quality screening criteria were applied for selection of

studies to be included in the database: (1) aerobic bio-
degradation data derived from studies using naturally occur-
ring inocula from uncontaminated environments that have no
direct or obvious pre‐exposure to HCs; (2) studies conducted
with freshly spiked HC, hence excluding any data influenced by
aging with the substance; (3) studies involving measurement of
primary biodegradation of individual HC constituents; and (4)
studies that minimized or accounted for abiotic losses.

A range of key study parameters and metadata were de-
fined (the full list is available in the Supporting Information,
Table S4). These covered aspects such as the identity and form
of the test substance, inoculum characteristics, experimental
conditions, and results, and they were used to inform the
assessment of the study quality. Biodegradation kinetics are a
key metric captured as biodegradation half‐lives (DT50) and are
described further in the Biodegradation kinetics section.

Data quality criteria were developed to assess the studies in
the database and support their use for regulatory purposes and
other related uses, including QSPR development. Relevance
and reliability criteria were defined based on similarity to
standard OECD test guidelines, and other recent work
(Wassenaar & Verbruggen, 2021). Relevance criteria focused
on the characteristics and treatment of the inoculum and ex-
perimental test set‐up. Reliability criteria centered around the
use of controls, dosing strategies, and replicates. Further reli-
ability criteria were developed for assessment of the meas-
urement of biodegradation. The full list of criteria for relevance
and reliability and their justification is available in the Sup-
porting Information, Tables S5 and S6, respectively, with an
overview of the selected parameters shown in Table 2. The full
range of reliability and relevance parameters was evaluated for
each individual study in the database. Low, medium, and high
rankings were assigned scores of 1, 2, or 3, respectively, to
allow data to be scored against best practices. Mean average

TABLE 2: Overview of the relevance and reliability criteria used for database development

Relevance parameter Reliability parameter

Test system Water:sediment ratio in test system (RW:S; v/v) Test system Dosing strategy, i.e., approaches taken to ensure homogeneous
distribution and bioavailability of test substanceSoil moisture content during study

Sediment agitation
Aeration of test system Measures to assess or minimize abiotic losses

Light regime during study
Test substance concentrationa; (dose

mg/kg; ppm)
Application of test substance as crude oil or a

complex mixture
No. of study replicates

Test temperature (T; °C)
Experimental setup

Inoculum Sediment characteristics (pH, organic carbon
content (foc; %)

Measurement No. of sampling time points during the study

Soil characteristics (soil classification, pH, foc) Test substance recovery, i.e., chemical extraction efficiency
and mass balance

Sampling and storage of soil and sediment Analytical method reliability
Supplementation with nutrients or mineral

media
Extent of biodegradation observed during study and used

for HL/DT50 calculation
Type of inoculum used HL/DT50 calculation

aFor the purposes of our study, loading refers to the total hydrocarbon initial concentration, and dose refers to the initial concentration of the individual test substance(s)
(for which DT50 values are reported).
Additional information related to the relevance and reliability parameters, criteria, and justifications is available in the Supporting Information, Tables S5 and S6.
HL/DT50= half‐life excluding lag phase/half‐life+ lag phase.
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scores were calculated for each category by averaging the two
category scores for each metric. All individual parameters were
assigned equal weightings.

Biodegradation kinetics
The biodegradation data found in studies were presented in

a number of different forms. For the purpose of our study, the
convention established concerning biodegradation endpoints
in Birch et al. (2018), and adopted in Brown et al. (2020) and
Davis et al. (2022), was followed (Birch et al., 2018; Brown
et al., 2020; Davis et al., 2022). Briefly, when degradation data
permitted a lag phase (period of no discernible degradation) to
be distinguished from the degradation phase, this lag phase
was captured and reported separately. In the database, sepa-
rate degradation endpoints are presented including and ex-
cluding any lag phase, referred to as either half‐life (excluding
lag phase) or DT50 (half‐life+ lag phase). We have defined
DT50 as a term for use in our study, but the reader should verify
whether our definition aligns with the definition for their par-
ticular regulatory context.

Data already in the form of a half‐life were directly input into
the database with no further treatment. When biodegradation
rates (k; days–1) were available, half‐lives were calculated from
the rate information according to Equation (1). Degradation
graphs or time series data were assessed to obtain concen-
tration and time data, which were then used to calculate half‐
life and DT50 (both in units of days). When it was not possible
to obtain data from graphs (i.e., due to low resolution), half‐life
was determined directly by visual inspection of the graph.

‐ =
( )
k

Half life
ln 2

(1)

Two kinetic approaches were applied to calculate DT50
values from biodegradation time series data for inclusion in the
database. The first describes a “one‐phase decay model from a
plateau,” incorporating pseudo‐first‐order kinetics with an initial
lag phase (X0; days). For studies in which a lag period was clear
(degradation not greater than 10%) and overall degradation
during the study period was greater than 50%, this approach
was applied. The kinetics for this model were determined using
the “plateau+ exponential decay model” on Prism 9 (GraphPad,
2020). This equation calculates the two phases as distinct, sep-
arate kinetic components and is described as

= +
( )

X
k

DT50
ln 2

0 (2)

Alternatively, some DT50 values incorporated 0‐order deg-
radation kinetics with an initial lag phase. Using [A] as the
current concentration and [A]o as the initial concentration, k is
the reaction constant, t is time in the equation [A]= [A]0− kt,
the DT50 is calculated as follows:

= +
[ ]

X
A

k
DT50

20
0 (3)

Model development
The compiled databases (soil and sediment) as just described

were used to develop and validate the respective HC‐BioSIM
QSPR models. Previously, a decision‐tree machine learning
model, HC‐BioSIM, had been developed for predicting primary
biodegradation disappearance times (DT50) of HCs in marine
and freshwater systems (Davis et al., 2022). Briefly, the model
utilizes a decision‐tree algorithm to develop a series of rules from
a set of chemical structure and system parameters (Quinlan,
1993). These rules parse and subset the DT50 data, maximizing
similarity within the subsets and minimizing the entropy of the
entire system. For each subset, a multiple linear regression is
applied to generate quantitative DT50 predictions, drawing from
the pool of remaining structural and system parameters. Re-
dundant rules are trimmed or combined in a postdevelopment
“pruning” process to minimize model complexity and limit
overparameterization. A generalized schematic of the model
architecture is presented alongside the model output (Sup-
porting Information Sediment Model and Soil Model, Table S1).
This approach results in a model architecture and output that (1)
is transparent, (2) is easily communicated, and (3) provides a
mechanistic basis for interpretation and application, in line with
the OECD principles for the development and validation of
QSAR/QSPR models (OECD, 2014).

ToxPrint structural fingerprint parameters (Yang et al., 2015)
were selected to describe key structural features of the con-
stituents in the soil and sediment database. ToxPrint finger-
prints were obtained from the USEPA's CompTox Dashboard
(Williams et al., 2017) and were further manually curated to
eliminate redundant structural descriptors. This is consistent
with the previously developed HC‐BioSIM water model (Davis
et al., 2022). For the soil model, test temperature (T), test
substance concentration (Dose), and fraction organic carbon
(foc) were identified as relevant system parameters because
they have been previously identified as influencing the bio-
degradation of HCs in soil (Davenport et al., 2022). For the
sediment model, one additional parameter, the ratio of water
to sediment (RW:S) was included as a relevant system parameter
in lieu of foc, because the RW:S can be considered a surrogate
for the relative amount of organic carbon in the test system
(in the absence of direct reported foc data).

Chemical and system parameters were then combined to
create a single pool of parameters for the development and
calibration of the soil and sediment models. To systematically
evaluate the influence of structure and system parameters, a
step‐wise approach to model construction was implemented.
As a base case, a “structure‐only” model was developed that
provides a consistent comparison to the existing BioHCWin
and VEGA models (Howard et al., 2005; Lombardo
et al., 2022). System parameters were then sequentially added,
with performance (root mean square error [RMSE] and R2,
discussed in the following section, Model performance and
data analysis) and complexity (number of rules and parameters
used in the models) evaluated for each subsequent iteration of
the model. Additional consideration was given to parameters
that may have a specific impact on regulatory decision‐making

4 Environmental Toxicology and Chemistry, 2024;00:1–12—Davis et al.

© 2024 Concawe wileyonlinelibrary.com/ETC

 15528618, 0, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/etc.5857, W

iley O
nline L

ibrary on [15/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



or relevance of the predicted value for comparative assessment
(e.g., comparing a model result with OECD simulation study
conditions). Finally, a model was selected that balanced com-
plexity, performance, and end‐user application needs. All in-
formation is available in Table S2 of the Supporting Information
for each model (soil and sediment). Model calibration,
cross‐validation, and statistical analyses were performed in R
(Ver. 3.6.1) unless otherwise stated. The R‐code files for the
soil and sediment models (including parameter curation and
visualizations) are available as R script in the Supporting
Information.

Model performance and data analysis
Soil and sediment models were trained and validated using

the curated experimental database discussed previously.
Random seeds were established to ensure unbiased and re-
producible selection of training (80%) and validation (20%)
subsets as well as for the fold selection in the k‐fold cross‐
validation analysis. Model performance was compared with
predictions made with the existing BioHCWin model (using
1:1:4 water:soil:sediment IMEF; Boethling et al., 1995; Howard
et al., 2005) as well as the VEGA persistence soil and sediment
models (Benfenati et al., 2013; Lombardo et al., 2022). The
BioHCWin model was selected because it is used routinely in
chemical registration and hazard assessment and is freely
available within the USEPA's EPI Suite software package
(USEPA, 2023). The VEGA models were included because they
are the only quantitative models for soil and sediment com-
partments that are (1) applicable to a wide set of chemicals, (2)
free to use, and (3) easily accessible (i.e., via a web platform;
Benfenati et al., 2013; Lombardo et al., 2022). Prediction ac-
curacy was evaluated using the RMSE as well as the Pearson
correlation coefficient (R2). The RMSE values for the model
predictions are computed as follows:

=
( ( ) − ( ))=

RMSE
DT DT

N

log 50 log 50i
N

i pred i1 exp, ,
2

(4)

where N is the number of observations, DT50 iexp, is the ex-
perimental DT50 value of the ith observation, and DT50pred i,

is the predicted DT50 value. Logarithmic DT50 values are used
in the calculation of the RMSE for two reasons: first, to assign
equal weighting across a large numerical range of observed
DT50 values; and second, to provide a metric that is easily
interpreted and communicated. For example, RMSE values of
0.3 and 0.5 log units correspond to average error of predictions
of 2x and 3x, respectively.

Finally, a k‐fold cross‐validation (k= 5) was performed on the
soil and sediment models. Mean and standard deviations of
RMSE and R2 values, as well as concordance between the rules
structure and parameter usage were assessed to provide an
overall assessment of the stability and generalizability of the
calibrated models. The results are available in the Supporting
Information, with a complete description of the cross‐validation
process (and associated diagnostics) provided in the Supporting

Information of Davis et al. (2022) in line with the OECD guidance
on QSAR/QSPR development (OECD, 2014).

RESULTS AND DISCUSSION
Soil and sediment database

Following the literature search and screening detailed above,
a total of 100 independent studies (58 soil studies and 42
sediment studies) containing suitable biodegradation test data
were identified. Of the 221 studies available in the BioHCWin
database, only 34 studies were found to be suitable for inclusion
in the soil and sediment database. Reasons for exclusion in-
cluded inappropriate environmental inoculum (water), pre‐
exposure of the inoculum, and incorrect endpoint measurement
(mineralization).

The final curated HC biodegradation database consisted of
2195 entries (1243 in sediment and 952 in soil). All studies
meeting the selection criteria are listed in Table S2 of the
Database SI Supporting Information. Studies that failed to
meet the selection criteria are listed in the Database SI Sup-
porting Information, Table S7 (omitted studies), along with the
reason for their omission. Almost 50% of the studies omitted
from the final database were omitted due to pre‐exposure or
adaptation to the test substance, which is not permitted ac-
cording to REACH R.11 guidance (ECHA, 2023). Other reasons
included the measurement of ultimate biodegradation and the
HC constituents not being described. Of the 2195 half‐lives
compiled, 16 sediment half‐lives and 4 soil half‐lives were ex-
cluded from the model training and validation data set because
the computed half‐lives reported were greater than the dura-
tion of the study and were considered to be unreliable for the
purpose of calibrating a quantitative model. This is consistent
with the previous development of the aquatic DT50 database
(Davis et al., 2022).

Figure 1 illustrates the distribution of chemical class and
carbon number (CN) in soil (left) and sediment (right) studies
across the database. Data covering more than 170 individual
HC constituents were compiled in the database and cover all
major HC chemical classes. Linear alkanes (n‐paraffins), mono-
aromatic hydrocarbons (MAHs) and polyaromatic hydrocarbons
(PAHs) represent the majority of the database. Carbon number
ranged from 3 to 66, but most of the data were from con-
stituents with CN< 30 in both sediment and soil studies. At
least one half‐life for n‐paraffins covering every CN from 3 to 66
was included in the database. The PAH data were mostly
available for HCs with CNs between 14 and 18, whereas the
majority of the data for MAHs and di‐aromatic hydrocarbons
(DAHs) was for constituents with CNs ≤ 12. The only data for
constituents with CN> 23 were for DAHs and n‐paraffins.

Data quality evaluation
The data relevance and reliability criteria (Database Sup-

porting Information, Tables S5 and S6) were applied to all
entries in the database, and the distribution of overall scores is
shown in Figure 2. There was no correlation between assigned
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relevance and reliability scores, as assessed by the low R2 value
(0.1025) of a plot of the relevance versus reliability scores.

Out of the 2195 half‐lives assessed, 1051 (47.9%) were
flagged as possible critical fails for incubation in the presence
of light, 121 (5.5%) for inhibitory effects on the inoculum, 8
(0.4%) for possible anaerobic conditions, and 124 (5.6%) for
potential bioavailability issues. When time and/or concen-
tration values were not available and needed to be derived
from a study graph image, 1117 (50.7%) data points were
flagged. In total, <15% of data points were not assigned any
quality flags.

The assessed parameters with the highest percentages of
low relevance scores were organic carbon content (62.7%),
water:sediment ratio (65.7%), pH (57.2%), and sediment agi-
tation and aeration (56.8%). Seven hundred twenty‐five (32.9%)
data points achieved an average relevance score of ≥2.5, 1480
(67.1%) scored between 1.5 and 2.5, and no entry scored <1.5.

Generally, the majority of data points assessed scored high
for reliability criteria, with the exceptions of test substance re-
covery, analytical method reliability, and half‐life/DT50 calcu-
lation. Only 1.1% and 6.0% of all data points were assigned
high scores for half‐life/DT50 calculation and analytical method
reliability, respectively. The majority were assigned medium
scores for these categories. Only 6 averaged a reliability score
of <1.5 (0.3%), whereas 854 (39%) scored between 1.5 and 2.5,
and 1335 (61%) scored ≥2.5.

Model performance
The comparison of predicted and experimental DT50

values using the final selected soil and sediment models is
presented in Figure 3. Model performance was benchmarked
against the existing aqueous BioHCWin model with a 1:1:4

FIGURE 1: Distribution of chemical class and carbon number across the database in soil (left) and sediment (right), with normal paraffin (nP); iso‐
paraffin (i‐P); mono‐naphthenic (MN); olefin (Ole); mono‐aromatic (MAH); mononaphtho‐monoaromatic (NMAH); diaromatic (DAH; including alky-
lated forms); naphthenic‐diaromatic (NDAH); polyaromatic (PAH); naphthenic‐polyaromatic (NPAH); and heterocyclic hydrocarbon (Het). Boxes have
been grayed out where no possible structures exist for the corresponding carbon number.

FIGURE 2: Distribution of overall (A) relevance and (B) reliability scores for all entries in the database.

6 Environmental Toxicology and Chemistry, 2024;00:1–12—Davis et al.
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water:soil:sediment IMEF (Boethling et al., 1995; Howard
et al., 2005) as well as directly against available quantitative
models for soil and sediment half‐lives from the VEGA model
platform (Benfenati et al., 2013; Howard et al., 2005). Individual
predictions for these models are available in the respective
models in the Sediment Model and Soil Model Supporting
Information, Table S3. Summary statistics (i.e., RMSE and R2)
are provided for the overall soil and sediment data sets as well
as separately for the training and validation sets (Table 3). A
complete analysis of HC‐BioSIM residuals including boxplots
for system parameters, HC chemical class, and CN is available
in Table S5 of the Soil Model or Sediment Model Supporting
Information (residuals).

Soil model
For soil, improvements over BioHCWin and VEGA were ob-

served for the “base” structure‐only HC‐BioSIM model, with a
1.5−4x reduction in RMSE (see the Supporting Information,
Stepwise Model Investigation). Even so, improvements in R2 over
the existing models were small (0.10–0.15), highlighting the need
for inclusion of additional system parameters. Inclusion of the log
(foc) as a system‐parameter produced the most substantial per-
formance increase, with a 2‐ to 6‐fold reduction in RMSE and a
significant increase in the ability of the HC‐BioSIM model to
capture the variability in the observed DT50 values (R2= 0.74).

Less significant model improvements were observed with the
single addition of either Dose or Temperature parameters, re-
spectively. Improvements after addition of a second and/or third
system parameter were less significant but did not increase the
overall complexity of the model(s). These results are expected,
because organic carbon in a soil system will alter both the bio-
availability of an HC substance and microbial abundance in the
test system. Thus, foc combined with the dose is likely to have a
significant modifying effect on observed biodegradation half‐
lives in the system (Posada‐Baquero et al., 2024; Shrestha
et al., 2019). This is reflected in both the relative importance of
the added system parameters and the usage in constructing the
model rules/architecture. The final soil model included foc, dose,
and temperature. Ultimately, temperature was included because
it is a key factor in enabling regulatory Persistence assessment as
well as important for providing a valid operational domain for the
use of the model in other settings (e.g., oil spill modeling). The
complete stepwise model evaluation, the resulting performance
and rule(s) parameters, and a k‐fold cross‐validation of the final
model(s) are provided in the Supporting Information, Stepwise
Model Investigation.

The final HC‐BioSIM soil model reduced the average DT50
prediction error (RMSE) by 0.4 to 0.8 log‐units (i.e., by a factor
of 2.5–6.3x) compared with the BioHCWin and VEGA models,
respectively. Performance was similar between the training
(RMSE= 0.46, N= 756) and the validation (RMSE= 0.54,

FIGURE 3: Comparison of the Hydrocarbon Biodegradation System Integrated Model (HC‐BioSIM), BioHCWin, and VEGA QSPR models (predicted
vs. experimental disappearance times [DT50; in days]) for soil (A–C) and sediment (D–F) data sets. Solid lines represent 1:1 agreement between
predicted and experimental values. Dot‐dashed lines represent 2× and 3× average errors (root mean square error = 0.3 and 0.5), respectively.
Colors correspond to hydrocarbon classes: normal paraffins (nP), iso‐paraffins (iP), mono‐naphthenics (MN), di‐naphthenics (DN), mono‐aromatics
(MAH), di‐aromatics (DAH), poly‐aromatics (PAH), naphthenic mono‐aromatics (NMAH), naphthenic di‐aromatics (NDAH), naphthenic poly‐
aromatics (NPAH), olefins (Ole), and S‐, N‐bearing heteroatoms (Het).

HC‐BioSIM for soil and sediment—Environmental Toxicology and Chemistry, 2024;00:1–12 7
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N= 190) data sets, as well as between the folds of the k‐fold
validation analysis (data available in the Supporting Information
Soil Model, Table S4). This strongly suggests a stable solution,
a model that is highly generalizable, and a model whose
structure and performance are relatively insensitive to the se-
lection of training data. Finally, no significant predictive bias
was observed across the soil data set, either as a function of HC
chemistry (CN, chemical class) or the parameters of the test
system (foc, Dose, Temperature). This indicates that the se-
lection of parameters, as well as the model architecture, are
unbiased in characterizing the influence of the test system as
well as the HC structure on the observed DT50. Box plots of
the computed residual errors (Equation 4) for HC structure
and test system parameters are presented in the Supporting
Information Soil model, Table S4 Residuals).

An obvious limitation of the existing BioHCWin and
VEGA model architecture can be observed in Figure 3B and C.
Horizontal striations of predicted values for naphthenic‐
aromatic structures (naphthenic mono‐aromatics, naphthenic
di‐aromatics, naphthenic poly‐aromatics NPAH) as well as some
higher aromatic compounds (PAHs) in the BioHCWin model
and for all HC classes in the VEGA model suggest that neither a
linear fragment‐addition approach nor an approach based
solely on chemical structural alerts are adequate to represent
the DT50 behavior for these constituents. For example,
reported DT50 values for benzo(g,h,i)perylene ranged from 40
to approximately 17,000 days, with a geometric mean value of
355 days. These studies have experimental conditions that
varied considerably (T: 10–30 °C, foc: 0.5%–11%, dose:
0.7–184.5mg/kg‐soil wet wt). The single BioHCWin‐predicted
value of 517 days, although able to reproduce the average
experimental result, failed to capture the substantial ex-
perimental variability across the various studies and test sys-
tems. The inclusion of the test system parameters in HC‐BioSIM
allows for a marked improvement in the ability to reliably and
quantitatively capture this experimental variability.

Sediment model
For sediment, a more significant improvement in RMSE over

the existing BioHCWin and VEGA models was observed for the
“structure only” base case, with a 3x and 5x reduction in error,
respectively (see the Supporting Information, Stepwise Model

Investigation). However, as with soil, R2 values for the base
models were not significantly improved. For the sediment
model, log(foc) was removed as a system parameter due to the
high fraction of DT50 values that did not report foc values for test
sediments (88%). Inclusion of the first system parameter pro-
duced the most dramatic improvement in model performance,
with dose, RW:S, and temperature providing the most substantial
improvements, respectively. The additional sediment parameter
(RW:S) can be considered mechanistically a surrogate for the
partitioning of the substance in the sediment system in the ab-
sence of foc data (a critical parameter in the soil model) and has
been shown previously to be a crucial factor in sediment bio-
degradation simulation tests (Honti & Fenner, 2015). It is possible
that the inclusion of direct foc data for sediment systems may
provide additional information and should be a focus of future
work. As with the soil model, RMSE improvements with the ad-
dition of a second and third system parameter were small and
did not result in increased model complexity. It should be noted
as well that the inclusion of 2+ and 3+ ring PAHs and long alkyl
chain length structural parameters as minor modifying rule pa-
rameters was consistent between the soil and sediment models
as well as with the previously developed water model (Davis
et al., 2022). The final sediment model included RW:S, dose, and
temperature. As for soil, temperature was included to address
explicitly the relevance and domain of the model outputs for
regulatory and other applications. The complete stepwise model
evaluation, the resulting performance and rule(s) parameters, and
a k‐fold cross‐validation of the final model(s) are provided in the
Supporting Information (Stepwise Model Investigation).

The final HC‐BioSIM sediment model reduced the average
DT50 prediction error (RMSE) by factors of 5.6 and 8.7x com-
pared with the BioHCWin and VEGAmodels, respectively. In the
case of BioHCWin, this enhanced improvement is likely due in
part to the selection of the water:sediment IMEF. A standard
IMEF value of 1:4 was selected (Boethling et al., 1995). It is clear
from Figure 3E that systematic overprediction of the DT50
values occurs across the entire data set, suggesting that the 1:4
IMEF is overly conservative for HC constituents. This observation
is important, because often even larger extrapolation factors
(e.g., 1:9 [Aronson et al., 2006]) are suggested for Persistence
assessment in sediments. This result suggests that employing
existing IMEFs may greatly overestimate the DT50 in sediment
systems for HCs. Performance for the training (RMSE= 0.39,
n= 986) and validation (RMSE= 0.42, n= 247) sets, as well as

TABLE 3: Summary statistics (root mean square error [RMSE] and R2) for the overall soil and sediment data sets as well as for the training, validation,
and total data sets

HC‐BioSIM BioHCWin VEGA

System Data set No. RMSE R2 RMSE R2 RMSE R2

Soil Training 756 0.438 0.78 0.847 0.37 1.240 0.33
Validation 190 0.542 0.71 0.848 0.46 1.271 0.37
All DT50 946 0.459 0.76 0.847 0.39 1.246 0.34

Sediment Training 986 0.402 0.71 1.160 0.17 1.36 0.04
Validation 247 0.414 0.58 1.090 0.09 1.26 0.02
All DT50 1233 0.405 0.68 1.150 0.16 1.34 0.04

DT50= half‐life+ lag phase; HC‐BioSIM=Hydrocarbon Biodegradation System Integrated Model.
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the k‐fold cross‐validation (Supporting Information, Sediment
model, Table S4) were consistent, again supporting the stability
and generalizability of the HC‐BioSIM framework.

It is interesting to note that the HC‐BioSIM sediment model
failed to discriminate a range of experimental DT50 values for
several higher carbon range normal paraffin structures (nP) as
well as several PAH compounds, including C1–C2 chrysenes/
pyrenes, C4 phenanthrenes, and several phenanthrene, pyrene,
and chrysene datapoints (Figure 3D). On further inspection, the
nP data were from a single study, in which all system parameters
were held constant except for the application of dispersant (Ba-
cosa et al., 2018). That study did not report a log(foc) value for the
test sediment. Predicted log(Kow) values (as a surrogate for or-
ganic carbon–water partitioning) were computed from EpiSuite
(Ver. 4.11) and plotted against the observed log(DT50) values for
both the dispersed and nondispersed compounds. A strong
linear relationship was observed. For the PAH compounds, the
range of log(Kow) values is small (~5–7), and no strong trend was
observed (see the Supporting Information for raw data).

Because there is a large variability in the sediment foc in a
test system and in substance hydrophobicity (Kow), a consid-
erable uncertainty in the regulatory application of model pre-
dictions may exist when the sediment foc is not reported. This is
particularly likely for constituents that sorb strongly to organic
carbon (e.g., those with high organic‐carbon partition co-
efficients [Koc]). In future analyses, it may be prudent to flag
DT50 predictions when information on the test system is un-
known. Even so, no strong predictive bias was observed across
the sediment data set, either as a function of HC chemistry
(i.e., CN, chemical class) or the remaining system parameters
(i.e., temperature, dose). This lack of bias indicates that the
selection of parameters as well as the model architecture is
adequate to characterize the influence of the test system as
well as the HC structure on the observed DT50. Box plots of
the residual errors (Equation 4) for HC structure and test system
parameters are available in the Supporting Information,
Sediment model, Table S5 (Residuals).

Persistence categorization
In addition to the quantitative predictive capability, it is im-

portant to understand the ability of the model to accurately
categorize the Persistence of the HCs under the varying test

conditions. This can improve our understanding of how test
conditions can potentially lead to conflicting or erroneous Per-
sistence conclusions and can also highlight test conditions or
systems that may not be representative of relevant environmental
systems. To evaluate their respective performance, paired pre-
dicted and experimental DT50 values were compared against
the REACH persistent (P) and very persistent (vP) criteria (Table 1)
in soil or sediment. The percentage of correct predictions, and
the false‐positive and false‐negative conclusions relative to a
Persistence conclusion based on an experimental DT50 value
were compared for the HC‐BioSIM, BioHCWin, and VEGA
models. The summary results of this analysis are presented in
Table 4, and the full results are available in the Supporting
Information for the soil and the sediment models, Table S6
(P categorization).

Significant improvement in correct prediction was observed
broadly for HC‐BioSIM for both soil and sediment systems. Ac-
curacy of Persistence categorization improved by 10% to 23% for
soil and 32% to 72% for sediment predictions relative to the
BioHCWin and VEGA models. This largely corresponds to the
correction of false‐positive predictions (−10% and −30%, for
BioHCWin and VEGA models, respectively). However, due to the
increase in accuracy, HC‐BioSIM appears to be less conservative
than the other models, with an increase in false‐negative pre-
dictions for the HC‐BioSIM soil predictions (12.7%) relative to
BioHCWin (2.2%) and VEGA (0.8%). However, these false neg-
atives corresponded to DAH, PAH, and NPAH constituents
tested as mixtures with total HC concentrations (loading) that can
be considered relatively high; reported concentrations ranged
from 6 to 172,000mg/kg sediment with a geometric mean value
of 198mg/kg sediment. The combination of high test concen-
trations and affinity for binding to organic carbon may reduce the
bioavailability of the individual constituents, and result in slower
than anticipated biodegradation. If studies with total HC con-
centrations >100mg/kg are removed, the recomputed false‐
negative rating for the HC‐BioSIM soil model is 5.9%, much
closer to those of the BioHCWin and VEGA models. For the
sediment DT50 predictions, the percentage of false‐negative
ratings for each model was relatively similar (6.7% [HC‐BioSIM],
4.7% [BioHCWin], 6.1%, [VEGA]). Maintaining a low rate of false‐
negative categorization while substantially reducing false‐positive
categorization is important, because it demonstrates the ability
of HC‐BioSIM to be used reliably as an initial screening and

TABLE 4: Comparison of persistence conclusions (%; using the REACH P and vP criteria in Table 1) based on DT50 values predicted by HC‐BioSIM,
BioHCWin, or VEGA models versus experimental DT50 data

Predicted persistence compared with
persistence conclusion based on empirical data HC‐BioSIM BioHCWin VEGA

Soil Correct prediction 83.9 70.7 59.5
Overprediction (false positive) 3.4 26.2 39.6
Underprediction (false negative) 12.7 2.2 0.8

Sediment Correct prediction 90.6 58.6 18.5
Overprediction (false positive) 2.8 36.7 75.4
Underprediction (false negative) 6.7 4.7 6.1

DT50= half‐life+ lag phase; HC‐BioSIM=Hydrocarbon Biodegradation System Integrated Model; P= persistent; REACH= Registration, Evaluation, Authorisation and
Restriction of Chemicals regulation; vP= very persistent.
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prioritization tool for HCs across a wide range of soil and sedi-
ment test conditions.

Model domain and application to OECD 307/308
systems

As discussed in the Soil and sediment database section, the
soil and sediment data sets that we compiled include a broad
range of experimental designs, test systems, and environ-
mental test parameters. Nonstandard degradation experiments
differ in their experimental setups from standard OECD tests,
which limits their regulatory acceptance to a weight‐of‐
evidence assessment and thus they cannot be directly com-
pared with the Persistence criteria (i.e., REACH R.11 guidance
(ECHA, 2023). For example, in OECD (2002) test guideline 308,
a water:sediment ratio (RW:S) in the test system of between 3:1
and 4:1 is recommended, but only approximately 20% of
studies in the database comply with this recommendation. In
addition, important test information may not be reported in
nonstandard tests. For example, even though foc is recognized
as a key environmental parameter that impacts partitioning of
test substances and therefore biodegradation, approximately
88% of the sediment studies in the database do not report the
foc. Also, nonstandard degradation experiments almost ex-
clusively use nonradiolabeled test compounds which means
that nonextractable residues are not quantified or considered
in degradation kinetics. This remains a shortcoming in light of
updated R.11 REACH guidance (ECHA, 2023).

Much of the data for individual constituents in the database
were derived from tests conducted with substances that are
UVCBs (i.e., substances of unknown or variable composition,
complex reaction products, or biological materials) or that are
composed as mixtures. These data differ from those of standard
OECD tests, which are typically performed on individual con-
stituents. The HCs generally occur as mixtures in neat petroleum
substances that are highly complex UVCBs consisting of a large
number of HC constituents. Several concerns arise around the
regulatory acceptability of data generated from testing mixtures
or multiple constituents at once, including the influence of tested
constituents on the degradation of other constituents (ECHA,
2023; Wassenaar & Verbruggen, 2021). However, there is a
growing body of supporting literature indicating that testing of
mixtures at low, environmentally relevant concentrations does
not greatly alter the biodegradation rate and may be more
representative (Birch et al., 2022; Hammershøj et al., 2019; Li &
McLachlan, 2019; Tian et al., 2023).

The test substance concentration (dose) in the training set is
another factor that may affect the accuracy of the predictions.
The residual plots provided in Table S5 in the Supporting
Information indicate bias at the higher substance concentrations.
The objectives of capping the test substance concentration are
to avoid inhibitory effects on the microbial population and limit
variability in the kinetics (e.g., lag phase) and the extent of bio-
degradation (OECD, 2006; Strotmann et al., 2023).

Thus the HC‐BioSIM training sets (and the subsequent
model domain) include a wide range of soil and sediment

temperatures, test substance concentrations, organic carbon
content, and Rw:s. Caution should be exercised when inter-
polating between values for the environmental or experimental
values that are available in the training set. For example, if
there is a temperature or dose that is not represented in the
training set, the resulting predictions may be less reliable. This
caution should also apply to combinations of test system pa-
rameters that do not already occur in the training set. It should
be noted that the accuracy and reliability of predictions outside
the system parameters defined in the training set cannot be
fully evaluated at present. Further research is needed to clearly
define the HC‐BioSIM applicability domain and the reliability of
the predictions, as per good modeling standard practice (Buser
et al., 2012).

The residual box plots in Table S5 in both the Soil and
Sediment Model Supporting Information files provide an in-
dication of the distribution of the data and the range of values
for which HC‐BioSIM predictions may be more accurate. A
more succinct description of the HC‐BioSIM applicability do-
main and test system parameter values based on the most
common values in the training set are available as the Sup-
porting Information in the HC‐BioSIM QSPR Model Reporting
Format (QMRF) document, which was developed according to
ECHA guidance (ECHA, 2008).

CONCLUSIONS
The non‐standard studies captured in the soil and sediment

database were compared with the experimental setup and data
interpretation used in the respective OECD simulation test
guidelines, through the development of reliability and rele-
vance criteria for soil and sediment biodegradation testing.
This allows a more robust database that is weighted accord-
ingly for Persistence assessment in an approach consistent with
REACH (ECHA, 2023). The relevance and reliability criteria have
been developed to establish representativeness and a means
of systematically evaluating non‐standard data. Further devel-
opment and discussion of biodegradation testing method-
ology are needed to support its application in regulatory
assessments.

For a diverse data set of HC constituents and test con-
ditions, HC‐BioSIM consistently outperformed the BioHCWin
model combined with IMEF for soil and sediment systems. This
result is consistent and comparable with previous findings in
surface water systems. Additionally, HC‐BioSIM provided im-
proved accuracy of Persistence categorization, with correct
classification rates of 83.9% and 90.6% for soil and sediment
compartments, respectively. Most importantly, however, for
the first time, system‐specific and environmental effects on the
biodegradation of petroleum HCs can be quantitatively eval-
uated in soil and sediment systems with independent estima-
tion of soil and sediment DT50.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5857.
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