

# Sectorial Deep Dive -

# **Maritime Transport**

SAE PF&L Meeting - 8<sup>th</sup> September 2022 - Krakow

Damien Valdenaire <u>Roland Dauphin</u>

Reproduction permitted with due © Concawe acknowledgement

## « Technological, Operational and Energy Pathways for Maritime Transport to Reduce Emissions Towards 2050"



# 1- <u>Context</u>: IMO ambition to reduce total annual GHG emissions from international shipping by at least 50% by 2050 compared to 2008.



- IMO's short-term measures at the vessel level supporting this ambition: EEDI, EEXI, CII, SEEMP
- Revised IMO strategy planned for 2023
- Current "tank-to-wake" estimates may give way to "wellto-wake"
- <u>New vessels</u> should start using zero GHG energy carriers by <u>2030</u>



These projections emphasised the considerable challenges that the industry faces to meet the 2050 ambition.

# Available NOW, Tech. & Operational measures



## 2- Fuel consumption to 2050 (1/2)

#### Package 1



#### Package 2

## 2- Fuel consumption to 2050 (2/2)

## Package 3



2- Energy efficiency technologies are key in providing shorter term GHG reductions but are insufficient alone to meet IMO ambition; higher risk CCS a small benefit. The largest reductions in WTW GHG emissions result from fuel switching

WTW CO<sub>2</sub>e emissions - contribution of technology and fuels - Central scenario



# 2- The IMO ambition is estimated to be met by all three packages when emissions are calculated on a well-to-wake basis • Package 1 "early pure



- <u>Package 1</u>, "early pursuit of zero carbon fuels"
- <u>Package 2</u>, "moderate uptake of interim and drop-in fuels".
- <u>Package 3</u>, "initial maximisation of vessel decarbonisation

**Measures**". For the central scenario, by 2050, approximately **65%** of the **global fleet** is equipped with **carbon capture** technology. Carbon capture then contributes approximately 24% of the total well to wake emissions reductions under this package

## This study ambition

Over-achievement due to Carbon Capture and Bio-LNG

# 2- The IMO ambition is estimated to be met by all three packages when emissions are calculated on a well-to-wake basis • Package 1 "early pure



- <u>Package 1</u>, "early pursuit of zero carbon fuels"
- <u>Package 2</u>, "moderate uptake of interim and drop-in fuels".
- <u>Package 3</u>, "initial maximisation of vessel decarbonisation

**Measures".** For the central scenario, by 2050, approximately **65%** of the **global fleet** is equipped with **carbon capture** technology. Carbon capture then contributes approximately 24% of the total well to wake emissions reductions under this package

## Current IMO ambition

This study ambition

Over-achievement due to Carbon Capture and Bio-LNG 3- Technology measures identified to have wide range of <u>cost effectiveness</u>, mostly below today's current EU ETS prices





## **Risks and barriers**



This study and others show it should be <u>technologically possible to decarbonise the global shipping sector</u> to the level of the IMO ambition. However, despite this technical feasibility we have not so far seen rapid decarbonisation at the rate and scale required; barriers to decarbonising the shipping sector remain.

#### GHG reduction potential

- Uncertainty between TtW and WtW, and in how WtW defined
- 20 year GWPs make LNG/bio-LNG less palatable

#### Production increase, location

- Alternative fuel production needs to substantially increase and be appropriately located (→ dedicated new facilities? Or convert existing assets?)
- Renewable electricity sources may be in different geographies to existing assets

#### **Price differential**

- HFO price and scale difficult to match
- Regulatory intervention may help reach price parity

#### Infrastructure

- <u>Bunkering infrastructure</u> and port refuelling facilities need to be scaled up
- (Not a barrier for 'drop-in' fuels)

### Split incentives

- Customers and charterers not willing to pay or co-fund lower emission solutions
- No clarity on how the preferred fuel(s) will be chosen to allow for scale

#### Sustainability certainty

- Chemically identical brown/blue/green fuels need reliable certification schemes to provide assurance / guarantees
- Uniform / standardised sustainability criteria may also need global consensus

## Want to know more?

Download the full report on our website <u>https://www.concawe.eu/wp-</u> <u>content/uploads/Technological-</u> <u>Operational-and-Energy-Pathways-for-</u> <u>Maritime-Transport-to-Reduce-Emissions-</u> <u>Towards-2050.pdf</u>



Technological, Operational and Energy Pathways for Maritime Transport to Reduce Emissions Towards 2050

**Final report** 

Report for OGCI/Concawe

# Thank you for your attention



# The different alternative fuels and technology options were combined into three "fuels and technology" packages for subsequent analyses of their impacts

|                        |           | Package 1                                                                                                                                                                                       | Package 2                                                                                                                                                                                     | Package 3                                                                                                                                                                                                                                                                 |                            | Package 1                                                                                                                                                                                             | Package 2                                                                                                                                                                                                                                                                                      | Package 3                                                                                                                                                                                                                                                                                      |
|------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |           | Early pursuit of zero-<br>carbon fuels (hydrogen and<br>ammonia), with some<br>limited adoption of new<br>technologies                                                                          | Moderate uptake of interim<br>and drop-in fuels (LNG,<br>BioLNG, FAME and HVO)                                                                                                                | Initial maximisation of vessel<br>decarbonisation measures,<br>with later transition to lower<br>carbon fuels (LNG, BioLNG,<br>methanol, ammonia)                                                                                                                         |                            | Early pursuit of zero-<br>carbon fuels (hydrogen and<br>ammonia), with some<br>limited adoption of new<br>technologies                                                                                | Moderate uptake of interim<br>and drop-in fuels (LNG,<br>BioLNG, FAME and HVO)                                                                                                                                                                                                                 | Initial maximisation of vessel<br>decarbonisation measures,<br>with later transition to lower<br>carbon fuels (LNG, BioLNG,<br>methanol, ammonia)                                                                                                                                              |
| Futu<br>ener<br>carrie | gy<br>srs | <ul> <li>Ammonia</li> <li>Hydrogen</li> <li>Electricity (battery)</li> </ul>                                                                                                                    | LNG/BioLNG     Biofuels: FAME, HVO                                                                                                                                                            | Ammonia     Methanol     LNG/BioLNG                                                                                                                                                                                                                                       | Propulsion<br>technologies | Large area propellers     Pre-swirl                                                                                                                                                                   | Large area propellers     Contra-rotating propellers     Pre-swirl     Podded thrusters     Ducts                                                                                                                                                                                              | Large area propellers     Contra-rotating propellers     Pre-swirt     Post-swirt     Podded thrusters     Ducts                                                                                                                                                                               |
| Vessel design          | el<br>jn  | <ul> <li>Form optimisation</li> <li>Bulbous bow retrofit</li> <li>Bow thruster tunnel<br/>optimisation</li> <li>Hull coatings</li> <li>Ballast reduction &amp; trim<br/>optimisation</li> </ul> | <ul> <li>Form optimisation</li> <li>Bulbous bow retrofit</li> <li>Bow thruster tunnel<br/>optimisation</li> <li>Hull coatings</li> <li>Ballast reduction and trim<br/>optimisation</li> </ul> | <ul> <li>Form optimisation</li> <li>Bulbous bow retrofit</li> <li>Bow thruster tunnel<br/>optimisation</li> <li>Hull coatings</li> <li>Ballast reduction and trim<br/>optimisation</li> <li>Interceptors</li> <li>Construction weight</li> <li>Air lubrication</li> </ul> |                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |
|                        |           |                                                                                                                                                                                                 |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |                            | Waste heat recovery                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                | Carbon capture                                                                                                                                                                                                                                                                                 |
|                        |           |                                                                                                                                                                                                 |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           | මී<br>Operational          | <ul> <li>Speed reduction</li> <li>Voyage planning &amp;<br/>weather routing</li> <li>Power demand mgmt</li> <li>Efficiency measurements</li> <li>Hull cleaning</li> <li>Propeller cleaning</li> </ul> | <ul> <li>Speed reduction</li> <li>Voyage planning /<br/>weather routing</li> <li>Power demand mgmt</li> <li>Efficiency measurements</li> <li>Hull cleaning</li> <li>Propeller cleaning</li> <li>Advanced port logistics</li> <li>Capacity optimisation</li> <li>Advanced autopilots</li> </ul> | <ul> <li>Speed reduction</li> <li>Voyage planning /<br/>weather routing</li> <li>Power demand mgmt</li> <li>Efficiency measurements</li> <li>Hull cleaning</li> <li>Propeller cleaning</li> <li>Advanced port logistics</li> <li>Capacity optimisation</li> <li>Advanced autopilots</li> </ul> |
| Pow<br>assistan        | er<br>ce  | <ul> <li>Flettner rotors</li> <li>Sails</li> </ul>                                                                                                                                              | <ul> <li>Flettner rotors</li> <li>Sails</li> </ul>                                                                                                                                            | <ul> <li>Flettner rotors</li> <li>Salls</li> <li>Towing kites</li> <li>Solar power</li> </ul>                                                                                                                                                                             |                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |