

Future Diesel-like renewable fuels - A literature review

CEN/TC 19/WG 24 meeting - 26th April 2023

Roland Dauphin - Science Executive Fuels Quality & emissions

Mickaël Matrat - IFPEN Reproduction permitted with due © Concawe acknowledgement

Contents

- Context & objective
- Identification/Selection of relevant pathways
 - LCA and TEA
 - Production potential
- Evaluation of blending behaviour
- Blending opportunities
- Summary and conclusion

Reference box *for* additional comments

Motivation

- Commercial HDV transportation is primarily powered by internal combustion engines (ICE)
- Although electrification is proposed, long-distance transport will still significantly rely on ICE in the next 10 years
 - To decarbonize these vehicles, the development and use of low-carbon fuels by <u>2030</u> is essential
- Goal: identify the relevant renewable diesel-like options for 2030 by considering the following aspects
- → <u>Sustainability</u> and <u>scalability</u> by 2030
 - Consider feedstock type and availability, production cost, process maturity and life-cycle greenhouse gas emissions as key parameters
- **>** <u>Compatibility</u> with legacy and future fleet
 - Consider combustion, after-treatment efficiency, hardware compatibility and durability as key parameters
 - Limited to no modifications to the vehicles' settings and hardware

• **>** Fuel specifications adaptation?

• Need to adapt fuel specifications to allow higher blending ratio of renewable fuels in the conventional diesel 'EN590' pool and go beyond the blending wall? 3

Structure of the study

Selected pathways - Feedstock, process and product

Resource	Process	Product	Comments / Research needs	
Lignocellulose	Fermentation ATD	Paraffinic distillate	Industrialised technology Flexibility to other products	
Lignocellulose	Gasification - FT	Paraffinic distillate	Technology close to industrialization - Optimisation prospects Flexibility to other products but integrability and adaptation to lignocellulose require	
WCO / Animal fat / Energy crop oil	Hydrotreatment of triglycerides	Paraffinic distillate (HVO / HEFA)	Industrialised technology Application to a wider range of resources Integration of renewable H2?	
WCO / Animal fat / Energy crop oil	Transesterification	FAME	Industrialised technology – adapted to small scale /close to resource Blending constrains	
Lignocellulose	eFuel – Lignoc.	Paraffinic distillate	eH2 and RWGS technology to industrialise	
CO2	eFuel – CO2	Paraffinic distillate	High flexibility to other fuels	

E-fuel

Focus on hybrid

process

LCA - TEA of selected pathways

- > The sensitivity to the resource can be very different for the energy pathways (ATD)
- \blacktriangleright Best CO₂ score for ATD and E-fuel
- Good compromise for distillate from gasification + FT pathway

Biomass conversion yields to renewable fuels

	Pathway	Feedstock	Mass yield
	Fermentation – AtD	Sugarcane	9 ↔ 12%
	Oil hydrotroatmant	Waste cooking oils	90 %
	On nyurotreatment	Lard and beef tallow animal fats	92 ↔ 97%
	Transesterifcation	Waste cooking oils	83 ↔ 97%
		Animal fats	93 %
	Gasification + Fisher-Tropsch	Biomass	14 ↔ 26%
_	E-fuel from lignocellulose	Biomass + electricity	47 ↔ 52%
	Lignocellulose hydrotreatment	-	No data found
	E-fuel from CO ₂	-	No data found

<u>Hypothesis</u> : Full conversion of FT-wax into distillate

Potential middle distillate production

Based on biomass availability by 2030 Projected renewable fuel production assuming all the sustainable biomass* for bioenergy by 2030

	Pathway	Fuel	Feedstock	Projected feedstock (Mt)	Estimated advanced renew. fuel quantity (Mt)	Estimated advanced renew. fuel quantity (Mt)	
				Imp. Coll. data	Imp. Coll. data	Literature review	
	Fermentation – AtD	Paraffinic fuel	Solid industrial waste (secondary agro & forest industries)	133 → 191	-	14.6 → 21.0	
			Agricultural residues (straw-like)	137 → 165	-	15.1 → 18.2	New
			Lignocellulosic crops (grassy)	36 → 108	-	4.0 → 11.9	
Conservative approach	Oil hydrotreatment	HVO	Used Cooking Oil (UCO)	3.1	2.6	2.8	1
techonolgies			Animal fats	2.2	1.87	2.1	1.
	Transesterification	FAME	Used Cooking Oil (UCO)	3.1	-	2.8	
			Animal fats	2.2	-	2.0	New
	Gasification + Fisher- Tropsch	Paraffinic fuel	Solid industrial waste (secondary agro & forest industries)	133 → 191	27.9 → 40.1	26.6 → 38.2	0.0038
			Agricultural (woody) & forestry residues	5 → 7	1.0 → 1.5	1.0 → 1.4	\checkmark
			Lignocellulosic crops (woody)	36 → 108	7.6 → 22.7	7.2 → 21.6	Lotons
Accuming availabitily of	E-fuel from lignocellulose	Paraffinic fuel	Solid industrial waste (secondary agro & forest industries)	133 →191	53.2 → 76.4**	66.5 → 95.5	
renew. electricity			Agricultural (woody) & forestry residues	5 → 7	2 → 2.8**	2.5 → 3.5	\checkmark
			Lignocellulosic crops (woody)	36 → 108	14.4 → 43.2**	18 → 54	L. CONTRACT

*Sustainable biomass availability in the EU, to 2050 – Imperial College London **ICL report estimated advanced renew. fuel quantity as for 2050

Renewable middle distillates production potential by 2030

Considering high TRL processes only, the renewable diesel production <u>potential</u> considering sustainable biomass availability by 2030 ranges between 57 and 88 Mtoe/y (i.e. 24-37% of demand for middle distillates which is estimated at 241 Mtoe out of 350 Mtoe for the transport sector in 2030)

Renewable middle distillates production potential by 2030

Adding (former) regulatory objectives for RFNBOs (2.6% ener.), the renewable diesel production <u>potential</u> considering sustainable biomass availability by 2030 ranges between 92 and 123 Mtoe/y (i.e. 38-51% of demand for middle distillates in 2030)

Evaluation of blending behaviour & opportunities

✓ Characterisation of fuel variability

- ✓ Definition of mixing rules (focus on cold flow properties but includes CN, FP, Density and Viscosity)
- ✓ Blending optimisation with and without additives
- ✓ Sensitivity from relaxed specifications

Blending limits - Conservative approach (MODEC model) Base fuel CFPP: -25°C / Spec. Limit: -20°C (Class F)

- Not shown here but a different model would lead to 5-10 points increase once the CFPP is the limiting factor
- Main advantage of extended specification is to be less density dependent for significant energy path (AF trans / HDT of energy crops / FT)
- CFPP is the constraint otherwise and limits greatly the incorporation rate
- FP can be a constraint for selected low-quality feedstocks (Worst HDT WCO/Trans AF)

© Concawe

12

Blending limits - Additive impact - Focus on EN590 boundaries

Base fuel CFPP: -25°C / Spec. Limit: -20°C (Class F)

- Additivation only improves cold flow properties (Cetane number is not a limit)
- The use of cold flow improver increases the blending ratio from about 5 to 20 points. The increase being lower for higher CFPP temperatures. Nevertheless, the density can become a constraint before this maximum increase is reached (egontRANS WCO or EC, FT, HDT WCO).

Hydrotreatment Product

• For every "best" energy path, the density is either the first constraint or it becomes quickly the limit if the cold flow improver additive is used.

1

1

Insights into possible fuel specifications evolutions for an increased renewable content

- CFPP and Density are the main constraining properties
- Figures below illustrate CFPP and density blending behavior for all energy paths identified

- Rapid CFPP increase at low blending ratio limiting the biocomponent concentration.
- Adjusting the standards for CFPP may be difficult due to operating/logistic constraints.
- Improving the cold flow properties of renewable diesel products through various means is potentially an important lever for maximizing the use of sustainable products.

- Only one product identified is fully compatible with EN590 density range
- Extending the EN590 density limits by ±10 kg/m3 (arbitrarily chosen for demonstration only) could lead to increase in the maximum blending ratio by about 15-25% (best case by 35%).

Summary

Biomass and green H₂ potential availability -> Production potential up to 24-51% of expected middle distillate demand by 2030

550

Read more

- Concawe report
 - <u>https://www.concawe.eu/wp-content/uploads/Rpt-22-18.pdf</u>

Future diesel-like renewable fuels - A literature review

www.concawe.eu

Thank you for your attention

Roland Dauphin Roland.dauphin@concawe.eu

fuels@concawe.eu