

# Quantification with Optical Gas Imaging – Review of 2015/16 Test Results

Petroula Kangas

March 21, 2017





## **Outline**

- Test objective for Concawe
- VOC detection versus quantification
- OGI and QOGI working principle
- Tests with controlled releases
- Field tests preliminary results
- Conclusions and further work



- European Refineries are required to carry out leak detection and repair (LDAR) program to control fugitive emissions of Volatile Organic Compounds (VOC)
  - LDAR programmes have been in place in most EU countries for more than a decade
  - Two methods are considered BAT in the REF BREF
    - Method 21 (commonly called sniffing), uses a hydrocarbon ionisation detector equipped with a probe to sample emissions
    - Optical Gas Imaging (OGI) uses an infra-red (IR) camera to make images of emissions
- Mass emissions are estimated using emission factors
  - Factors for Method 21 are widely accepted. They are inaccurate for individual leaks but used for a large population the errors average out
  - Factors for OGI are less widely accepted because of limited statistical support
- For this reason not all European regulators accept OGI as a standalone method for LDAR

If the OGI videos could be analysed to assess the emission flux, it will lead Reproduction permitted to broader adoption of "quantitative" OGI

QOGI 2015/2016 Test Results Petroula Kangas



# **Detection versus Quantification**

| Method                             | De                                                                                                                                            | etection                                                                                                                                                       | Quantification                                                                             |                                                                                                                                    |                                                                                                  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
|                                    | Established<br>Practice                                                                                                                       | Current Challenges                                                                                                                                             | Established<br>Practice                                                                    | Current<br>Challenges                                                                                                              | Future<br>Opportunities                                                                          |  |
| Sniffing<br>(FID or<br>PID)        | Records a<br>"screening value"<br>(SV) – the VOC<br>concentration at<br>leak interface.<br>Repair mandated<br>above a given<br>concentration. | <ul> <li>Time consuming</li> <li>Weak correlation<br/>between VOC<br/>concentration and<br/>size of leak (false<br/>positives/negatives)</li> </ul>            | Method 21:<br>- pegged<br>values for<br>SV>100,000<br>ppm<br>- Correlation<br>for lower SV | <ul> <li>Use of factors<br/>leads to a<br/>conservative<br/>estimate of<br/>total mass<br/>emission</li> <li>Individual</li> </ul> | None are being<br>pursued                                                                        |  |
| Optical<br>Gas<br>Imaging<br>(OGI) | Makes VOC leaks<br>visible in a given<br>area. All to be<br>repaired.                                                                         | <ul> <li>Leak detection<br/>threshold is higher<br/>than sniffing</li> <li>Higher influence of<br/>environmental<br/>factors (wind,<br/>background)</li> </ul> | Leak/no-leak<br>factors (after<br>determining<br>the average<br>detection<br>threshold)    | component<br>mass emission<br>is uncertain<br>- Accuracy<br>improves with<br>the size of<br>population                             | Quantification<br>of <u>individual</u><br><u>leaks</u> by<br>smart image<br>processing<br>(QOGI) |  |

Reproduction permitted with due acknowledgement

h 🐜 🔌 -

8

5



# **Method 21 Inaccuracies**

### M-21 Screening Value (SV)



Uncertainty (individual component): up to 200%

Additional errors could be introduced if SV is not corrected for compoundspecific Response Factors (RF)



Uncertainty (individual component): -80% to +300% or higher

Based on EPA 1995 Protocol, App. C. High combined uncertainty

**Emissions Rate** 

티티오

(kg/h)

More Direct Measurement of Leak Rate has Potential for Significant Accuracy Improvement



# **QOGI Overview**

<u>USB</u>

**1.** <u>**Detection**</u>: a given area is surveyed with hand-held IR camera for potential leaking components (OGI). The components found leaking (usually a small fraction, 2% or less) are tagged for repair.

## 2. Quantification

- Analyse the video signal
- Quantification tablet: to be used with certain IR cameras
- User input:
  - Ambient temperature
  - Distance from camera to leak point
  - Stream composition
- Result: mass emission rate (e.g. in g/h)

<image>

**Courtesy Providence Photonics** 



# **OGI Principle**

## **OGI Triangle**

- 1.  $\alpha(\lambda)$ : The gas has IR absorption peak that overlaps with the spectral window of the OGI camera
- ΔT: There is sufficient temperature differential between the gas plume and the background
- 3. CL: There is sufficient concentration-pathlength



$$\Delta I = I_B - I_G$$
  
= [B(T\_B, \lambda) - B(T\_G, \lambda)] {1-exp[-a(\lambda)CL]}  
No contrast  
(\Delta I=0), no  
image

Reproduction permitted with due acknowledgement

**Courtesy Providence Photonics** 



## Methodology:

- User input: Ambient temperature, distance from camera to leak point and stream composition
- $\blacktriangleright$  Algorithm calculates  $\Delta T$  and infra-red response factor
- For a given ∆T, calibration curves have been established for a reference gas (propane) linking the aggregated pixel intensity of the gas plume image to the concentration path-length

## Challenges:

- $\blacktriangleright$   $\Delta T$  required for quantification is higher than for detection
- Concentration path-length required for quantification is higher than for detection
- The signal is dependent on:
  - Weather conditions wind speed, wind direction, sunlight, cloud, rain, etc.
  - Background complexity and plume geometry



- 2015 First comparison between QOGI and Method 21
  - Controlled releases (known release rate)
  - Test conditions simulated releases from different equipment types
  - At VITO LDAR training facility (i.e., not refinery)
- 2016 Application of QOGI under field conditions
  - At an operating refinery
  - Complementing an LDAR survey
  - Comparing QOGI, Method 21 and bagging



## Objectives:

- Assess QOGI mass prediction accuracy (versus known release rate)
- Compare mass estimation by QOGI and by Sniffing/Method 21
- Assess QOGI applicability range: distances from leak, various gas compositions, different backgrounds, different leaking components
- Research site set-up to mimic field conditions

#### Test matrix:

| Key Parameters                            | Types / Ranges                                                  |  |  |
|-------------------------------------------|-----------------------------------------------------------------|--|--|
| Background scene                          | brick wall, concrete, metal, sky                                |  |  |
| Leaking component                         | flange, valve, open-ended pipe                                  |  |  |
| Volatile organic gas                      | methane, propane, propylene, a mixture of the three (~33% each) |  |  |
| Leak rate                                 | 1.7 – 1000 g/h                                                  |  |  |
| Camera distance from leak source (meters) | 2, 3, 5 and 10                                                  |  |  |

The results presented in the next two pages were published in Concawe report 2/17: **An evaluation of an optical gas imaging system for the quantification of fugitive hydrocarbon emissions** 



# **Results of Controlled Tests**

| Date<br>test           | Quantifiable<br>+ reason             | Number<br>of<br>scenarios | background            | Flow<br>(g/h)           | Distance<br>(m) | Component                  | Stream                                     |
|------------------------|--------------------------------------|---------------------------|-----------------------|-------------------------|-----------------|----------------------------|--------------------------------------------|
| May 4-<br>5, 2015      | No, ∆T < 5C                          | 15                        | Brick wall in shadow  | 2, 10,17,<br>50, 200    | 3, 5, 10        | Open end,<br>Flange, Valve | Propane,<br>methane, mixture               |
|                        |                                      | 3                         | Concrete<br>(ground)  | 10                      | 2               | Flange                     | propane                                    |
|                        |                                      | 12                        | Metal door            | 30, 50,<br>150          | 2, 3, 5, 9      | Open end,<br>Flange, Valve | Propane,<br>methane, mixture               |
|                        | Yes, ∆T > 5C                         | 7                         | Concrete<br>(ground)  | 10, 17,<br>50, 200      | 3               | Flange, Valve              | Propane,<br>propylene                      |
| June<br>15-16,<br>2015 | Yes, ∆T > 5C                         | 6                         | Brick wall in the sun | 50, 200                 | 3, 5            | Open end,<br>Valve         | Propane                                    |
|                        |                                      | 11                        | Concrete<br>(ground)  | 16, 50,<br>200,<br>1000 | 3               | Flange                     | Propane,<br>propylene,<br>methane, mixture |
|                        |                                      | 1                         | Sky                   | 50                      | 3               | Open end                   | Propane                                    |
|                        | Yes, with<br>enhanced<br>background* | 5                         | Cooled towel          | 50                      | 2, 3, 5, 8      | Valve, Flange              | Propane,<br>propylene                      |

\* An "enhanced background" is an artificial background, either cold or hot, providing a higher contrast with the plume in comparison to the "naturally occurring" background



- Available ∆T with the selected background was found to be important for quantification
  - ► No quantification if △T too small
- For the 30 quantifiable scenarios, QOGI accuracy was comparable to earlier tests (Ref. 1, 2) and better than Method 21 (for single leaks)

| QOGI vs. Method 21 – Comparison of differences       |      |           |  |  |  |
|------------------------------------------------------|------|-----------|--|--|--|
| between calculated emissions and known release rates |      |           |  |  |  |
| Difference <sup>1</sup>                              | QOGI | Method 21 |  |  |  |
| Minimum                                              | -23% | -92%      |  |  |  |
| Average                                              | 6%   | 31%       |  |  |  |
| Standard deviation                                   | 22%  | 155%      |  |  |  |
| Median                                               | 2%   | -4%       |  |  |  |
| Maximum                                              | 69%  | 667%      |  |  |  |



Comparison box whisker plot for Method 21 and QOGI at a generated leak rate of approximately 50 g/h

Table note 1: Difference = (calculated emission rate – release rate) / release rate (%)

Ref 1: Concawe Symposium, Brussels, Feb. 2015; New Optical Gas Imaging Technology for Quantifying Fugitive Emission Rates, ExxonMobil & Providence Photonics

Ref 2: PEFTEC, Antwerp, Nov. 2015: Quantitative Optical Gas Imaging (QOGI) Device QL100, ExxonMobil & Providence Photonics



- Controlled tests may not be representative of field conditions
- Field tests also provide information on:
  - Practicability: time to apply, user-friendliness
  - Adaptability to broad and varying conditions (in terms of background, surrounding equipment, interference from e.g. steam, etc.)
  - Applicability to different types of leak

Test used a selection of leaks identified in a preceding LDAR campaign

- All leaks had a screening value > 10,000 ppm with a majority of pegged values
- For each leak the following were determined:
  - Mass flow rate using high flow sampler/bagging\*
  - Gas composition using GC/MS
  - Estimated release rate using sniffing/Method 21
  - Mass release rate calculated by QOGI

\* This method was validated in the controlled release experiments



# **Videos: Good vs. Difficult Quantification**

#### Good quantification

#### **Difficult quantification**





#### • Observations:

- Some leaks could not be quantified. Most of these were only visible with the High Sensitivity Mode\*
- Steam plumes posed a problem: steam plume image pixels were interfering with leak plume image pixels
  - It was not always possible to select a different viewing angle, without steam in the background
- Insufficient "Delta T" between the plume and the background was not a problem
  - Either the sky or equipment in operation provided enough contrast
- Capturing the entire plume was not always possible (large plumes in congested areas)
- Background contrast changes (e.g. due to glint) interfered with plume image pixels

\* The High Sensitivity Mode is an enhanced viewing mode that makes it easier to see the plume





## Conclusions

- The tests carried out so-far have proven that estimating leak rates by analyzing IR video images is a sound technique
  - When the plume is captured correctly QOGI gives a reasonable mass estimate
  - For releases where Method 21 would use a pegged value, QOGI offers an opportunity for more realistic release rates
  - Measurements under field conditions have revealed:
    - Water vapour from steam leaks can interfere with the VOC signal
    - A better way to reduce this interference may be to use multiple IR wavelengths which will need a multi spectral camera
    - Positioning the camera for an ideal view of the plume is limited by:
      - The field environment
      - Current system constraints
    - There was less of a problem with  $\Delta T$  than expected.
- This is a rapidly developing field more evaluation is needed as technology improves. Priorities are:
  - Reducing interference (e.g., steam)
  - Dealing with partially obscured plumes
  - Extending testing to smaller releases than used here













Reproduction permitted with due acknowledgement



55

3

٩

Ş

**⊡** \* \* 2