Refining Operations Potential supply of IMO low sulphur marine fuel from EU refineries

Global Outlook & Issues

EnSys Energy and Navigistics Consulting Presented by Martin R. Tallett

12th Concawe Symposium

20-21 March 2017

Topics

- EnSys & Navigistics in overview
- MARPOL Annex VI Global Sulphur Rule / MEPC70
- Recent assessments of Rule impacts
- Marine fuels 2020 key dimensions
- European refining outlook

Global marine fuel assessments (market, demand, efficiency, and emissions)

Specialists in:

- North America marine/pipeline/terminal oil logistics
- Global and US domestic focus has brought wide range of clients including oil companies, tanker owners, financial institutions, governments, and industry associations.

EnSys Energy

Specialists in:

- Strategic and regulatory issues in global refining, markets & logistics
- Refining economics and fuels assessments
- North America logistics
- Global focus has brought wide range of clients
- Global integrated modeling "WORLD"

EnSys-Navigistics Studies

Extensive marine fuels projects experience:

• 2006/7/8 EPA, API/IPIECA, IMO:

- Developed rigorous fleet & trade based marine fuels demand projections (Navigistics)
- Evaluated alternative fuels compliance scenarios (WORLD)
- Worked closely with Expert Group on inputs to Annex VI
- Provided fuels supply analysis for USA ECA submission
- 2009 Major chemical company:
 - Developed rigorous assessment of marine fuels additives market
- 2014/15 SEMARNAT Mexico:
 - WORLD-based fuels supply analysis in support of Mexico ECA submission to IMO
- 2015: Initial studies on potential impacts of 0.5% sulfur global standard
- 2016: IPIECA, BIMCO, Concawe/Fuels Europe, Canadian Fuels, PAJ:
 - Updated Supplemental Fuel Availability study
 - Submitted to IMO July 2016 presented at MEPC70

MARPOL Annex VI is not a typical fuel rule

- Refining sector has a long history of complying with fuels/emissions regulations but Annex VI Global Sulphur Rule is atypical:
- Inherent "regulatory uncertainties" make it difficult for ship-owners and refiners to invest
 - Implementation date 2020 vs 2025 now settled
 - Little/no incentive for either party to pre-invest
 - Shipping sector in severe financial state and having to deal with ballast water rule (starts Sept 2017)
 - 2020-2025 "uncertainty" has limited scrubber investments to ECA compliance
 - To date only about 400 out of 50,000+ total ships have scrubbers, nearly all in ECA's
 - Still three fuel compliance options
 - 0.5% refined fuel or 3.5% refined fuel + scrubber or alternative fuel (LNG, other)
 - Plus 0.5% fuel formulation options
 - Any refined fuel (within ISO 8217) as long as 0.5% sulphur
 - And geography of production and purchasing potentially variable
 - Marine fuels not a strategic product for all refineries
 - (hence the active blending / bunkering sector)

Recent studies have highlighted major issues with 'full on' January 2020 compliance

- EnSys-Navigistics Supplemental Marine Fuel Study
 - Sponsored by:
 - IPIECA, Concawe/Fuels Europe, BIMCO, Canadian Fuels Association, Petroleum Association of Japan
 - but fully independent
- CE Delft Official IMO Study
- IEA latest medium term outlook
 - "Oil 2017", Analysis and Forecasts to 2022
 - Published February 2017

Scrubbers Cover only Fraction of 2020 Demand

- Detailed scrubber manufacturer survey plus penetration
 projection allowing for future manufacturing capacity
 - Led to close to projected 5,000 ships with scrubbers by end 2019, equals ~ 48 mtpa <20% of required global fuel by 2020
 - By comparison CE Delft 36 mtpa, Robin Meech 11 mtpa
 - IEA "Oil 2017" 2,000 ships with scrubbers by 2020
 - Means bulk (>80%) of High Sulphur (3.5%) HFO in 2020 will need to be "switched" to Low Sulphur (0.5%) compliant fuel
 - Although there is prospect of surge in scrubber demand starting 2020 leading to partial reversion after a few years to HS HFO demand
 - Potential deterrent to refining investment?

Leads to "switch volume" to 0.5% fuel close to 4 mb/d (200 mtpa) assuming full compliance

- Central case 3.8 +/- mb/d (195 mmtpa) switch to mainly distillate is a major shock to the system
- Equals:
 - 8-9 years of past growth in (inland) gasoil/diesel
 - 5 years' growth 2015-2020 in total main light products
 - (gasoline + jet +kerosene + gasoil + diesel)
 - A 45% reduction in total residual fuel demand
- All in a few months (to achieve 100% compliance)

World Oil Refining Logistics Demand (WORLD) Model

Highly detailed

- 23 modelled regions & 35 refining groups
- 30+ products, each with multiple specifications
- 200+ crudes
- Detailed non-crudes supply (NGL's, biofuels, CTL/GTL etc.)

WORLD 23 Region Breakdown

- Detail needed to get realistic representation / avoid over optimisation
- Proven over nearly 30 years of use

WORLD simulations indicated global refining industry could (just) cope except for H2/SRU capacity – but impacts far-reaching

- Refining adjustments
 - Increased coker unit throughputs to upgrade residual streams
 - Vacuum unit throughputs increase producing more vacuum gasoil (VGO) and vacuum resid
 - Shifting Fluid Catalytic Cracking feedstock from VGO to residual feedstock
 - Can lead to increased refinery SO_2 emissions
 - Regulatory constraints need for added abatement facilities
 - Potential equipment/metals constraints?
 - Increased severity on desulphurization/hydrocracking units
 - Decreases catalyst life may not be sustainable
 - Substantial increases in H2, sulphur recovery plant throughput needed
 - 2 4.5% increase in global refining CO₂ emissions

ENSYS[•] 7-10% if emissions from petroleum coke included

WORLD simulations indicated global refining industry could (just) cope except for H2/SRU capacity – but impacts far-reaching

- Refining/trade adjustments
 - More crude oil required (+0.2 to 1.2 mb/d) cokers & refinery fuel
 - USA main region picking up refinery throughput
 - 20% of export crude trade changes
 - Highest conversion regions take heavier, higher S crude slate
 - USA, Europe, Pacific Industrialised, China
 - Lower conversion regions go lighter lower S
 - Canada, Latin America, Africa, Middle East, Other Asia
 - Trade of non-crude supply, intermediates and finished products increases, with 30% changing trade routes
 - If additional needed SRU capacity not or only partly built, Global Fuel shortfall of around 25-32% or 50-60 million tpa (1-1.2 mb/d)

Refining and oil trade adaptation will take months/year not

WORLD simulations point to very strained markets at/near 100% compliance

- Model results indicated short term reaction first weeks/months – before market has had time to adapt
 - And assuming adequate H2 & SRU capacity available showed
- Major impacts across all products not just marine
- And all regions

Other studies have reached similar conclusions

- CE Delft Official IMO study
 - Executive Summary indicated belief that refiners would invest hence full compliance volumes could be supplied
 - But refinery modeling showed inadequate H2 & SRU capacity (Report Tables 92, 93) versus Oil & Gas Journal data
- IEA MTOMR "Oil 2017"
 - Have projected major challenges to refining industry in last 3 medium term reports
 - February 2017 outlook shows approx 50% 2020 LS fuel deficit ~ 2 mb/d

- 100% compliance looks an unrealistic target for 2020
- What is really going to happen?

- Build on prior work done
- Track developments, announcements
 - Refining, fuels, shipping, scrubbers, IMO, other
- Regularly update 2020 projections, assessments
- Steadily narrow the uncertainty
 - 2017 -> 2018 -> 2019 -> 2020
- Progressively add post-2020 focus

- 1. Marine Fuel Demand
 - Key drivers:
 - Global economic growth
 - Jan 2017 IMF outlook 1
 - International trade growth
 - Globalisation vs protectionism
 - Vessel speed-up due to lower fuel costs
 - Vessel efficiency developments (EEDI initiative)
 - LNG bunkering infrastructure, vessels
 - Activity & announcements but scale?
 - Scrubber orders
 - We should be starting to see increase soon if it is going to occur

- 2. Enforcement, Compliance, Non-Compliance
 - Key factors:
 - Legal non-compliance IMO mechanism
 - Illegal non-compliance fuel savings vs penalties
 - Flag state vs port-state enforcement
 - Regional differences
 - Europe, USA/Canada, developing countries
 - High level of compliance versus emerging push-back
 - IMO requested "PPR" sub-committee to address implementation
 - Implementation plan not likely until 2019

- 3. Fuel Formulations, Compatibility, Port Supply
 - Key factors:
 - Potential for different 0.5% sulphur fuel types
 - Distillate (DMA/DMB ULSD?) vs IFO grades vs hybrid VGO type fuels
 - Acceptability
 - Timescale for new fuels testing and acceptance hence volume
 - Compatibility
 - Potential for incompatibilities
 - Flash point issue
 - Marine 60°C versus on-road diesel 52°C
 - Issue of supply by port
 - Will ports have to carry multiple grades to satisfy ships reluctant to switch grade?
 - Implications for supply by port, bunker lifting patterns, supply costs

- 4. Global Total Liquids Supply & Demand
 - Key factors:
 - Crude quality
 - Total global demand
 - Recent outlooks project increased 2020 demand
 - IEA "Oil 2017" MTOMR 101.7 mb/d 2020 versus 98.9 mb/d used for 2016 EnSys-Navigistics Supplemental Study
 - Demand mix and quality
 - Demand growth is predominantly light products (gasoline, jet, diesel, petchem)
 - Progress toward LS / ULS gasoline/diesel standards

- 5. Refining Capacity / Availability
 - Key factors:
 - Additions and closures
 - Net additions 2016 2019
 - EnSys Summer 2016 3.61 mb/cd
 - IEA have lowered outlook
 - 2016 4.60 mb/cd now 2.74 mb/cd

- (1.86) mb/cd versus last year but upgrading/HDS reductions much smaller (0.25)/(0.1) mb/cd
- IEA have also cut 2020 ACU additions (0.7) mb/cd so 2016-2020 >(2.5) mb/cd
- EnSys Summer 2017 outlook under development
- Effective availability / maximum utilisations
 - Sustainable levels over several months
 - Continuation or reversal of recent divergent trends?
 - Africa, parts of Latin America I versus USA, Europe 1

- 6. Supply/demand balance / Market impacts
 - Key factors:
 - Initial several weeks/months
 - Initially demand/supply inelastic, refinery operations and trade change
 - Impacts on supply costs / differentials, inventories important
 - Short term several months/year
 - Then price elasticities / adjustments kick in
 - Potential impacts on land fuels demands
 - Potential for expanded HS HFO outlets
 - Power / industrial boiler?
 - Storage (contango)?
 - Crude supply impacts in economically sensitive regions?
 - E.g. US LTO versus Western Canada oil sands / heavy grades
 - Longer term 2021 plus
 - Supply/demand move towards a new 'equilibrium'
 - Scrubber surge or flop?
 - Scale of scrubber take up?
 - Reversion toward more HS HFO demand?
 - Deterrent to or incentive for refinery investments?

Potential Implications for European Refining

Basis EnSys-Navigistics 2016 Supplemental Study

- Base outlook is for flat to declining refining activity by 2020
 - 2020 refining throughput slightly below 2015 at 13.2 mb/d
- Global Fuel
 - Has little impact on total throughput but
 - Heavier higher sulphur crude slate
 - ~ 0.8°API, + 0.1% S
 - Maximizes conversion, desulphurization
 - 2016 results showed extra H2 needed at +460 million SCFD (~ +10%), sulphur recovery at +2,600 short tons/day (~ + 14%)
 - These projections highlight the likelihood of shortfall
 - Naphtha/gasoline/jet/resid yields distillate yields
 - N.b. EnSys' assumption was marine distillate = DMB
 - Distillate imports & resid exports go up
 - Even given the upgrading projects currently under way

Potential Implications for European Refining

- Wide range of impacts from Global Rule
 - As everywhere winners and losers
 - High conversion / distillate oriented versus simpler / high HS HFO yield
 - Implications for additional closures

Summary

- Global Sulphur Rule represents major challenges to refining worldwide
 - A lot of "moving parts"
 - Uncertainties will remain to and through 2020
 - But developments/dimensions can be tracked and evaluated
 - Entering a critical period reaction to MEPC70, orders?
 - Some form of progressive implementation / compliance likely
 - Market strains likely impacting all products not just marine
 - How IMO (PPR) handles implementation an important factor impacting how orderly or disorderly
 - Europe rigorous enforcement some other regions?
 - European refineries substantially and variably impacted

Thank you!

Contacts:

Martin Tallett EnSys Energy 1775 Massachusetts Avenue Lexington, MA 02420, USA 781-274-8454 <u>martintallett@ensysenergy.com</u>

www.ensysenergy.com

David St. Amand

Navigistics Consulting

1740 Massachusetts Avenue

Boxborough, MA 01719, USA

978-266-1882

DaveSt@Navigistics.com

www.Navigistics.com

EnSys WORLD Applications

Recent major studies include:

- 1987–2017: Department of Energy Office of Strategic Petroleum Reserve
 - · Several analyses of real and hypothetical market disruptions
 - Impacts on refining, markets and product supply costs of different SPR draw rates and crude quality mixes; current analysis impacts of new supply/export developments
- 2000-2017: OPEC World Oil Outlook Downstream Section
 - · Reference and sensitivity global outlooks to 2040
- 2008: World Bank, African Refiners Association
 - Refining and product supply cost impacts of introducing more advanced (AFRI) gasoline and diesel sulfur standards in sub-Saharan Africa
- 2009: American Petroleum Institute
 - US and global refining and market impacts of the then proposed Waxman-Markey climate bill
- 2011-2013: Departments of State and Energy
 - 2 analyses of Keystone XL and other pipeline and rail logistics scenarios and their refining, crude flows and market economic impacts
- 2014: American Petroleum Institute
 - Impacts of allowing US crude oil exports
- 2015: European Commission
 - Impacts on European refining and imports/exports of different levels of future mandated biofuels in gasoline/diesel (*Fuels Quality Directive 98/70/EC*)

EnSys-Navigistics Methodology

Crude price drop has impacted timing of refining investments

- Deferral of planned refinery additions to 2019 adds a further concern
 - EnSys' 2016 assessment showed crude price had drop deferred many capacity additions into 2019
 - Any further slippage/cancellations will place 2020 capacity at risk (with limited chance to offset)

WORLD simulations indicated global refining industry could (just) cope except for H2/SRU capacity – but impacts far-reaching

• IMO Rule involves a massive sulphur reduction (at 100% compliance) in a short period

	Sulphur reduction to meet ULS standards ppm	Timescale in years	Stages?
Gasoline / petrol	100 – 1000	10 - 20	yes
Diesel	1000 - 10000	10 – 20	yes
Annex VI	20000 - 30000	months	no

Raises required sulphur removal by ~15,000 short tons/d

WORLD simulations indicated global refining industry could (just) cope except for H2/SRU capacity – but impacts far-reaching

- Key Issue: H2 and sulphur recovery load
 - Four mechanisms projected as needed

Sulphur reduction/recovery mechanisms from WORLD Model results (EnSys/Navigistics Mid Switch High MDO Case)	St/d – all numbers rounded	% of Total
Sulphur into petcoke (increased coking unit throughputs)	4,500	30%
Sulphur into increased FCC stack gas SOx	250	< 2%
Sulphur recovered via increased t/p's on existing 2020 sulphur recovery units (close to 4% utilizn increase worldwide average)	5,400	36%
Sulphur recovered from needed 2020 sulphur recovery unit capacity additions beyond projects (nameplate capacity approx. +9,500 st/d)	4,850	32%
Total incremental sulphur	15,000	100%

 If additional needed SRU capacity not – or only partly – built, Global Fuel shortfall of around 25-32% or 50-60 million tpa (1-1.2 mb/d)

