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Life cycle assessment (LCA) ® ‘
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The ReCiPe characterization method
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Midpoint impact categories
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Ozone Depletion
Human Toxicity
Radiation
Photochemical Oxidant Formation
Particulate Formation
Climate Change
Terrestrial Ecotoxicity
Terrestrial Acidifcation
Agricultural Land Occupation
Urban Land Occupation
Natural Land Transformation
Marine Ecotoxicity

Endpoint impact categories? ‘

Marine Eutrophication
Freshwater Eutrophication
Freshwater Ecotoxicity
Fossil Fuel Consumption

Mineral Consumption

Water Consumption
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Life cycle assessment of vehicles

Complete life cycle

Vehicle production
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We have good knowledge of the environmental
Impacts of conventional vehicles o
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Example of typical LCA results:

Mercedes A class

CHs [kg]

307 [kg]

NMVOC [kg]
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NOx [kg]
CO [kg]

Primary energy demand [G]]
COgt]

POCP [kg ethene equiv.]
ADF fossil [G]]

EP [kg phosphate equiv.]

=Impact potentials
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GHGs over the whole life cycle
- high end of the range as of 2010 O ‘
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GHGs over the whole life cycle
- low end of the range as of 2010
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GHGs over the whole life cycle
- low end of the range as of 2014 S ‘
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Car size, fuel type, model year, and

horsepower matter
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Can electric vehicles get us below the
fossil envelope? O
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Zero emission vehicle?
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BEVs have indirect operational emissions
assoclated with the energy value chain

________________________

Vehicle production

* Material extraction

* Production of
materials/components

* Vehicle assembly

Energy value chain Vehicle operation

Energy Energy Energy

: e . * Energy use
extraction distribution conversion

* Maintenance

End-of-life vehicle

e Batteryrecycling
* Vehiclerecycling




Ellingsen et al. (2016)

NTNU’s latest LCA study on battery
electric vehicles published in 2016 @
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Environmental Research Letters

LETTER « OPEN ACCESS

The size and range effect: lifecycle greenhouse gas
emissions of electric vehicles

Linda Ager-Wick Ellingsen, Bhawna Singh and Anders Hammer Stramman
Published 6 May 2016 « © 2016 |0P Publishing Lid
Environmental Research Letters, Volume 11, Number 5

@ Article PDF
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Figure 1. Figure 2. Figure 3.

Abstract

The primary goal of this study is to investigate the effect of increasing battery size and driving range
to the environmental impact of electric vehicles (EVs). To this end, we compile cradle-to-grave
inventories for EV's in four size segments to determine their climate change potential. A second
objective is to compare the lifecycle emissions of EV's to those of conventional vehicles. For this
purpose, we collect lifecycle emissions for conventional vehicles reported by automobile
manufacturers. The lifecycle greenhouse gas emissions are calculated per vehicle and over a total
driving range of 180 000 km using the average European electricity mix. Process-based attributional
LCA and the ReCiPe characterisation method are used to estimate the climate change potential from
the hierarchical perspective. The differently sized EVs are compared to one another to find the effect
of increasing the size and range of EVs, We also point out the sources of differences in lifecycle
emissions between conventional- and electric vehicles. Furthermore, a sensitivity analysis assesses the
change in lifecycle emissions when electricity with various energy sources power the EVs. The
sensitivity analysis also examines how the use phase electricity sources influences the size and range

effect.
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NEDC energy requirement (Wh/km)

Size selection based on commercially
available BEVs . ‘
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Electric vehicle parameters O '

Segment Curb weight Battery size Driving range EV energy consumption
(kg) (kWh) (km) (Wh/km)
A -mini car 1100 17.7 133 146
C - medium car 1500 26.6 171 170
D - large car 1750 42.1 249 185

F - luxury car 2100 59.9 317 207
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Production inventories
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Comparative Environmental Life Cycle
Assessment of Conventional and Electric
Vehicles

Troy R. Hawkins, Bhawna Singh, Guillaseme Majeav-Beuez, and Anders Hammer Stmomman

Keywords: f
Summary
batteries
sectrictty mix Electric vehicles (EVs) coupled with low-carben electricity sources offer the potential for
slobal warming reducing greenhouse gas emissions and exposure to tailpipe emissions from personal trans-
ndustrial ecology portation, In considering these benefits, it is important to address concerns of problem-
ife cycle imentory (LCIy shifting. In additicn. while many studies have focused on the use phase in comparing
transportation transportation options, vehicle production is also significant when comparing conventional
and EVs. We develop and provide a transparent life cycle inventory of conventional and
¢ formaton s aalaie  SIECHIC vehicles and apply our inventory to assess conventional and EVs over a range of
oo the JE W impact categories. YWe find that EVs powered by the present European electricity mix offer
a 10% to 24% decrease in global warming potential (GYWF) relative to conventional diesel
or gasoline vehicles assuming lifetimes of 150,000 km. However, EVs exhibit the potential
for significant increases in human toxicity, freshwater eco-toxicity, freshwater eutrophica-
tion, and metal depletion impacts, largely emanating from the vehicle supply chain. Results
are sensitive to assumptions regarding electricity source, use phase energy consumption,
vehicle lifetime, and battery replacement schedules. Because production impacts are more
cignificant for EVs than conventional vehicles, assuming a vehicle ifetme of 200,000 km
exaggerates the GVWP benefits of EVs 1o 27% to 29% relative 1o gasoline vehicles or 175
1o 20% relative to diesel, An assumptien of 100,000 km decreases the benefit of EVs to 9%
1o 14% with respect to gasoline vehicles and results in impacts indistinguishable from those
of a diesel vehicle. Improving the environmental profile of EVs requires engagement around
reducing vehicle praduction supply chain impacts and promoting clean electricity sources in
decision making regarding electricity infrastructure.
1
. million to 2 billion over the period 2000-2050. Globally,
Intreduction
light-duty vehicles account for approximately 10% of global
Our global society is dependent on road transport, and devel - energy use and greenhouse gas (GHG) emissions (Solomon

opment trends project substantial growth in road transport over 2007). These patterns forecast a dramatic increase in gaso-
the coming decades. According toa study commissioned by the  line and diesel demands, with associated energy security con-
World Business Council for Sustainable Development (2004),  cems as well as implications for climare change and urban air
light-dury vehicle! ownership could increase from roughly 700 quality.
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Life Cycle Assessment of a Lithium-lon
Battery Vehicle Pack

Linda Ager-Wick Ellingsen, Chaillawme Majean-Bettez, Bhowna Singh,
Albehilesh Kimar Srivestona, Lars Ole Valoen, and Anders Hrmmer Srammean

Summary

Eleetrie verieles (EVs) have ne talpipe emissens, but the preducten of their batteries leads
1o emvronmental burders. In arder to avaid problem shifting, a lifle cyde per:
be applied inthe environmental
prowide a transparent inventory for a ithium-ion nickel-cobalt-manganese traction battery
based on primary data and to report its cradie-to-gate impacts., The study was carried
out 5 & process-based attributional Iife cycle assessment. The ervirenmental impacts were
analyzed wsing midooint indicators, The giobal warming potential of the 266 kiowatt-
hour (KW, 253-kilogram battery pack was found 1o be 46 tones of crbon diaxide
Regardless of impact category the production impacts of the battery were
o by th production chains of battery cell manufacture, positve sectrode
paste, and negative current colecton The robustness of the study was tested through
sensitivity analyss. and rosuls were compared with proceding studics. Sersitivity analysis
that the most effective approach to reducing cimate change emissons would be
to produce the bamery cells with slecricity from a cieaner energy mie On a periddvh
tbass, cradie to-gate reenhouse gas amissions of the battery weee within the rangs of
thase reparted i preceding studies. Contrbution and structural path analysis allowed for
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Use phase assumptions

* Average European electricity mix (521 g CO,/kWh at plug,
462 g CO,/kWh at plant)

e 12 years and a yearly mileage of 15,000 km, resulting
in a total mileage of 180,000 km
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End-of-life treatment O

END OF LIFE
Li-lon / NIMH
ihss gia o battell(‘s

Gas cleaning: 2 bag filters
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Conventional vehicles o ‘

= Production and use phase
from LCA reports

» End-of-life inventory from
Hawkins et al. 2012
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Results
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Sensitivity analysis
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Sensitivity analysis - coal

" World average coal
(1029 g CO,-eg/kWh)
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Sensitivity analysis — natural gas

World average natural gas
(595 g CO,-eq/kWh)

60

50

40

30

Emission (ton CO,-eq)

20

10

odoci\o(‘ 0% A0 A o
A

* 400 o* 40O 460 380 o\s@"“"a\

Driving distance (km)

A-segment —C-segment —D-segment —F-segment 26

Ellingsen et al. 2016



Sensitivity analysis —wind O

Wind
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Sensitivity analysis — all wind O
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Differences In emissions due to size
decrease with lower carbon intensity @
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