COPEX, 2014, Brussels ILI and CP Data Comparison and Usage

David Eyre, Penspen, UK

3rd April, 2014

ILI DataCP Data SourcesCase Study 1Case Study 2Case Study 3Conclusions	Introduction	
CP Data Sources Case Study 1 Case Study 2 Case Study 3 Conclusions	ILI Data	
Case Study 1 Case Study 2 Case Study 3 Conclusions	CP Data Sources	
Case Study 2 Case Study 3 Conclusions	Case Study 1	
Case Study 3 Conclusions	Case Study 2	
Conclusions	Case Study 3	
	Conclusions	

Penspen Ltd.

- Penspen is an international engineering consultancy.
- We are in the oil and gas business, specialising in pipelines and facilities.
- Our headquarters are in Richmond, Surrey, UK, but we have offices in USA, Mexico, UAE, Bangkok, Greece, Qatar, Libya, Saudi Arabia, France, etc..
- **£110 million/annum business.**
- We have >1000 staff around the world.

Integrity Assessments-External Corrosion

- Holistic assessment uses data from:
 - ILI 🛛
 - Coating surveys
 - CP surveys
 - SoilsExpert opinion

Niels Bohr (1885 – 1962)

> Nobel Prize in Physics 1922

Prediction is very difficult, especially about the future

- Generally good for external corrosion
- Primarily used for remaining strength assessment

Figure 6-5 Distribution of External metal loss anomalies in relation to their depths (%wt)

ILI data – Corrosion Orientation

- Orientation gives information on likely cause
 - Field joint coatingBackfill

ILI Data - Corrosion Rates

- Multiple defect matching from two sets of ILI data
- Tolerances can have a big impact at low corrosion rates
- Statistician needs to be confident in the results
- Used to determine repair dates and next inspection

Cathodic Protection Monitoring

- Cathodic protection performance monitored using potential criterion:
 - Indicates whether corrosion can/cannot occur.
 - Gives no indication of corrosion rate
 - Leading Indicator
 - Criterion -850 or -950mV?
 - ON or OFF Potential?
- Need to consider accuracy of measurement, coating type and condition, ac corrosion.

Close Interval Potential Surveys

- **Provides more data**
- Many possible error sources
 - Pipe Potential (V) Poor synchronisation of time switches.
 - Sacrificial anodes connected to the pipeline.
 - Bonds to other pipelines that are not switched.
 - **Potential spikes during** switching (if not allowed for).
 - Stray current from other dc sources.
 - Poor contact in the measurement circuit.
 - **Excessive manipulation of raw** data
- Assessing data quality is important
- **Snapshot in time**

Time

Case Study 1

- 20 inch x 140km pipeline
- Age 51 years
- Plycoflex coating
- Impressed current CP
- Rocky ground conditions

Corrosion along full length of pipeline

ILI Data Orientation

- Corrosion around full circumference
- Higher rate in lower half
- Wetter in lower half

Cathodic Protection Data – ON only

Tape Coating Failure Mode

- Early type PE butyl rubber tape
- Poor adhesion at the overlap
- Soil stresses cause wrinkling and sagging
- Moisture ingress around full circumference

Conclusion:

•Verification digs to confirm assessment

• CIPS survey to better assess CP

• CP will always struggle due to shielding

Above Ground Sections

- Corrosion under pipe supports where access is not easy.
- Corrosion rate 0.12 0.38 mm/yr

From adulca.com

- Typical corrosion rate under pipe supports in coastal environment.
- Water and soluble salts can be retained in the crevice between the pipe and support.

Stoprust.com

Below Ground Sections

Area of corrosion anomalies

- Corrosion rate low 0.04 -0.07mm/yr
- Only ON potential data available
- Look OK but misleading.
- Corresponds with low elevation on pipeline with chalk high points either side
- Between CP stations

Conclusions: •Move and recoat under pipe supports

- Verification digs
- •CIP Survey needed
- •CP needs adjustment

•OFF potentials should be routine

Case Study 3

- 10 inch pipeline
- ~70 years old
- Coating asphalt enamel – site applied
- Impressed current CP – 13 stations over 33km
- Shared same trench with other pipelines

Field Joint Coating

- Concentration of external corrosion features at field joints
- Field joint coated hand applied hot enamel
- Still significant number of defects elsewhere

Historic CIPS Data 1996

CIPS Data 2007 and 2013

PENSPEN

Cathodic Protection - History

- Limited data available
- CP Station outputs reviewed
- Outputs declined over year due to aging groundbeds and misinformed adjustment

Overlaying ILI Defect Data and CP Station Outputs

Case Study 3

- Verification digs found coating contained coke particles
- Coke forms a galvanic couple with the steel causing high corrosion rates
- -850 mV not enough
- -950 mV not enough

Conclusion:

Coating coked during application
Potential criterion used inappropriate
Restoration of CP Station current capacity ++ a priority

Conclusions

- ILI data can give a good picture of a pipelines condition
- Detailed statistical analysis of the data is a key step:
 - Corrosion distribution
 - Corrosion orientation
 - Corrosion rate Re-inspection interval, repair programme
 - Confidence level
- Input from an experienced pipeline corrosion engineer:
 - Enables integration and interpretation of CP and coating data
 - Enhances the confidence level
 - Identifies the most probable cause
 - Enables mitigation measures to be developed

Thank you for your attention.

Penspen Integrity Units 7&8, Terrace Level, St Peter's Wharf, Newcastle upon Tyne NE6 1TZ, UK *Tel: +44 (0) 191 238 2200 Fax: +44 (0) 191 275 9786 email: integrity.ncl@penspen.com www.penspenintegrity.com*

