
2015 CONCAWE Young Researcher Awards 
11th CONCAWE Symposium 

February 23-24, 2015 – Brussels, Belgium 

 

M. Sc. Barbara Graziano - Institute for Combustion Engines VKA – RWTH Aachen University – graziano@vka.rwth-aachen.de 

 

Tailor-Made Fuels from Biomass ─TMFB  

 Lignocellulosic platform used to derive novel biofuels via 

selective production pathways. 

 Prevention of competition with food production. 
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Figure 1. Biofuels production pathways from lignocellulose. 

Biofuel combustion performance indicators 

 Comprehensive study of the role played by the fuel on in-engine 
behavior. 
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Figure 2. Research methodology for biofuels combustion indicators. 

Fuel thermo-physical properties  

Fuel thermo-physical properties predicted by a method based on 

quantum mechanics and the PC-SAFT equation of state [1]. 

 Prediction model coupled with one experiment allows 

increasing the accuracy of the property estimation. 

 Accuracy of property estimation is improved from 14.5% 

(0 experiments) to 1.8% (1 experiment). 

 

Figure 3. Improvement of three predicted parameters by a single 

experiment for Di-n-butyl Ether.  

Material compatibility 

Effect on engine related materials and components investigated 
experimentally for several biofuel candidates. 

 Compatibility with elastomeric seals strongly depends on the 

combination of selected material and sealed fluid. 

 2-MTHF featured unacceptable property changes in all of the 

screened reference materials except for PTFE.  

 Seal material needs to be selected individually. 

 
Figure 4. Swelling of NBR with representative fuel candidates. 
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Mixture formation influence on soot  

 Influence of the properties of C8-C16 n-alkanes, 1-alcohols and 

di-n-ethers on the mixture formation studied numerically [2]. 

 Relevant engine boundary conditions considered. 

Step1:CFD validation w/ diesel test bench data 

Virtual Fuel Approach
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Figure 5. Main implementation steps of the Virtual Fuel Approach [2, 3]. 

Oxidation Potential Number 

 A novel index to evaluate inherent soot reduction in D.I. diesel 
spray plumes is introduced.  
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Figure 6. Introduction of the Oxidation Potential Number [3]. 

Inherent soot reduction behavior 

 Fuel thermo-physical properties influence the mixture formation. 
 Fuel thermo-physical properties’ influence decreases as the 

engine operating load increases. 
 Fuel impingement dominates over mixture formation process at 

1500 rpm and 4.3 bar IMEP. 
 C8 molecules allow a more homogeneous air/fuel mixture, 

showing the highest OPNs. 
 Among C8 fuels, di-n-butyl ether features generally the highest 

soot reduction potential. 
 1-Alcohols feature overall lower OPNs. 
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Figure 7. 3D-maps of OPN at varying engine operating conditions for   
C8-C16 n-alkanes, di-n-ethers, and 1-alcohols [3]. 

Auto-ignition behavior 

Side chain and ring structure influences on Derived Cetane Number 
(DCN) investigated experimentally [4].  

 H-abstraction at the carbon atom in the side chain adjacent to 

the ring for alkylated furans and at the carbon atoms adjacent to 

the oxygen in the ring for alkylated THFs. 

 Side chain influence more distinct for THFs. 

 Double bond influence dominates over side chain influence. 
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Figure 8. Side chain influence on DCN (top) and DCNs of alkylated 
furans, dihydrofurans and tetrahydrofurans (bottom). 

Performance Indicators for Biofuel Performances in Engine Applications  
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