# Advanced Conventional Fuels and Vehicles

Neville Thompson, CONCAWE Technical Coordinator Fuels quality and Emissions

CONCAWE

Reproduction permitted with due acknowledgement

### **ADVANCED CONVENTIONAL FUELS AND VEHICLES**

Progress in EU fuel specifications

Recent CONCAWE data on exhaust emissions with advanced vehicles and fuels

**Gasoline** 

LD Diesel

**HD** Diesel

Conclusions/Outlook

### **MAJOR PROGRESS IN EU FUELS QUALITY**

| Yea                     | 1993              | 1995 | 1996               | 2000 | 2005 | 2009              |       |                   |
|-------------------------|-------------------|------|--------------------|------|------|-------------------|-------|-------------------|
| Gasoline Unleaded 95/85 | EN228             |      |                    |      |      |                   |       |                   |
| Sulphur                 | ppm m/m           | max  | 1000               | 500  |      | 150               | 50/10 | 10                |
| Benzene                 | % v/v             | max  | 5                  |      |      | 1                 |       |                   |
| Aromatics               | % v/v             | max  |                    |      |      | 42                | 35    |                   |
| Olefins                 | % v/v             | max  |                    |      |      | 18                |       |                   |
| Oxygen                  | % m/m             | max  | 2.5 <sup>(1)</sup> |      |      | 2.7               |       |                   |
| RVP (summer)            | kPa               | max  | up to 80           |      |      | 60 <sup>(2)</sup> |       |                   |
| E100                    | % v/v             | min  | 40(s)/43(w)        |      |      | 46                |       |                   |
| FBP                     | ٥C                | max  | 215                |      |      | 210               |       |                   |
| Yea                     | 1993              | 1995 | 1996               | 2000 | 2005 | 2009              |       |                   |
| Diesel (standard grade) |                   |      | EN590              |      |      |                   |       |                   |
| CI                      |                   | min  | 46                 |      |      |                   |       |                   |
| CN                      |                   | min  | 49                 |      |      | 51                |       |                   |
| Sulphur                 | ppm m/m           | max  | 2000               |      | 500  | 350               | 50/10 | 10 <sup>(3)</sup> |
| Density                 | kg/m <sup>3</sup> | min  | 820                |      |      |                   |       |                   |
|                         |                   | max  | 860                |      |      | 845               |       |                   |
| Т95                     | deg C             | max  | 370                |      |      | 360               |       |                   |
| РАН                     | % m/m             | max  |                    |      |      | 11                |       |                   |
| Lubricity               | µm @ 60ºC         | max  |                    |      | 460  |                   |       |                   |

<sup>(1)</sup> Up to 3.7% at Member State discretion. Individual limits apply to specific compounds

<sup>(2)</sup> 70 kPa max allowed in Member States with arctic or severe winter conditions

<sup>(3)</sup> End date for full introduction of 10 mg/kg S max diesel remains subject to further review

### Enables introduction of wide range of advanced engine / after-treatment systems to achieve low emissions

CONCAWE

Advanced Conventional Fuels and Vehicles Neville Thompson, CONCAWE

## **EU MOST ADVANCED ON FUELS QUALITY**

| <b>CLE</b> (1) |                   |       | EU '09 | US Fed '06                                                                                                | Japan '04  | China | India | Brazil | RSA      | NZ    | WB '05 (4) |
|----------------|-------------------|-------|--------|-----------------------------------------------------------------------------------------------------------|------------|-------|-------|--------|----------|-------|------------|
| GASOLINE       |                   |       |        |                                                                                                           |            |       |       |        |          |       |            |
| Sulphur        | ppm m/n           | n max | 10     | 30                                                                                                        | 50         | 1000  | 1000  | 1000   | 1000     | 500   | 400        |
| Benzene        | % <b>√</b> ∨      | max   | 1      | 1                                                                                                         | 1          | 2.5   | 5     | 1.5    | _        | 5     | 2.5        |
| Aromatics      | % <b>√</b> ∨      | max   | 35     | (5)                                                                                                       | _          | 40    |       | 45     | _        | 26-48 | 45         |
| Olefins        | % <b>√</b> ∨      | max   | 18     | (5)                                                                                                       | _          | 35    |       | _      | _        | 25    |            |
| Oxygen         | % m/m             | max   | 2.7    | 2 <x<2.7< th=""><th>7 (2)</th><th>2.7</th><th>2.5</th><th>(3)</th><th></th><th>0.1</th><th></th></x<2.7<> | 7 (2)      | 2.7   | 2.5   | (3)    |          | 0.1   |            |
| DIESEL         |                   |       |        |                                                                                                           |            |       |       |        |          |       |            |
| CI             |                   | min   | 46     | 40                                                                                                        |            |       |       |        |          |       |            |
| CN             |                   | min   | 51     |                                                                                                           | <b>5</b> 0 | 45    | 48    | 42     | 45       | 49    |            |
| Sulphur        | ppm m/n           | n max | 10     | 15                                                                                                        | <b>5</b> 0 | 10000 | 2500  | 2000   | 3000/500 | 3000  | 2000       |
| Density        | kg/m <sup>3</sup> | min   | 820    |                                                                                                           | _          | _     | 820   | 820    | 800      | 820   |            |
|                |                   | max   | 845    |                                                                                                           | _          | _     | 870   | 870    | _        | 860   |            |
| PAH            | % m/m             | max   | 11     |                                                                                                           | n.a.       | n.a.  | n.a.  | n.a.   | n.a.     | n.a.  |            |

- (1): CLE Current Legislation Enacted
- (2): MTBE
- (3): Gasohol specs
- (4): World Bank recommendations
- (5): US Fed: 'must meet requirements of complex model'

CONCAWE

### RECENT CONCAWE WORK ON EMISSIONS FROM ADVANCED ENGINES/VEHICLES

Auto-Oil programmes were supported by EPEFE programme

- Carried out 10 years ago on Euro 1-2 vehicles and engines
- To update knowledge, CONCAWE has continued to test new engines & vehicles as they enter/approach the market
  - Gasoline
  - LD Diesel
  - HD Diesel
  - □ Wide range of fuel qualities



## **RECENT GASOLINE EMISSIONS WORK**

Fuel effects on emissions evaluated with 4 advanced gasoline vehicles

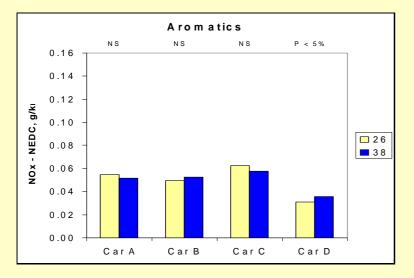
□ 2 Euro-3 cars (A & C) and 2 Euro-4 cars (B & D)

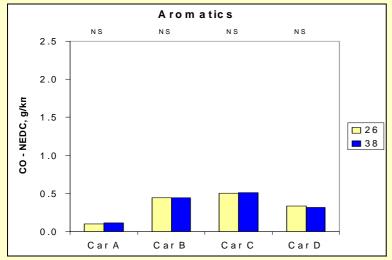
- Stoichiometric DI (Car A)
- Advanced MPI (Car B)
- 2 lean burn DIs (Cars C & D)

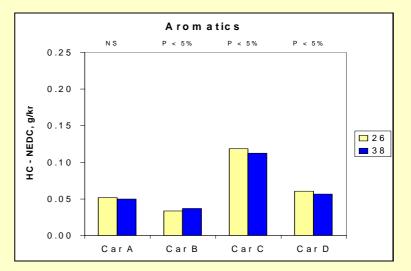
□ Fuel matrices : sulphur, aromatics, olefins, volatility and FBP

Fuel effects were evaluated over a wide range of aromatics and olefins content, volatility and FBP, using a rigorous test protocol with multiple tests on each fuel/vehicle combination

All 4 vehicles delivered very low NOx, HC and CO emissions
Only one Euro-3 car (C) exceeded Euro-4 limits on one emission (HC)


Reference: CONCAWE report 2/04


Advanced Conventional Fuels and Vehicles Neville Thompson, CONCAWE


Harts World Fuels Conference, Brussels, 11 May 2004

CONCaw

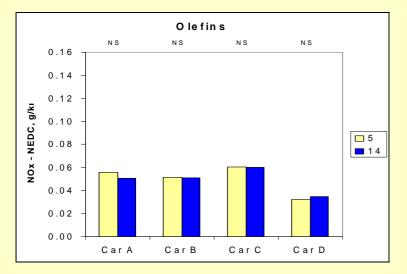
### GASOLINE EFFECTS ON REGULATED EMISSIONS EFFECT OF AROMATICS

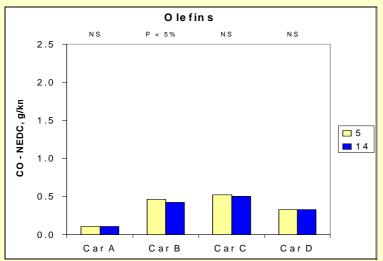


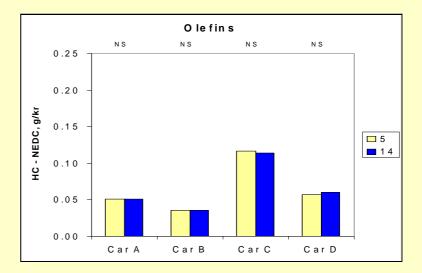




Euro-4 limits (g/km): CO 1.0, HC 0.10, NOx 0.08


# Effects of reducing aromatics were small:


- Conflicting trends on NOx emissions
- Increased HC emissions in the DI cars but decreased in the MPI car
- No significant effects on CO


CONCAWE

Advanced Conventional Fuels and Vehicles Neville Thompson, CONCAWE

### GASOLINE EFFECTS ON REGULATED EMISSIONS EFFECT OF OLEFINS

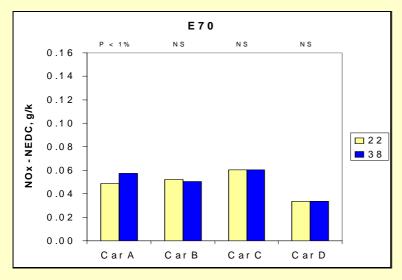


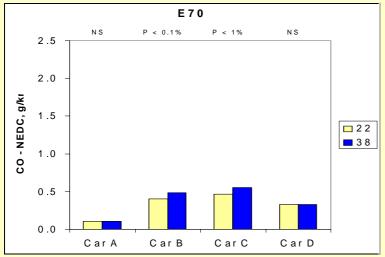


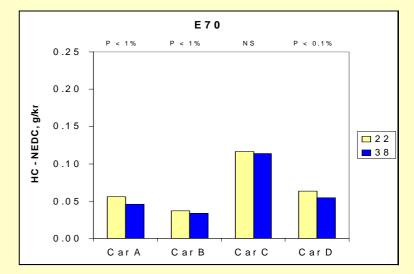


Euro-4 limits (g/km): CO 1.0, HC 0.10, NOx 0.08

 Reducing olefins content gave no significant benefits on NOx, HC or CO emissions in any of the cars


Harts World Fuels Conference, Brussels, 11 May 2004


Advanced Conventional Fuels and Vehicles Neville Thompson, CONCAWE


#### Reproduction permitted with due acknowledgement

CONCAWE

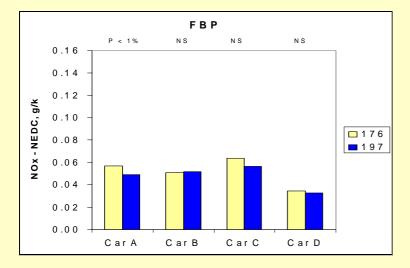
## GASOLINE EFFECTS ON REGULATED EMISSIONS EFFECT OF VOLATILITY (E70)

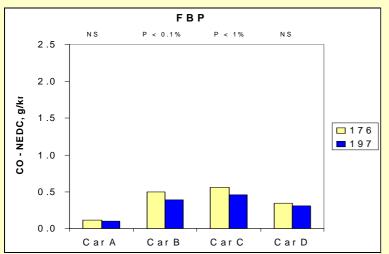


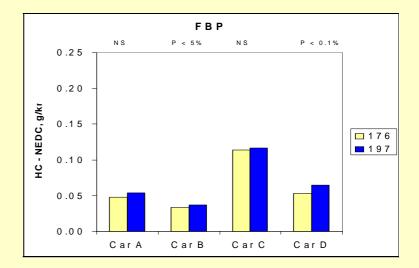




Euro-4 limits (g/km): CO 1.0, HC 0.10, NOx 0.08


# Effects of reducing volatility were small:


- No consistent effect on NOx emissions
- Increased HC emissions in all cars
- Decreased CO emissions in 2 cars


CONCAWE

Advanced Conventional Fuels and Vehicles Neville Thompson, CONCAWE

### GASOLINE EFFECTS ON REGULATED EMISSIONS EFFECT OF FBP







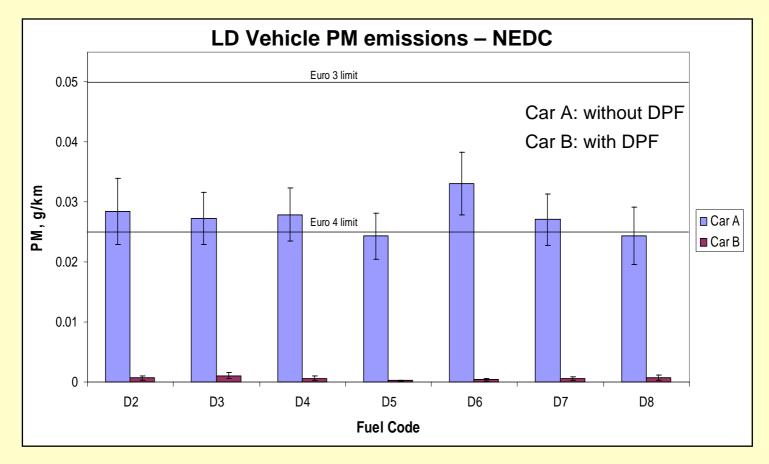
Euro-4 limits (g/km): CO 1.0, HC 0.10, NOx 0.08

- Effects of reducing FBP were small:
  - Trend to decrease HC emissions but increase CO and NOx
  - □ Not all effects significant

CONCAWE

Advanced Conventional Fuels and Vehicles Neville Thompson, CONCAWE

## **DIESEL EMISSIONS**


Recent work included evaluation of a wide range of diesel fuel qualities in advanced LD vehicles and HD engines

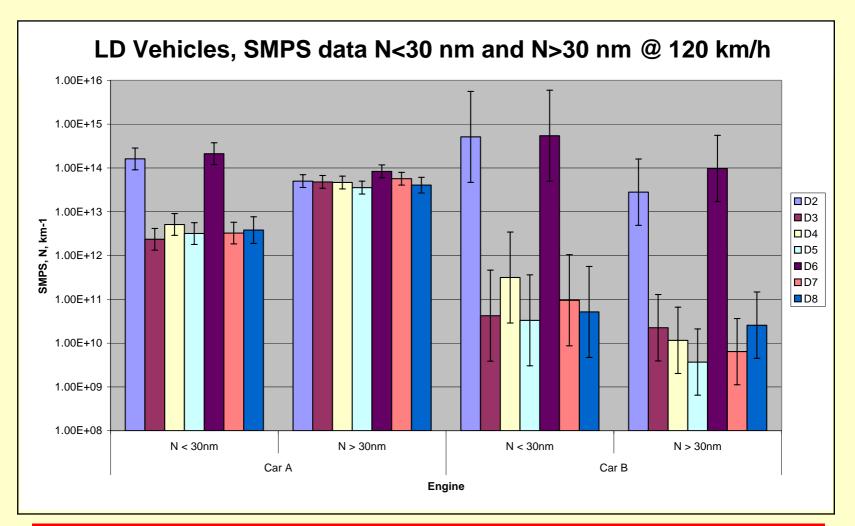
- □ In connection with the DG TREN Particulates Consortium
- Advanced LD vehicles with and without DPF
- □ Advanced HD engines: Euro-3, prototype Euro-4 and Euro-5

### Wide range of fuels

- D2 EN 590 Diesel: 280 ppm S
- D3 EN 590 Diesel: 38 ppm S
- D4 EN 590 Diesel: 8 ppm S
- D5 Swedish Class 1 Diesel
- D6 Pre-2000 Diesel
- □ D7 D4 + 5% RME
- D8 Fischer-Tropsch Diesel

## DIESEL PARTICULATE FILTERS: DRASTIC PM EMISSION REDUCTIONS




DPFs with low sulphur fuels deliver very low PM emissions
No benefit from further changes to diesel fuel specifications

Advanced Conventional Fuels and Vehicles Neville Thompson, CONCAWE

Harts World Fuels Conference, Brussels, 11 May 2004

CONCAWE

## **SULPHUR REDUCTION REDUCES NANO-PARTICLES**



Low sulphur fuels with advanced after-treatment systems capable of delivering very low emissions

CONCAWE

Advanced Conventional Fuels and Vehicles Neville Thompson, CONCAWE

### Harts World Fuels Conference, Brussels, 11 May 2004

Reproduction permitted with due acknowledgement

## **CONCLUSIONS / OUTLOOK**

- > Major efforts are underway to introduce sulphur-free fuels (10 mg/kg max S)
- EU 2005 specification sulphur-free fuels meet the needs of all advanced vehicle technologies that can be expected in the 2010 time-frame
  - Advanced gasoline engines
    - Direct Injection, Variable Valve Actuation, Downsizing...
  - Improved diesel engines
    - Multiple high pressure injections, Exhaust gas recirculation...
  - Advanced after-treatment
    - Improved TWC, PM traps, lean NOx converters...
  - Hybrids
- Very low emissions can be achieved by such advanced vehicle technologies in combination with sulphur-free fuels
  - ❑ Changes to other fuel properties offer little or no additional Air Quality benefit, would increase CO<sub>2</sub> emissions and add to security of supply concerns, especially for diesel, where meeting the future demand is already a challenge

### > Novel combustion systems e.g. HCCI, CAI need more study

CONCAWE