

Land Use Change and European Biofuel Policies

David Laborde Debucquet d.laborde@cgiar.org

September 2012

The views expressed by the author are not those of IFPRI or the European Commission

INTRODUCTION

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

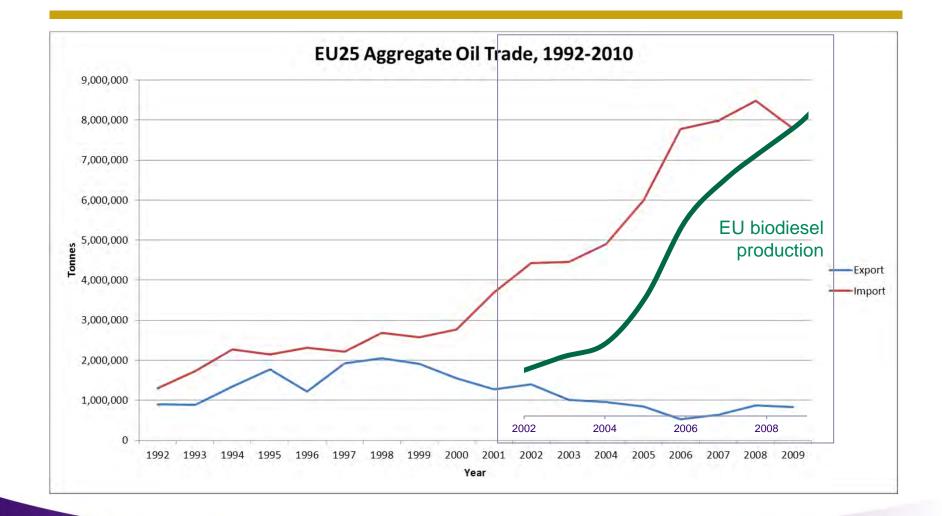
Why Biofuels?

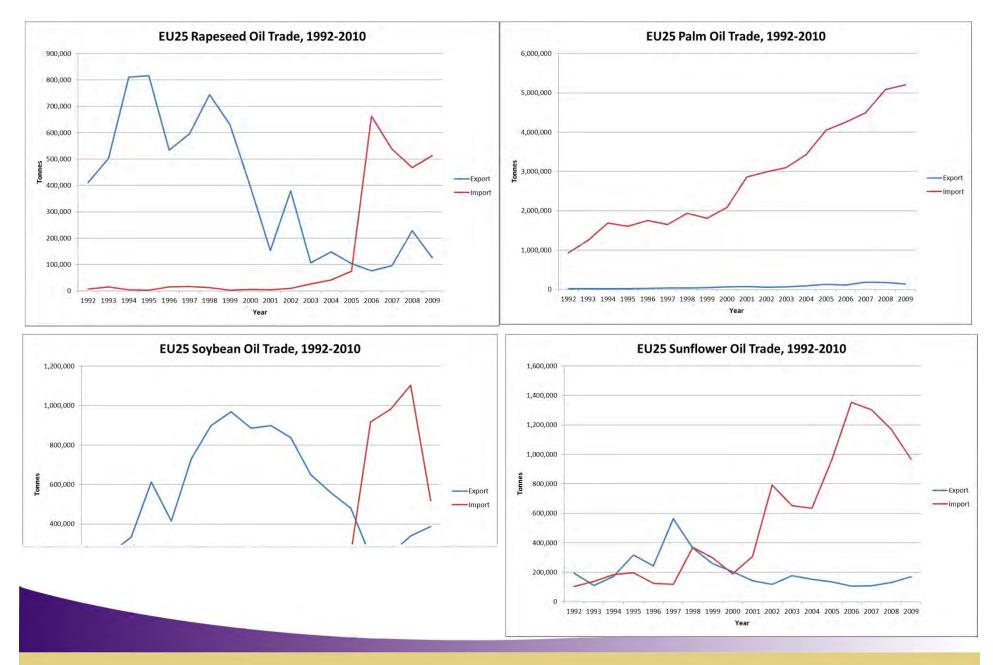
- Energy policy?
 - Energy "Security"
 - Energy prices
 - Current account concerns
- Farm policy?
 - A silver bullet vs the WTO discipline
- An environmental policy?
 - Road transportation produces emissions...

If the latter, then Land Use Changes matter!

The Burden of Proof?

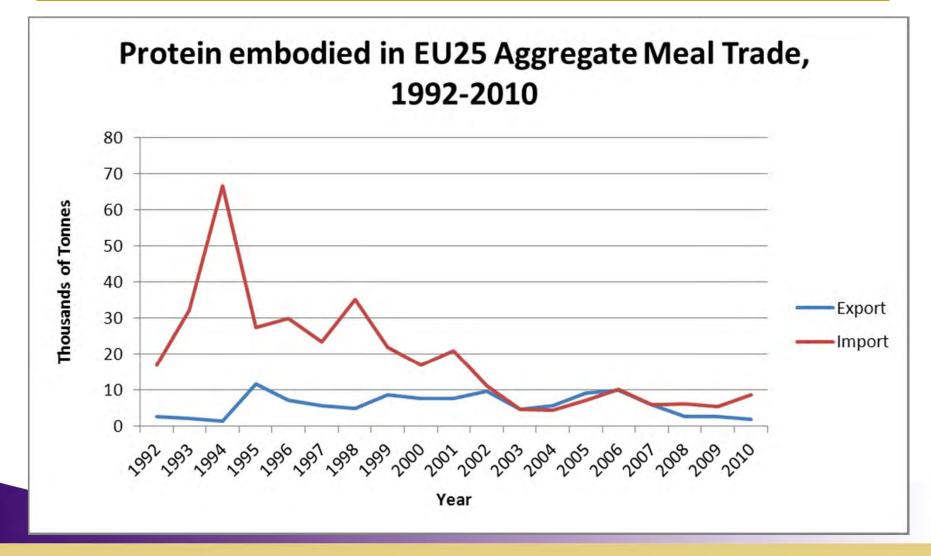
- Should we prove that iLUC effects exist or that does not exist?
- Working in a Farm or Working in Brussels teach you two things: Level of agricultural production is tied to the amount of land
- Increased demand of agricultural commodities HAS land use effects
- The debate should be about their magnitude, not their existence

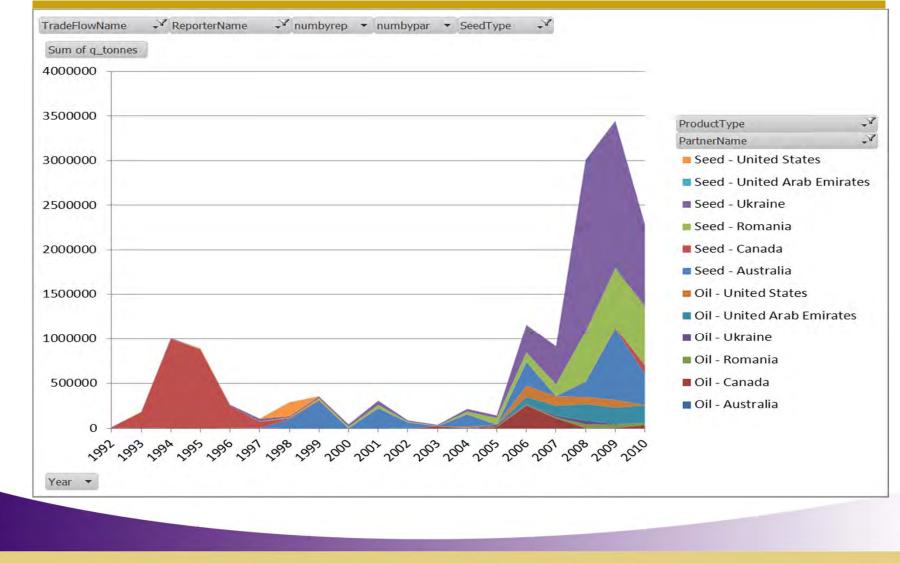

Preamble: iLUC or LUC


- An important and sensitive "policy" issue
- An issue that most models will never address: the spatial dimension
- Few empirical evidences about the relevance of the discrimination
- What matters is the net effects

EU BIODIESEL [84% OF EU MARKET] AND THE VEGETABLE OIL MARKETS: SOME FACTS

To put in perspective the modeling exercise, the complexity of the world and why LUC is important and why international trade is the key


EU Total Veg Oil trade



INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

EU Meal trade

EU Suppliers of Rapeseed: Seed and Oil

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

A CGE MODEL: MIRAGE-BIOF

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

The MIRAGE-BIOF

- The MIRAGE model has started to be developed in 2001 in CEPII, Paris. Focusing on EU Integration and Trade Policy analysis of the beginning
- Now used by several institutions around the World, numerous versions (trade policy focused, FDI, Services, Climate Change etc.)
- Biofuels assessment started in 2008
- On land use:
 - First study for the DG Trade in 2009 (limited to ethanol)
 - Second study for DG Trade in 2010 (part of the public consultation)
 - This new study for: DG Trade in 2011
- But other applications: mandates of other countries, comparison of "traditional" ag policies and biofuels etc., food prices and price stability consequences

Modeling Biofuels in MIRAGE

- MIRAGE model
 - Multi country, Multi sectoral, and global
 - Recursive dynamic set-up
- Modified model and data components
 - Improvement in demand system (food and energy)
 - Improved sector disaggregation
 - New modeling of ethanol sectors
 - Co-products of ethanols and vegetable oils
 - New modeling of fertilizers
 - New modeling of livestocks (extensification/intensification)
 - Land market and land extensions at the AEZ level

Sectoral Disaggregation (43)

Sector	Description	Sector	Description	Sector	Description
Rice	Rice	SoybnOil	Soy Oil	EthanolW	Ethanol - Wheat
Wheat	Wheat	SunOil	Sunflower Oil	Biodiesel	Biodiesel
Maize	Maize	OthFood	Other Food sectors	Manuf	Other Manufacturing
					activities
PalmFruit	Palm Fruit	MeatDairy	Meat and Dairy products	WoodPaper	Wood and Paper
Rapeseed	Rapeseed	Sugar	Sugar	Fuel	Fuel
Soybeans	Soybeans	Forestry	Forestry	PetrNoFuel	Petroleum products,
					except fuel
Sunflower	Sunflower	Fishing	Fishing	Fertiliz	Fertilizers
OthOilSds	Other oilseeds	Coal	Coal	ElecGas	Electricity and Gas
VegFruits	Vegetable & Fruits	Oil	Oil	Construction	Construction
OthCrop	Other crops	Gas	Gas	PrivServ	Private services
Sugar_cb	Sugar beet or cane	OthMin	Other minerals	RoadTrans	Road Transportation
Cattle	Cattle	Ethanol	Ethanol - Main sector	AirSeaTran	Air & Sea transportation
OthAnim	Other animals (inc.	EthanolC	Ethanol - Sugar Cane	PubServ	Public services
	hogs and poultry)				
PalmOil	Palm Oil	EthanolB	Ethanol - Sugar Beet		
RpSdOil	Rapeseed Oil	EthanolM	Ethanol - Maize		

Modifications in Modelling for this new report

- Dynamic baseline and food demand
 - Dynamic recalibration to maintain price elasticity in the CES LES.
 Standard of living evolution
- Co-products substitution: one level
 - Two type of effects:
 - Displacement of other crops
 - Intensification
- Modification of central values for elasticities
- Marginal shock simulations
 - From a marginal 1 to 60 Mios GJ
 - But still, concept to manipulation with precaution:
 - Substitution effects vs expansion effects
- Peat emissions and Indonesia land availability

SIMULATION DESIGN

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

Baseline

- Sugar reform (still a source of numerical problems)
- End of the Land Set Aside
- EU trade measures vs US Biodiesel
- No change in trade policy for Ethanol
- Some restrictions on Brazilian exports to the US in the baseline:
 - Partially capture the change in the real exchange rate real/USD
 - Avoid too much confusion between corn and sugar cane ethanol for the central scenario
- Stronger Brazilian domestic consumption: but still large export supply response
- Modification of initial profitability in Argentina
- New yield changes: Aglink Cosimo
 - VERY IMPORTANT EFFECTS but no SENSITIVITY ANALYSIS on this assumption
 - ISSUE ON EU WHEAT → New Members catch up

Scenarios

- Biofuel mandate:
 - Member states Action Plan

- Trade policy options:
 - Status Quo
 - Full Liberalization in the EU of Ethanol and Biodiesel

Sensitivity Analysis

- On linearity/non linearity issue
 - Estimation of crop LUC at a "half mandate", at a full mandate
 - But still weak on Ethanol: no saturation effects
- On food consumption
 - Endogenous vs Fixed to Baseline level
- On Co-products: with or without
- Monte Carlo simulations on selected parameters
- But in reality, much more uncertainties (see **Box 2**, 25 items related to LUC, but even more regarding net emissions...)
 - About the land (amount, location, carbon values)
 - About future technologies
 - Both behavioral and technical uncertainties

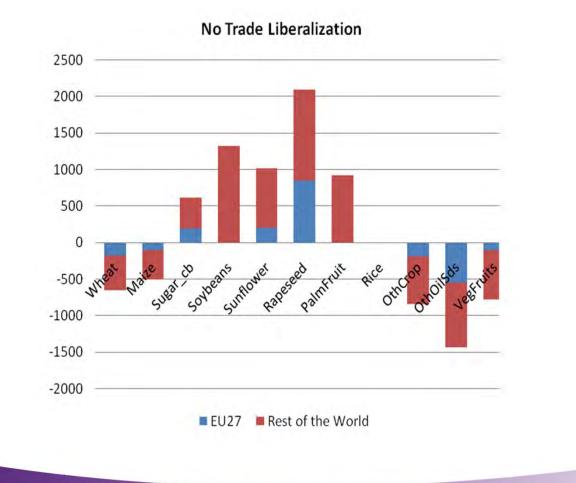
Monte Carlo Simulations

- 1000 runs = 240 days of computations time
- Some restrictions for the model version
 - Iterative process during the earlier stage
 - Any modification of the model or data has to be done of the core version and for the sensitivity analysis
- Log Uniform distribution
 - Wide uncertainty
 - We focus mainly on elasticities
 - We do not have distribution estimates

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

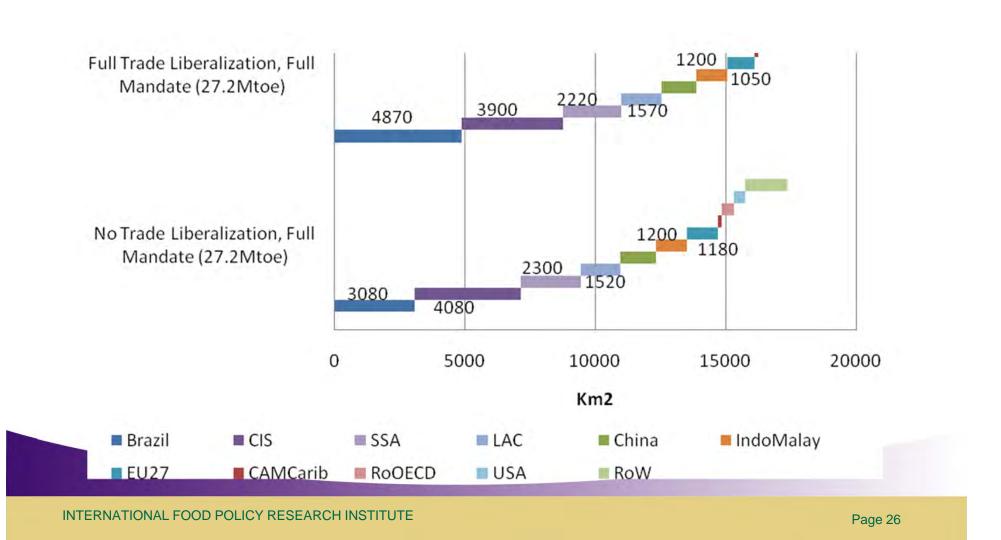
Scenario Design (Table 3) EU consumption pattern by feedstock. Percent

	Palm Oil	Rapeseed	Soya	Sun- flower	All Biodiesel	Maize	Sugar Beet	Sugar Cane	Wheat	All Ethanol
Structure of co	Structure of consumption in 2008 – Total =11.7 MTOE									
Baseline	4	57	20	2	83	3	3	5	5	17
Structure of co	Structure of consumption in 2020 – Total =27.2 MTOE									
Baseline	11	60	10	3	83	3	3	7	4	17
No Trade liberalization	17	41	11	4	72	4	5	13	6	28
Full Trade Liberalization	17	41	11	4	72	1	1	25	1	28
Additional Mar	ndate Con	nposition			+10 Mtoe	•				+5Mtoe
No Trade liberalization	22	26	12	5	65	4	6	18	7	35
Full Trade Liberalization	22	26	12	5	65	-1	-1	38	- 1	35

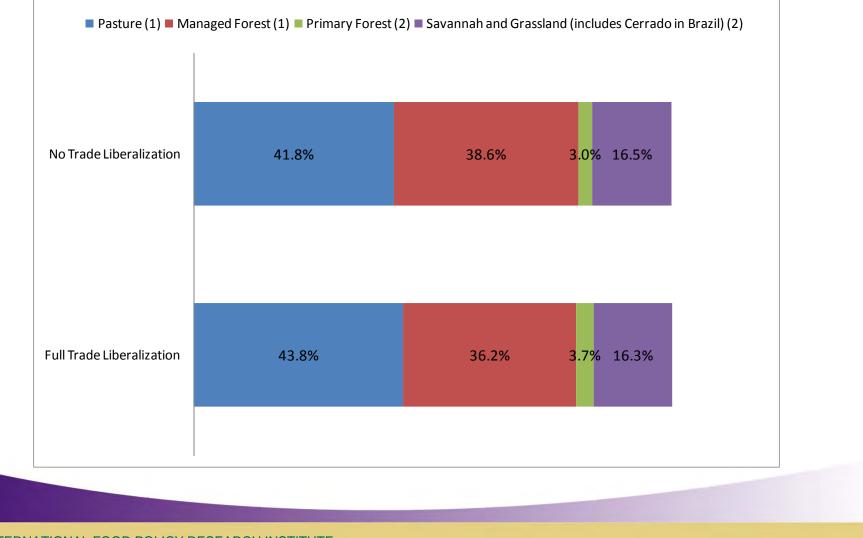

(Table 5) EU biofuel production in 2020 by feedstock. Energy content. Percent.

	Baseline	No Trade Liberalization	Trade Liberalization
Biodiesel	79.29	69.25	92.54
PalmFruit	7.55	12.87	16.96
Rapeseed	62.04	44.37	59.58
Soybeans	6.52	7.45	9.90
Sunflower	3.17	4.56	6.09
Ethanol	20.71	30.75	7.46
Maize	5.83	7.59	2.16
Sugar_cb	6.53	10.96	2.17
Wheat	8.35	12.20	3.12

(Table 6) Commodity balance sheet - World -Full mandate - No trade liberalization. 1000 tons


	Biofuel demand	Additional Supply	Total Demand displacement	Livestock demand displace ment	Ratio Additional Supply / Biofuel demand	Share of livestock demand displacement in total demand displacement
Wheat	5,366.6	-1,595.9	-6,962.5	-6,326.6	-30	90.9
Maize	4,353.0	-2,986.3	-7,339.3	-6,471.7	-69	88.2
Sugar Cane & Beet	76,616	69,574	-7,042	-6.6	91	0.1
Soybeans		4,677.6	4,677.6*	-1,889.9		-40.4
Sunflower		2,676.0	2,676.0*	-344.2		-12.9
Rapeseed		7,135.4	7,135.4*	-544.2		-7.6
PalmFruit		22,207.0	22,207.0*	-208		-0.9
Rice		-101.9	-101.9	418.1		-410.4
OthCrop		-765.9	-765.9	-363.4		47.5
OthOilSds		-395.4	-395.4	-322.4		81.5
VegFruits		-3,372.2	-3,372.2	25.6		-0.8
OilPalm	3,850.6	5,342.0	1,491.4		139	0.0
OilRape	4,456.9	2,474.4	-1,982.5		56	0.0
OilSoyb	2,063.5	1,270.8	-792.8		62	0.0
OilSunf	933.3	1,172.4	239.1		126	0.0
						back Page 24

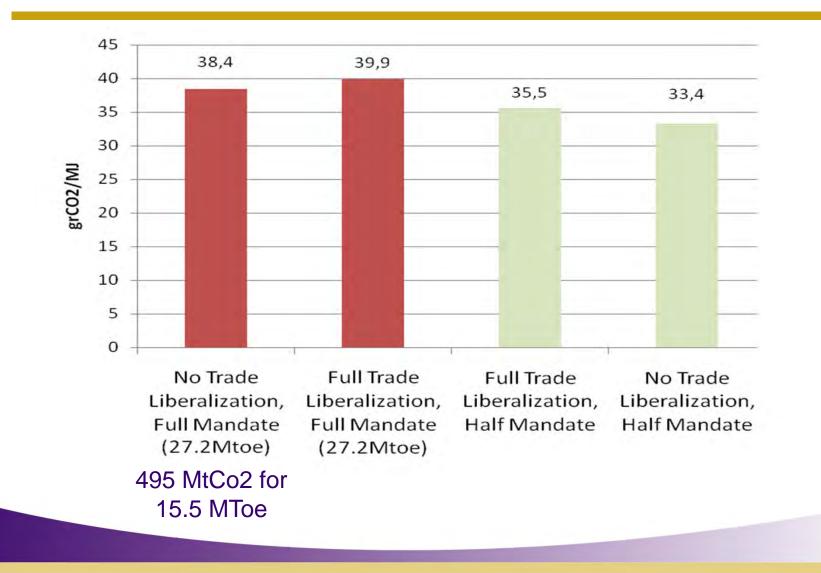
(Figure 5) Land use changes for main crops, 1000 Ha



INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

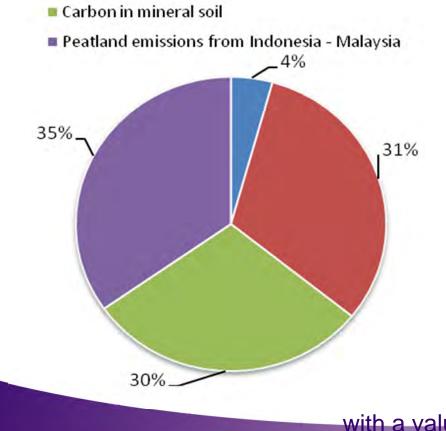
(Figure 6) Location of cropland extension. Changes compared to the baseline. Km2

(Figure 7) Distribution of source of cropland (world)

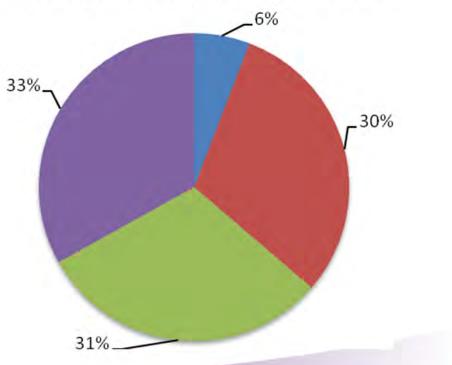

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

(Figure 8) Cropland extension vs. Exploited land extension. Km2

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

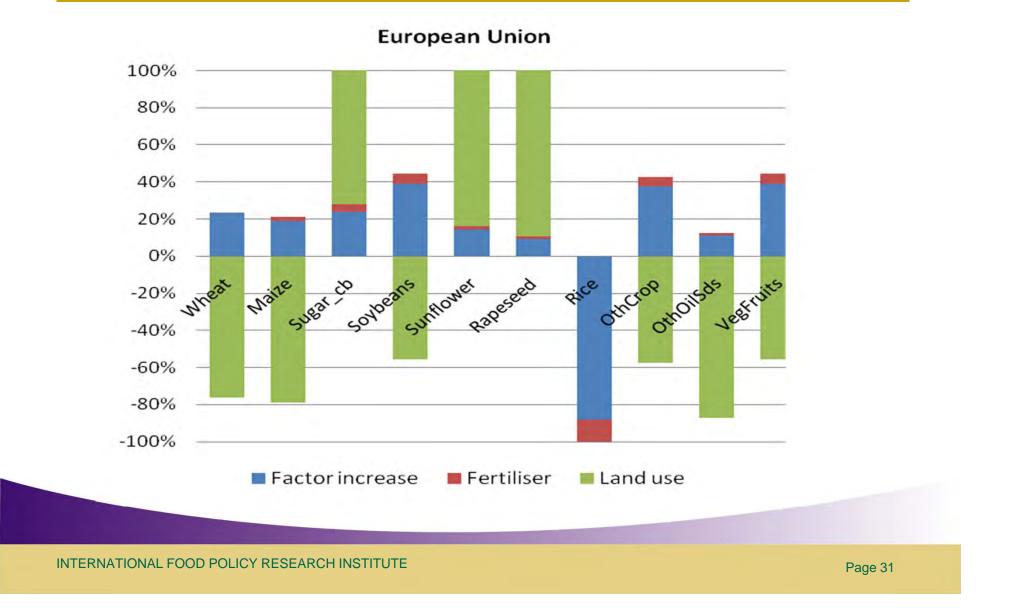

LUC coefficient (grCO2/MJ)

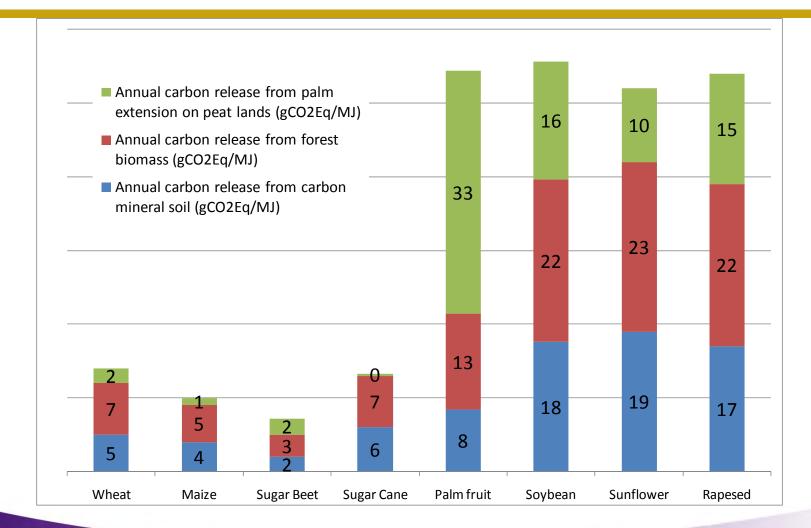
(Figure 10) Source of emissions


No Trade Liberalization

- Biomass change Primary Forest
- Biomass change Managed Forest

Trade Liberalization


- Biomass change Primary Forest
- Biomass change Managed Forest
- Carbon in mineral soil
- Peatland emissions from Indonesia Malaysia


with a value of peatland emissions of 55gTCO2 HA/an

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

(Figure 11) Intensification and Extensification drivers. Normalized effects: Additional Mandate, Trade Policy Status Quo

(Figure 14) Crop specific LUC. Source of emissions

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

Emissions grCO2/MJ

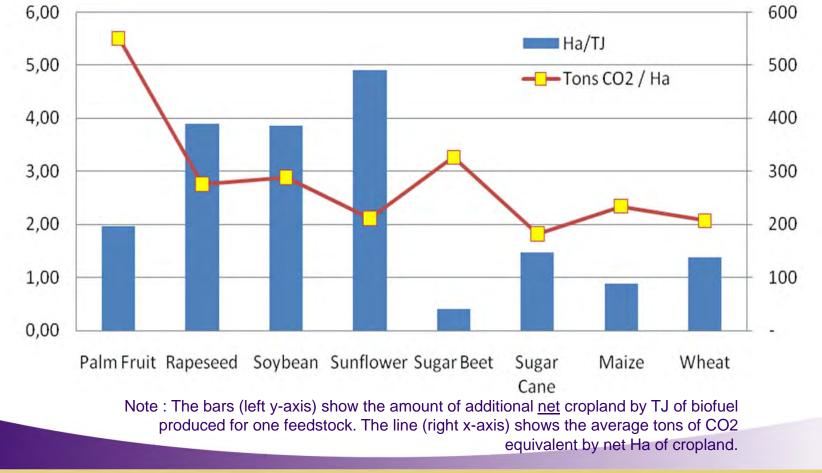
INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

Differences? DEMAND effect

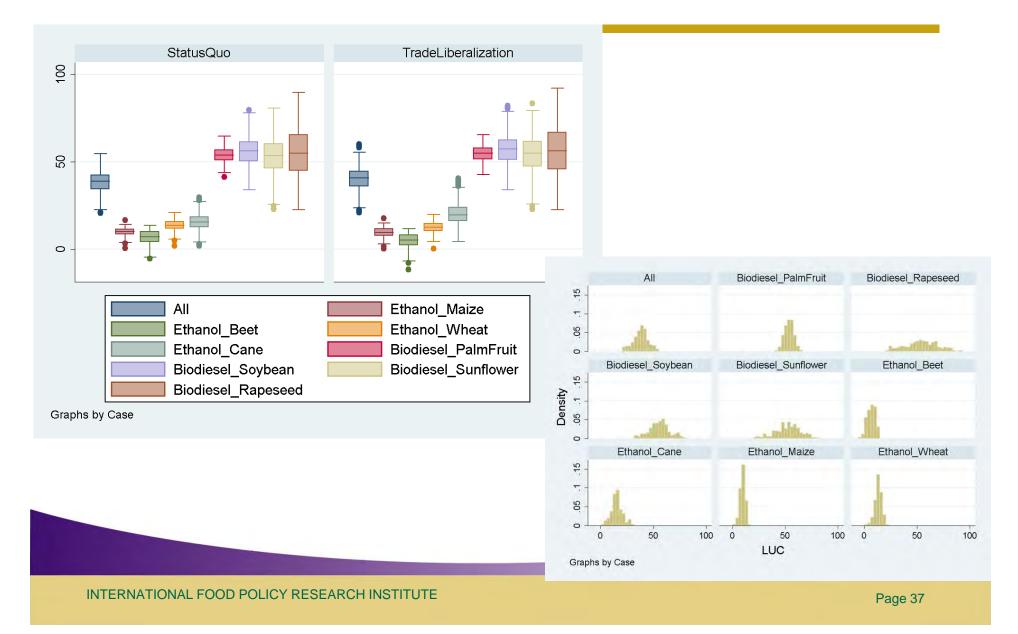
Table 10	Ratio	Table 10 Evoluti	on of Livestoc	k consumptio	n of feedstocks	s. Selected Cro			
Additional		specific scenarios (60GJ incremental demand of biofuel in the EU). Tons.							
	Supply/Biofuel		Ethanol	Ethanol	Biodiesel	Biodiesel			
demand. Percent.		Maize	Maize	Wheat	Rapeseed	Soybean			
demand. H	Percent.	warze	-2693	-213	-2000	-4431			
Sugar Beet	94.40	Wheat	-333	-2799	-2228	-1740			
Sugar Cane	98.30	Palm Fruit	-1	-2	-81	-110			
	00100	Rapeseed	-4	-5	-465	-126			
Maize	56.69	Soybeans	11	12	-810	-2747			
Wheat	51.38	Sunflower	-6	-6	-126	-131			
Palm Fruit	96.6	DDGS	3485	2419	1	-32			
Rapeseed	78.2	Meal-Palm	1	1	23	29			
Soybeans	40.3	Meal-Rape	-37	-78	3841	813			
Subbeans	40.5	Meal-Soyb	-187	-105	2431	8954			
Sunflower	71.0	Meal-Sunf	-1	-5	253	272			
<u>n</u>	andate	Other Crops	174	411	-154	-834			

Differences? Supply effect

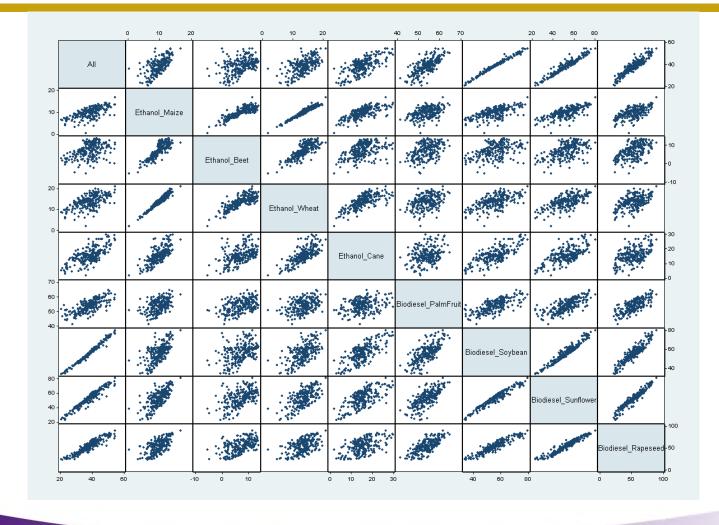
• Yield reactivity


Land displacement

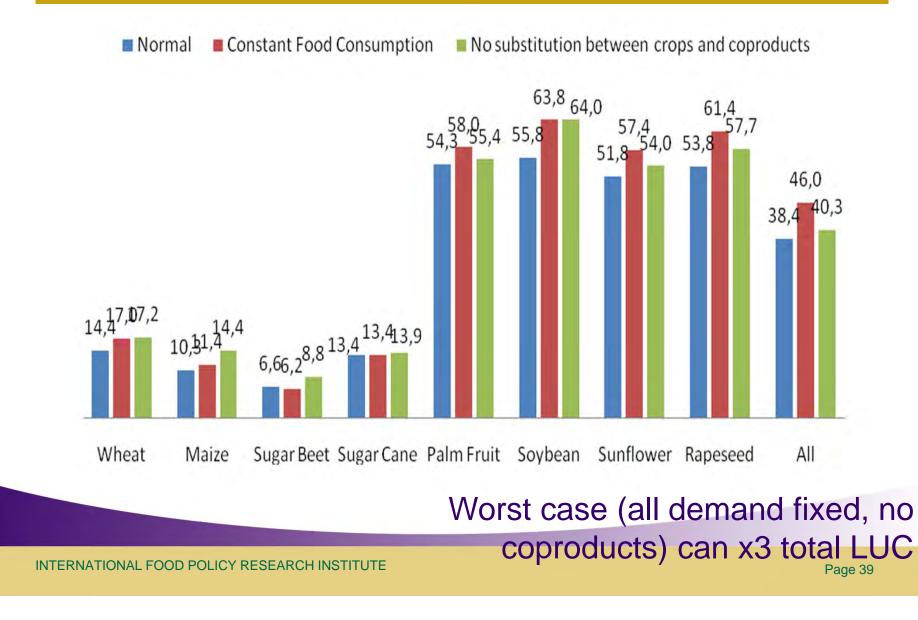
Biodiesel_RapeseedEU274.4World10.Biodiesel_Soybean0.1EU270.1		1 0.54		
World 10. Biodiesel_Soybean		1 0.54		
Biodiesel_Soybean		4 0.51	-0.10	0.14
	.91 11.7	2 3.90	-1.39	0.64
EU27 0.1				
	14 0.77	7 0.10	-0.02	0.03
World 11.	61 11.4	1 3.86	-1.50	0.76
Ethanol_Maize				
EU27 2.4	40 1.13	3 0.08	-0.02	0.01
World 6.5	52 3.69	9 0.88	-0.40	0.00
Ethanol_Wheat				
EU27 3.2	27 1.77	7 0.17	-0.04	0.03
World 7.6		9 1.39		


INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

Differences: Carbon stocks



Sensitivity Analysis



(Figure 21) Correlation matrix of LUC factor, grCO2eg/MJ. Trade policy Status quo.

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

(Figure 22) Consequences of alternative closures on LUC (grCO2e/MJ)

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

Page 40

POLICY RECOMMENDATIONS

From model results to the policy space

General considerations

- Land use changes driven by biofuel policies are a <u>serious concern</u>. This finding is robust as more than 99 percent of crop LUC coefficients in the Monte Carlo analysis are positive.
- 2. LUC regulation and the Pandora Box: LUC for all, LUC for none? The real challenge is to promote better land use practices for agriculture widely.
- 3. <u>Reducing the biofuel ambition is still the most direct way</u> to limit additional land use emissions (evolution of political economy due to supply constraint in the EU)

Targeted measures

- Crop specific LUC *can* be difficult to implement. Increasing the minimal requirements of direct savings *can* be a better solution and will provide incentives for the sector to adopt the most efficient pathway.
- 2. Despite all uncertainties, our findings show the <u>hierarchy between ethanol and biodiesel</u> in terms of LUC. Additional breakdown can be considered. Therefore, promoting a larger share of ethanol than the current projection will be meaningful. Role of trade liberalization

Broader measures

- Alternative trade policy options may be developed to promote good practices in terms of land conservation at a national level by trade partners (sustainability criteria, TRQ);
- 2. Using available <u>technologies</u> to increase yield e.g. **biotech**, and low carbon agricultural practices to reduce emissions;
- 3. Health check for biofuel policies and needs to have a flexible framework.

