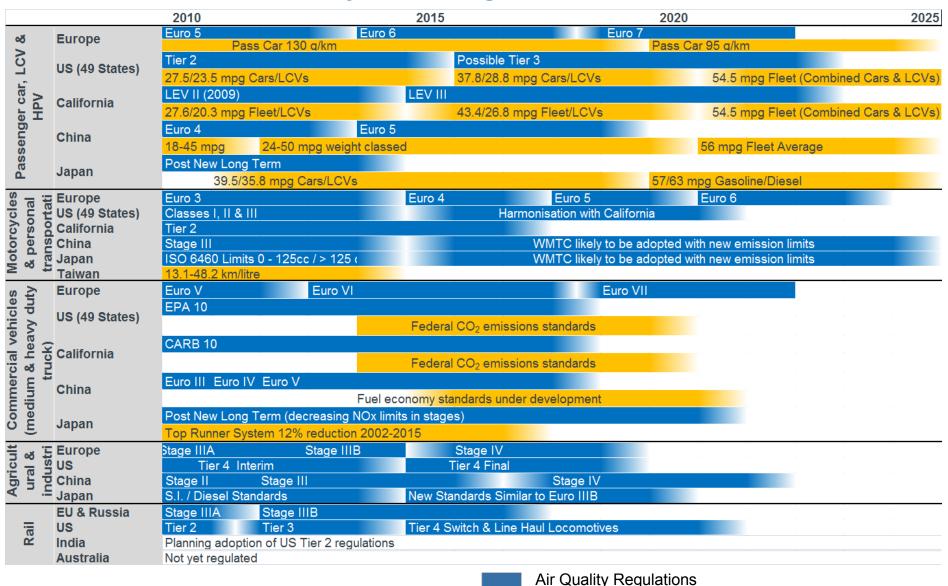


Future Challenges for European Vehicles and Fuels

Neville Jackson

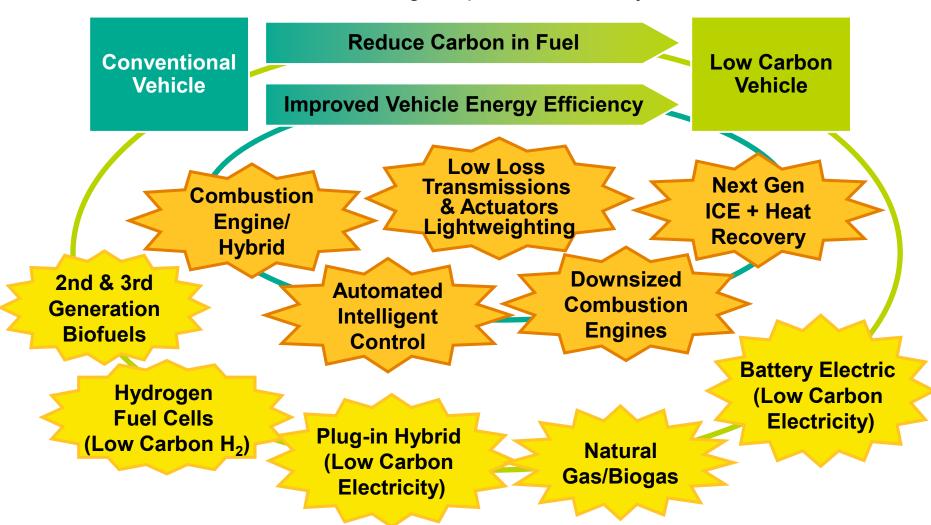
Chief Technology & Innovation Officer Ricardo plc

10th CONCAWE SYMPOSIUM Sheraton, Place Rogier 3 1210 Brussels, Belgium February 25th-26th, 2013


- Regulatory Challenges & Technology Options
- Future Transport Energy & Fuels
- Potential Light Duty Technologies
- Future Heavy Duty Technologies

- Regulatory Challenges & Technology Options
- Future Transport Energy & Fuels
- Potential Light Duty Technologies
- Future Heavy Duty Technologies

The growth of both regulation and targets for Clean Low Carbon Vehicles sets a major challenge in all sectors



There are many technical options to reduce fuel consumption & CO₂ emissions – all have challenges – no clear winners

Low carbon vehicles achieved through improved efficiency and/or low carbon fuels:

- Regulatory Challenges & Technology Options
- Future Transport Energy & Fuels
- Potential Light Duty Technologies
- Future Heavy Duty Technologies

Be wary of jumping from one "favoured" technology to the next – there are no silver bullets, just hard work & persistence!

Technology & "Fashion"

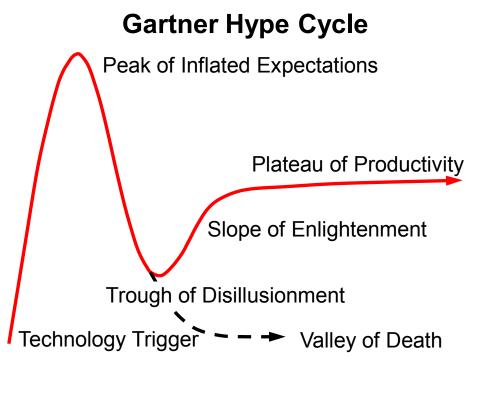
1980 Synthetic Fuels (Oil Crisis)

1985 "Adiabatic" Insulated Engines

1990 Methanol

1995 Electricity (CARB & EV1?)

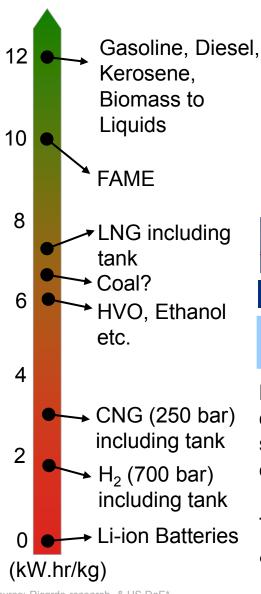
2000 Hydrogen & Fuel Cells


2005 HCCI & "Alternative" Combustion

2007 Biofuels & Ethanol

2009 EV's & Plug-in Hybrids

2013 What's next?


- Policy makers often look for a "simple" solution that makes good headlines
- Auto Industry sometimes too eager to promote promising "Green" techs for PR

- Where are they now?
 - Biofuels
 - Plug-in Hybrids & EV's
 - HCCI / Alternative Combustion

Long haul / heavy duty applications will require low carbon liquid fuels – light duty applications more suited to batteries

State of the Art Li-ion battery for 500 mile range 40 ton HGV would weigh 23 tons*

Long Distance/Heavy Duty

Short Distance/Light Duty

Low Carbon Liquid Fuels

Long distance/ heavy duty vehicles need space/weight efficient energy storage

Technology/Cost & Availability

Liquid Fuel / Battery Hybrid

Use of both liquid fuel and grid re-charged battery offers more flexibility and utility

Battery Electric

EV's suited to short distance/light duty applications to minimise cost

Technology/Cost Innovations

- Regulatory Challenges & Technology Options
- Future Transport Energy & Fuels
- Potential Light Duty Technologies
- Future Heavy Duty Technologies

Electrification is a major trend for the forseeable future but this comes in degrees and is a "continuim" from micro hybrid to EV

Ì	Electrification	CO ₂ Tt\	W reduction potential	Challenges	Outlook
	Micro Hybrid (12V) – Stop/Go, Smart Charge		Best applications: Urban delivery vans, Gasoline city cars	Larger Diesels harder, less benefit	Will be ubiquitous in regulated markets by 2015
	Micro Hybrid (24-48V) – Stop/Go, Smart Charge/Assist	- 10%	Ulban delivery vans	Cost of battery or energy store	Major growth area after stop/start smart charge
	Mild Hybrid – Torque Assistance	> - 15%	Best applications: Family cars with down sized turbo engines	High cost v ICE improvements	Possible mainstream solution 2015-20 in EU & US
	Full Hybrid – Flexible power unit		Best applications: Large/prem vehicles, delivery vans & trucks	Very high cost v ICE improvements	Image & niche products to 2015; growth thru 2020
	Plug-in Hybrid – Flexible fuel source		Best applications: Family cars with mixed journey usage	Cost and life of enlarged battery pack	Affluent early adopter niche 2015-20
	Electric Vehicle - Farewell ICE? Or not		Best applications: Vehicles with limited, predictable daily use	Battery cost / size versus range; fast charge limits	Limited to city cars and vans until battery breakthrough

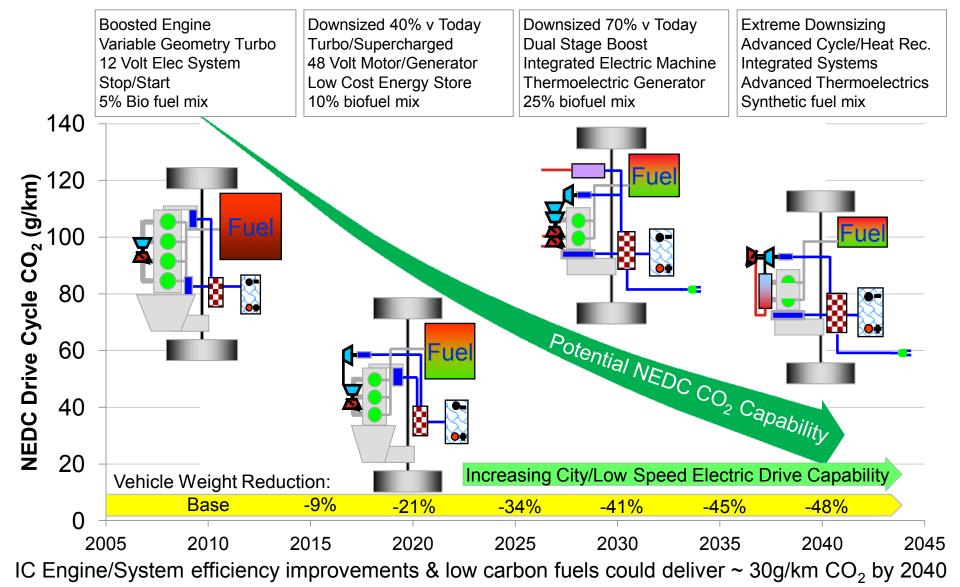
Advanced combustion engines & electrification of the powertrain are key to the future of light duty vehicles

SHORT TERM: ~2015

- Boosting & downsizing
 - Turbocharging
 - Supercharging
- Low speed torque enhancements
- Friction reduction
- Advanced thermal systems
- Stop/Start & low cost
 Micro Hybrid technology
- Niche Hybrid, PHEV's & Electric Vehicles
- Weight reduction (5-10%)

MEDIUM TERM: ~2025

- Extreme downsizing with 2 & 3 cylinder engines
- Combined turbo/ supercharging systems
- Advance 48 voit micro hybrid systems dominate
 - PHEV's in premium & performance products
- EV's for city vehicles
- Significant weight reduction
- High Efficiency Lean Stratified Gasoline
- Advanced low carbon fuel formulations


LONG TERM: ~2050

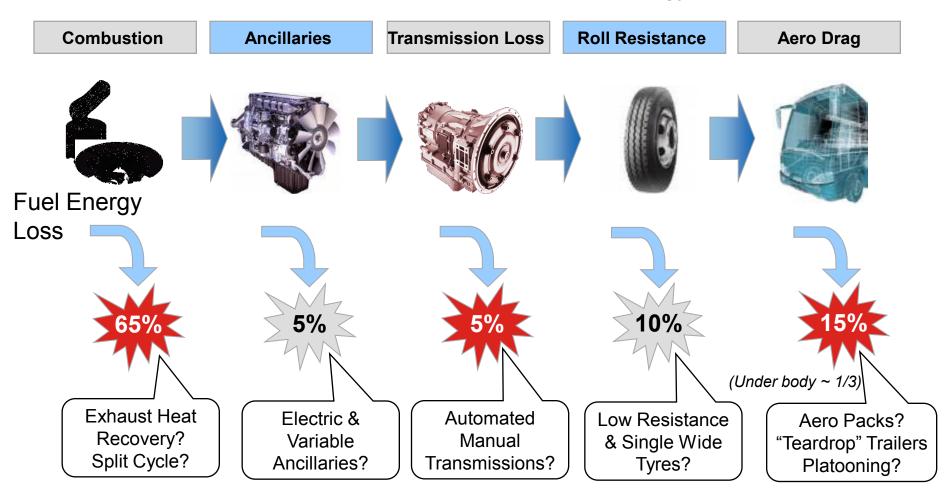
- Plug-in/Hybrid electric systems dominate
 - Very high specific power ICE's
- 50% lower/weight
- Range of application specific low carbon fuels
- Exhaust & Coolant energy recovery
- Advanced thermodynamic Cycles
 - Split Cycle?
 - Heat Pumps?

Increasing Importance of Electrification

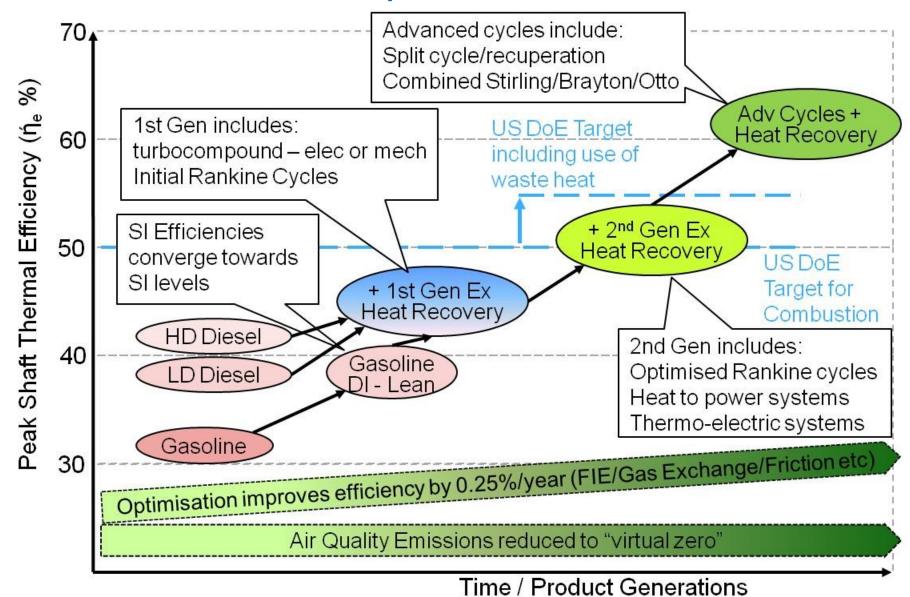
Many technology pathways for improved pass car powertrains – **Example:** downsizing/electrification/heat recovery combinations

IC based systems competitive with EV's on life cycle carbon basis © Ricardo plc 2013 12

Source: Ricardo Analysis RD.13/60401.1

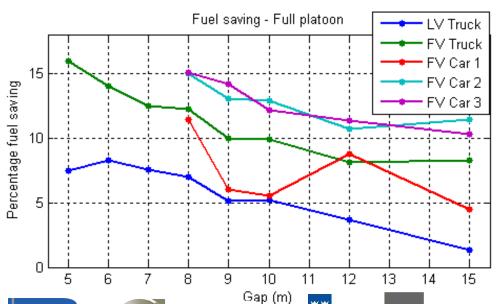

- Regulatory Challenges & Technology Options
- Future Transport Energy & Fuels
- Potential Light Duty Technologies
- **Future Heavy Duty Technologies**

Heavy duty/high power applications offer opportunities for a range of efficiency enhancements


Analysis of Vehicle Energy Flows (Loaded Heavy Duty Truck Example)

From the total amount of fuel used (at 100km/h), the energy flows are as follows:

ICE Thermal Efficiency has considerable scope to improve & could reach over 60% in future products



SARTRE - Cooperative control of automated platoon vehicles improves safety and fuel economy

- Five vehicle road train of mixed types
- Control system performance is enhanced using real-time V2V data
- Based on existing technologies with some software enhancements, combined with advanced control software
- Up to 90 km/h and 4m gaps
 - 90 km/h is truck speed limit

- Interactions with non-platoon traffic
- Tested on test tracks and public roads
- Demonstrator system not a production implementation
- Fuel consumption results
 - 16% for following vehicles
 - 8% for lead vehicle

There are three interlinked phases of change required to current heavy duty powertrain technology and strategy

SHORT TERM: ~2015

- ICE optimisation for improved air quality
- SCR/EGR/DPF Integration
- Ancillary system control/electrification
- Friction reduction
- Waste heat recovery (e.g. mechanical & electrical turbocompound)
- Alternative fuel combustion technology (NG, LNG)

MEDIUM TERM: ~2025

- ICE optimisation for reduced CO₂
- High Efficiency Advanced Fuel Inj. & Combustion:
 - Low temperature low NOx combustion
- Low Carbon Fuels & Dedicated CNG/LNG & biomethane engines
- Minimised Aftertreatment
- Advanced waste heat recovery
- Advanced electrical ancillaries

LONG TERM: ~2050

- Dedicated low carbon liquid fuels for long distance transport
- Advanced thermodynamic Cycles
 - Split Cycle?
 - Heat Pumps?
- Exhaust & Coolant energy recovery
- Embedded thermoelectric materials

Increasing Importance
Of Low Carbon Fuels

Contact Details

Thank you for listening!

Confidential RD.11/447301.1 © Ricardo plc 2011 18