

LABORATORY OF APPLIED THERMODYNAMICS

Zissis Samaras Professor Automotive Emissions Control: Technical Challenges and Opportunities

> **11th Concawe Symposium** Brussels, Radisson Blu, 2015-02-24

ARISTOTLE UNIVERSITY THESSALONIKI SCHOOL OF ENGINEERING DEPT. OF MECHANICAL ENGINEERING

Acknowledgments

- Prof. Leonidas Ntziachristos, Dr. Savas Gkeivanidis (LAT)
- > Dr. Giorgos Mellios, Mr. Thomas Papageorgiou (EMISIA)
- > Dr. Georgios Fontaras, Dr. Barouch Giechaskiel (DG JRC)
- Dr Jens Borken-Kleefeld (IIASA)
- Dr Alexander Bergmann (AVL)
- Dr. Grigorios Koltsakis (Exothermia SA)

Outline

- The reasons that underpin the need for action to mitigate road transport emissions
- What have European regulations done so far and what is in the pipeline?
- What do these mean in terms of
 - Testing requirements
 - Impacts on vehicle technology

WHY ARE ROAD TRANSPORT EMISSIONS IMPORTANT (AND WILL CONTINUE TO BE)?

Exposure to PM_{10} in 1100 urban areas, 2003 – 2010

WHO Air Quality Guideline: Annual mean PM10 = $20 \mu g/m^3$

Source: WHO, 2012

PM_{2.5} (µg/m³) concentrations in cities across the world Average of 5 years annual average (2008-2012)

Source: WHO, 2012

NO₂ (µg/m³) concentrations in cities across the world Average of 5 years annual averages (2008-2012)

Source: Comparison of air quality for a number of world and European cities (london.gov.uk, 2014)

Afr: Africa; Amr: America; Emr: Eastern Mediterranean; Eur: Europe; Sear: South-East Asia; Wpr: Western Pacific; LMI: Low- and middle-income; HI: high-income

Source: WHO, 2012

EU Transport Emissions Projections

NO_x

AT.

PM_{2.5}

Greenhouse gases (GHGs) emissions in the EU

- Transport accounts for 1/3 of total energy consumption and 1/4 of total GHGs
- Road transport alone contributes to 20% of total manmade EU GHG

GHG emissions from transport have increased over 1990 base level

- Binding targets to reduce GHGs from road transport:
 - 95/147 gCO₂/km by PCs/Vans by 2020
 - 10 % of total energy consumption on renewables by 2020
 - Tyre pressure monitors, gear-shift indicators
 - Green procurement

WHAT HAS EUROPEAN POLICY DONE SO FAR?

2005 to 2020 Exhaust Aftertreatment for Diesels

More in Involvement in Various Systems

Model Based Development: a necessity in Exhaust Aftertreatment

Aftertreatment technologies to 2020

Gasoline technology for LDV

- Low efficiency: Stoichiometric PFI with TWC
- Moderate efficiency: Stoichiometric GDI with three way catalyst and GPF (or advanced engine PN suppression)
- High efficiency: Lean-burn GDI + LNT + GPF

Diesel technology for LDV

- Small engines: EGR + DPF + LNT
- Large engines: EGR + DPF + SCR

Regulations under preparation

\succ CO₂ regulations

- CO₂ WLTP/NEDC correlation for PCs and Vans
- CO₂ labeling for HDVs
- Regulated air pollutants
 - Real driving emission control for PCs (RDE)
 - Euro 6 and VI OBD (incl. PM/PN monitoring)
 - GDI PN PMP
 - Euro 6 PN PEMS
 - L-category vehicles (scooters, motorcycles, ...)

Other issues (durability, NO2, NH3, tyre and brake wear...)

Divergence of real-world CO2 emissions from manufacturers' type-approval CO2 emissions

WLTP Implementation

- WLTP adopted by UNECE-GTR in 2014 and will replace NEDC as a certification cycle
- Less relevant for emission standards
 - Limit values remain the same
 - RDE to substitute chassis dyno in the long run
- Important to translate NEDCbased CO₂ targets of 2015 and 2020/21 to WLTP

CO₂ WLTP-NEDC translation procedure

Chassis dyno tests (~30 vehs)

Segment-level simulations: Meta-model (Physical or statistical approach)

Technologies currently used for CO2 reduction looked at in WLTP-NEDC translation

Technologies currently used for CO2 reduction looked at in WLTP-NEDC translation

Technologies currently used for CO2 reduction looked at in WLTP-NEDC translation

Technology Start stop **Energy recuperation** Automatic/Manual transmission 2WD/4WD EGR (gasoline and diesel) Thermal management DI/MPI NSC and SCR Road load (aero, RR, weight) **Auxiliaries** Mild/full hybrid

CO₂ from HDVs

 \geq CO₂ emissions from HDV have not been addressed yet

- Vehicle type approval complexity
- Articulated vehicles carry different semi-trailers

Energy efficiency in trucks has always been in the forefront of vehicle / engine development

- Fuel cost is the most significant criterion in choosing a truck
- Energy efficiency improvements have already shifted CO₂ emissions downwards and have advanced relevant technologies

Monitoring CO₂ emissions from HDV

- Selected option: Vehicle Simulation
 - Simulation for whole vehicle supported by component testing
 - Joint Commission ACEA effort
- VECTO Simulation tool (Version 1) launched by the JRC in 10/2012

> 2012-2014: campaign towards final regulation

- ACEA JRC Consultants experimental campaign ("Proof of Concept")
- Completion of simulation tool
- Finalize regulation / harmonize with other activities (eg Heavy Duty Hybrid powertrains)

Alternative fuels

Biofuels (biodiesel, bioethanol) sustainability questioned

- Feedstock availability
- Real CO₂ benefits obtained
- Not positive air-quality impacts
- Renewable diesel (catalytic hydrogenation/de-oxidation of vegetable oils) BTL
 - Well-controlled specifications
 - Paraffinic fuel
- Natural gas (CNG/LNG)
 - Target is a 20% reduction to CO₂ emissions
 - Adapted engine and vehicles to be studied in Horizon2020

Emission levels - Diesel PC NO_x

Euro VI HDV performance

Results for EURO VI (veh. 1 = Daimler, Actros)

Real drive emissions control - procedure

EURO 6 PN PEMS

- Objective is to introduce PN in RDE
- Main issues to address:
 - Proportional or constant flow sampling
 - Real-time detector principle
 - Cold-start / regenerations
 - VPR
 - Calculations (PCRF, conversions, etc...)
- Proof of concept completed
 - Constant flow sampling
 - Diffusion charger as a particle "counter"
- Current status
 - On-road tests on LD vehicles

LAT's Approach to PN PEMS

Pegasor Particle Sensor

- Heated sensor (250°C)
- Heated sampling lines (200°C)

Sampling from tailpipe through an opening in the replacement wheel space

Underfloor protection

Data collected with PN PEMS

Engine data (OBD)

- Engine Coolant Temperature
- Intake Manifold Abs. Pressure
- Intake Air Temperature
- Intake Air Flowrate
- Engine RPM
- Calculated Load Value
- Vehicle Speed
- Fuel Rail Pressure
- Commanded EGR
- Ambient Temperature

More than 6000 km successfully collected

Soot concentration (Pegasor Particle Sensor - PPS)

- Soot Conc. [mg/m³]
- Number Conc. [#/cm³]

rinek : Koda Speinert, Streniger Herkant ("Boligaen -)	ea) (12 - 12 - 12 - 12 - 12 - 12 - 12 - 12
Tamb	48.00 [°C]
Гin	141.90 [°C]
Fout	145.45 [°C]
Tsensor	135.13 [°C]
Pout	1.36 [mbar]
Pin	24.57 [mbar]
OP	23.21 [mbar]
n fee	

DPF operation parameters (T, P sensors)

- Inlet and outlet DPF Temperature
- Inlet and outlet DPF Pressure

	Log operations	Ries To Tag	Map Output:	lettings	Filters	JP Device setting	1 2	Advanced Device Settings	ACPS	Advanced File Settings
	Leg Pomet Time UTC Take Milloconds Position Latitude Congitude Insight Speed Heading	Precision CIPS File Type DSFA DAGE PDOP HDOP DOP 1000 BASH records cell Research Offer	Set 3rb SEC SEC SEC SEC SEC SEC SEC SEC	GPS S Holus Holus Lophy	ert Hot Start Korn Start Cold Start actory Reset MD41 specific KNone Free Free	SBAS	e SEAS	No DOFS SRAS Restore		
8	Set Format & B	tase Set Forma	t Only		ina aver peed abov stance over	y occ o lon y m	condu (h [Stop when full _ +]		

In-vehicle position logger (GPS)

- Vehicle position (lat., long., height)
- Vehicle speed [km/h]

Possible next steps in terms of GDI PN control

Non zero number of sub-23 nm particles, even more so than diesel

- Discussion to reduce cutpoint to 10 nm
- New counter, new VPR

GDI vehicles of today cannot meet PN₂₀₁₇ target

- EtOH blends have been shown to reduce both PN and PM
- Injection and combustion optimization can offer reductions
- Can be met with already available GPFs

Averaged Particulate Number in NEDC test [#/km]

Source: Umicore (2012) CAPoC Conference

Why OBD?

<u>'OBD system'</u> = system for emission control which has the capability of identifying the likely area of malfunction by means of fault codes stored in a computer memory

- \succ Identification of malfunction \rightarrow early repair \rightarrow less emissions
- Incentive to design more robust emission control systems
- Use at periodic inspections

Diesel OBD sensor candidates

Soot Sensor

Ammonia Sensor

Combined O₂/NOx Sensor

Urea Quality Sensor

From measurement to diagnosis

- Most sensors do not provide continuous signal or and an index with physical units
- Soot emissions highly depend on vehicle operation
- Need to correlate random operation emissions with type-approval cycle emissions
- \rightarrow Need of a robust OBD algorithm

Sensor regeneration rate [s-1]

A "forgotten" category: two/three/four wheelers

Vehicle categorisation	L1e- A	L1e -B	L2e	L3e	L4e	L5e-A	L5e-B	L6e-A	L6e-B	L7e-Ae	L7e-Be	L7e-Ce
	OF O		L2e-P	L3e-A1	L4e				L6e-BP	L7e-A1	L 7e-B1	L7e-CU
Typical Photos of Models			L2e-U	L3e-A2					L6e-BU	L7e-A2	L7e-B2	L7e-CP
				L3e-A3								
Key specifications	≤50cc, ≤45 km/h, <4 kW, C-O 25kmh	≤50cc, ≤45 km/h, <4 kW	≤50cc, ≤45 km/h, <4 kW, ≤270 kg (P: V 0.6m ³)			3W, <1000 kg, max 5 seats	3W, <1000 kg, max 2 seats, V 0.6m ³	<4kW, ≤425 kg, ≤45 km/h (D, G)	<6kW, <425 kg, ≤45 km/h (D, G)	<15kW, ≤450 kg	W/G<6, ≤450 kg	P: ≤450 kg, U: ≤600 kg, (D, G)

Large diversity of individual vehicle types

- Body-type
- Engines (fuels, performance, operation)
- Usage / operation

Outlook

GHG control will continue to be in the forefront of EU policy and related technological advances

- Gradual shift to natural gas vehicles
- Variable degrees of hybridization
- Technology and infrastructure based efficiency improvements
- ICEs will continue to be the powertrains of option for the foreseeable future. Main technology challenges:
 - Diesel (LD) NOx
 - OBD
 - NRMM
 - Power two/three and four wheelers

Thank you for your attention

Zissis Samaras, Professor <u>zisis@auth.gr</u> 2310 996014

