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Outline

» The reasons that underpin the need for action to
mitigate road transport emissions

» What have European regulations done so far and what is
in the pipeline?
» What do these mean in terms of

¢ Testing requirements
¢ Impacts on vehicle technology



WHY ARE ROAD TRANSPORT EMISSIONS IMPORTANT
(AND WILL CONTINUE TO BE)?



Exposure to PM,, in 1100 urban areas, 2003 — 2010

WHO Air Quality Guideline: Annual mean PM10 = 20 pg/m3
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PM, . (ug/m?3) concentrations in cities across the world
Average of 5 years annual average (2008-2012)
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NO, (ng/m3) concentrations in cities across the world

Average of 5 years annual averages 12008-2012!
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Population exposed to high pollution

Exceedances of WHO Air Quality Guidelines
(Annual mean PM10: 20 pg/m3; Annual mean PM2.5: 10 pg/m3)
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EU Transport Emissions Projections
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Greenhouse gases (GHGs) emissions in the EU

» Transport accounts for 1/3 of total energy consumption and 1/4 of total GHGs
» Road transport alone contributes to 20% of total manmade EU GHG

7\
/ (@) 2030 Target

GHG emissions from transport
have increased over
1990 base level

GHG Emissions (Mt

Road transport GHG 2050 Target ®
evolution. Source: EEA
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» Binding targets to reduce GHGs from road transport:
¢ 95/147 gCO,/km by PCs/Vans by 2020

¢ 10 % of total energy consumption on renewables by 2020
¢ Tyre pressure monitors, gear-shift indicators
¢ Green procurement
* .
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WHAT HAS EUROPEAN POLICY DONE SO FAR?



2005 to 2020 Exhaust Aftertreatment for Diesels
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More in Involvement in Various Systems

Washcoats

Substrates

Controls
Valves

Canning  \woiding

Tube bending Stamping

Urea Mixing :
Sensors Besan

Validation

Heat Exchangers

Cooling
Systems

13 s



Model Based Development:
a necessity in Exhaust Aftertreatment

Balance
equations

Reaction
kinetics

¢ Complicated
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Aftertreatment technologies to 2020

» Gasoline technology for LDV
¢ Low efficiency: Stoichiometric PFl with TWC

* Moderate efficiency: Stoichiometric GDI with three way
catalyst and GPF (or advanced engine PN suppression)

¢ High efficiency: Lean-burn GDI + LNT + GPF

» Diesel technology for LDV
¢ Small engines: EGR + DPF + LNT
¢ Large engines: EGR + DPF + SCR
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Regulations under preparation

» CO, regulations
¢ CO, WLTP/NEDC correlation for PCs and Vans
¢ CO, labeling for HDVs

» Regulated air pollutants
¢ Real driving emission control for PCs (RDE)
¢ Euro 6 and VI OBD (incl. PM/PN monitoring)
¢ GDI PN PMP
¢ Euro 6 PN PEMS
¢ |-category vehicles (scooters, motorcycles, ...)

» Other issues (durability, NO2, NH3, tyre and brake wear...)
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Divergence of real-world CO2 emissions from
manufacturers’ type-approval CO2 emissions
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WLTP Implementation

» WLTP adopted by UNECE-GTR in
2014 and will replace NEDC as a
certification cycle

» Less relevant for emission
standards
¢ Limit values remain the same
¢ RDE to substitute chassis dyno in
the long run
» Important to translate NEDC-
based CO, targets of 2015 and
2020/21 to WLTP

velocity [kmlh]

Vehicdespeed (Inml'h]

nf\/‘m/‘\ %/‘\M

WLTC Class 3 cycle




CO, WLTP-NEDC translation procedure

Chassis dyno tests
(~30 vehs)

Simulation ‘
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Validation
3
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. analysis
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Technologies currently used for CO2 reduction
looked at in WLTP-NEDC translation

Downspeeding, Downsizing

Source: AVL
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Technologies currently used for CO2 reduction
looked at in WLTP-NEDC translation

VVT
. Verstellmechanismus
(e.g. Vanos, Valvetronic) mit Exzenterwell

Zwischenhebel

Abb. 12-18:  Vollvariable kontinuierliche Ventilsteuerung BMW Valvetronic
[Bildquelle: BMW Group]

Cylinder deactivation

21 Source: MTZ 03/2012 vol. 73
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Technologies currently used for CO2 reduction
looked at in WLTP-NEDC translation

Technology

Start stop
Energy recuperation
Automatic/Manual transmission
2WD/4WD
EGR (gasoline and diesel)
Thermal management
DI/MPI
NSC and SCR
Road load (aero, RR, weight)
Auxiliaries
Mild/full hybrid



CO, from HDVs

» CO, emissions from HDV have not been addressed yet

General Approach with 2007/46/EC — Regulations to be considered *) rw@

¢ Vehicle type approval
complexity

¢ Articulated vehicles carry
different semi-trailers

» Energy efficiency in trucks has always been in the
forefront of vehicle / engine development

® Fuel cost is the most significant criterion in choosing a truck

¢ Energy efficiency improvements have already shifted CO,
emissions downwards and have advanced relevant technologies

e
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Monitoring CO, emissions from HDV

» Selected option: Vehicle Simulation

¢ Simulation for whole vehicle supported by component testing
¢ Joint Commission — ACEA effort

» VECTO Simulation tool (Version 1) launched by the JRC in 10/2012

Vecto

Vehicle Energy Consumption Calculation Tool

» 2012-2014: campaign towards final regulation

* ACEA — JRC —Consultants experimental campaign (“Proof of Concept”)
¢ Completion of simulation tool

* Finalize regulation / harmonize with other activities (eg Heavy Duty Hybrid
powertrains)

. . F
24 Source: Fontaras (2012) JRC Presentation gAY



Alternative fuels

» Biofuels (biodiesel, bioethanol) sustainability questioned
¢ Feedstock availability
¢ Real CO, benefits obtained
* Not positive air-quality impacts
» Renewable diesel (catalytic hydrogenation/de-oxidation
of vegetable oils) - BTL
¢ Well-controlled specifications
¢ Paraffinic fuel

» Natural gas (CNG/LNG)

¢ Target is a 20% reduction to CO, emissions
¢ Adapted engine and vehicles to be studied in Horizon2020



Emission levels - Diesel PC NO,

£

g/k

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

m NEDC
m CADC

COPERT |

Limit =

Conv.

Eurol

Euro2

Euro3

Euro4 Euro5

Euro6

26
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Significant exceedances of
emission limits

Euro 3: 1.6x
Euro 4: 2.3x
Euro 5: 4.7x%
Euro 6b: 4.7x (estimate)




Euro VI HDV performance
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Results for EURO VI (veh. 1 = Daimler, Actros)
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Real drive emissions control - procedure
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EURO 6 PN PEMS

» Objective is to introduce PN in RDE

» Main issues to address:
¢ Proportional or constant flow sampling
¢ Real-time detector principle
¢ Cold-start / regenerations
¢ VPR
¢ Calculations (PCRF, conversions, etc...)

» Proof of concept completed

¢ Constant flow sampling

¢ Diffusion charger as a particle “counter”

» Current status
® On-road tests on LD vehicles



LAT’s Approach to PN PEMS

Honda Accord
2.2 i-CTDi

_ Pegasor Particle
e
Sensor

Retrofitted DPF

Pegasor Particle Sensor

- Heated sensor (250°C) Sampling from tailpipe through an Underfloor protection
- Heated sampling lines (200°C) opening in the replacement wheel space




Data collected with PN PEMS

s EEEEEEEcamacaaty R
= 2
S — oo ]
0
Engine data (OBD) Soot concentration (Pegasor Particle Sensor - PPS)
- Engine Coolant Temperature - Soot Conc. [mg/m?]
3
- Intake Manifold Abs. Pressure - Number Conc. [#/cm’] I —
- Intake Air Temperature e
- Intake Air Flowrate ST g :
. ;Tamb 48.00[°C]
- Engine RPM fTin 141.90[°C]
- Calculated Load Value ‘Tout 145.45[°C]
- Veh|cle Speed Tsensor 135.13[°C]
- Fuel Rail Pressure Pout 1.36[mbar] RS
Pin 24.57 [mbar] In-vehicle position logger (GPS)
- Commanded EGR ) o )
op 23.21[mbar] - Vehicle position (lat., long., height)

- Ambient Temperature ‘ .
DPF operation parameters (T, P sensors) - Vehicle speed [km/h]

- Inlet and outlet DPF Temperature
- Inlet and outlet DPF Pressure
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Possible next steps in terms of GDI PN control

» Non zero number of sub-23 nm particles, even more so than diesel
¢ Discussion to reduce cutpoint to 10 nm
¢ New counter, new VPR

» GDI vehicles of today cannot meet PN, target
¢ EtOH blends have been shown to reduce both PN and PM
¢ Injection and combustion optimization can offer reductions
¢ Can be met with already available GPFs

Averaged Particulate Number in NEDC test [#/km]

logarithmic scale
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Why OBD?

‘OBD system’ = system for emission control which has the
capability of identifying the likely area of malfunction by means of
fault codes stored in a computer memory

» ldentification of malfunction = early repair = less emissions
» Incentive to design more robust emission control systems

» Use at periodic inspections

@ e
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Diesel OBD sensor candidates

Electrode

Soot Sensor

Ammonia Sensor Urea Quality Sensor

34 Source: MECA yy - ya



From measurement to diagnosis

» Most sensors do not provide continuous signal

or and an index with physical units

» Soot emissions highly depend on vehicle

operation

» Need to correlate random operation emissions

with type-approval cycle emissions

- Need of a robust OBD algorithm

Vehicle OBD
system limit
E
= Type Il error
g‘ (error of omission) .
= - * .
2 .
2 . . *  Legislative OBD
5 ® e threshold limit
3
w
§ b . .
»
E ¢ .
L L
= . Type | error
(error of commission)

Sensor regeneration rate [s)
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OBD
algorithm
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limit
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A “forgotten” category: two/three/four wheelers

Vehicle categorisation Lle- A Lle -B

L5e-B

L7e-Ae

L6e-B

L6e-BP

L7e-Al

Typical Photos of Models

» Large diversity of individual vehicle types
¢ Body-type
¢ Engines (fuels, performance, operation)
¢ Usage / operation
2AT
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Outlook

» GHG control will continue to be in the forefront of EU
policy and related technological advances
¢ Gradual shift to natural gas vehicles
¢ Variable degrees of hybridization
¢ Technology and infrastructure based efficiency improvements

» |CEs will continue to be the powertrains of option for the
foreseeable future. Main technology challenges:
¢ Diesel (LD) NOx
¢ OBD
¢ NRMM
¢® Power two/three and four wheelers
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