Work package 4b CatApp Toxicogenomics data where does it help?

Cat-App final event, Brussels, 6 September 2018

Shu-Dong Zhang, University of Ulster, Northern Ireland

Reproduction permitted with due © Concawe acknowledgement

TempO-seq Technology - High-Throughput Targeted Sequencing

Assay advantages:

- Works in 384-wells
- No cDNA library prep
- 1000's genes/sample
- High Specificity (probe seq + ligation)

Assay considerations:

- Sequencing depth (per gene per sample)
- Gene selection (targeted set vs whole genome)
- New technology (no large database for comparisons)

Cat-App Transcriptomics Data - 6 Human Cell Types

11,000+ samples from 6 cell types

- 4-point concentration response data
- Differential gene expression for ~3,000 transcripts (targeted analysis)
- Over 35,000,000 data points
- Novel data processing pipeline
- Concentration-response modeling pipeline
- Transcriptomics data can be combined with other data streams

Transcriptomic Data Analysis - Pipeline

House et al. Front Genet 8:168, 2017

Transcriptomic Data Analysis - Quality Control

- Raw reads are demultiplexed and mapped
- Minimum read
 count is set per gene -
- Examination of controls (DMSO, Method blank, media)
- Examination of sequencing library quality

Transcriptomic Data Analysis - Effect of Petroleum Substances

Transcriptomic Data Analysis - Effect of Petroleum Substances

Number of Differentially Expressed Genes

Cell-specific Gene Expression Signature Across all Substances

iCell Hepatocytes

Number of petroleum substances that "perturbed" each transcript [top 50 shown]

Direction

Down

Up

75

25

50

Hepatocyte Gene Expression: Group-Specific "Signatures"?

UATO	AE	HFOC	0_06	RGO	индо	BIT	KER	во	NAPTI	HWAX	P.LAT									DIT					
			1					1	1					TIPAR		AE	100_00	JU SKGO	VHGO	BII	KER	BO	NAPTHA	WAX	P.LAI
							1.1	1						NOO	1 -							i			
							£							IGFBP	4-							i			
					F.			ł.				Ν		СҮРЗА	5 -							î 👘	1		
								1						UGT1A	3 -										
					E									SOS	1 -										
					E			1	1					CAV	1 -						_	_	_		
		E.			F			1						CYP1A	1										
		Ē.			1		E .							HERPUD	<u></u>							5 - E			
					÷ .									CDH	41							2 - C			
			E I	-	E									I MEM9								2			
		2	E											SIC13A	[]										
								1						TSK	í]							1			
		E.	-		1									ABCC	5-							i			
		E.		_										H BM	-						1.1	i			
		1			E			-	-					ថ្ថិ ORM	2 -							Ĩ.			
					1		1 - I								1-							Ĩ			
			Ē.		÷		-		_			<u>۱</u>		8FE2L	2 -								1		
-					8				1			<u>۱</u>		WDR1	2		 _		_	_					
_			F I					1				\		EGFBP	1-							L			
-		E.						i.						0 MYL	<u></u>										
—		L.					1						1		<u>}</u>							1			
			÷ 1										1		51					.					
	1 - I		E		=				1				1		3]										
					÷		=	ł.					1	0 TAS							1.1	i			
													1	HSD17B1	1 -						- C	î			
					-								1	GNM	÷-							i –			
					-			1					1	ALAS	1 -							i			
	2	1			-				_				1	AKR1C	2 -							i			
					1								1	AKR1C	3 -							1			
	Ξ							ł.					· · ·	PSMB	3 -		_		_						
			-										· · ·	SOCS	2 -										
	-						2						· \	TAGL	N -							Į			
	-		i					1	-				1	NFKBI	21										
			÷					1	-				1	HSD11B	<u> </u>										
													1		5										
													<u>۱</u>	APBB ETC	²]				-			1			
														CAD3V	4 -						1.1	1 C	1.1		
																					. 1				
														-										100	Same Stre

Cardiomyocyte Gene Expression: Group-Specific "Signatures"?

Hepatocyte Gene Expression: Group-Specific "Pathways"?

			VHGO	CGO and OGO	Aromatic Exracts	HFO & FO	UATO	
		Steroid hormone biosynthesis	FDR=2.5e-6	FDR=8.6e-8	FDR=1.0e-4	FDR=3.9e-8	FDR=8.2e-7	7
CVD/FO avidation	5	Metabolism of xenobiotics by cytochrome P450	FDR=7.9e-6	FDR=1.6e-7	FDR=3.9e-4	FDR=4.9e-6	FDR=4.7e=6	
	\leq	Retinol metabolism	FDR=2.8e-4	FDR=2.6e-6	R=5.6e-3	FDR=5.8e-4	FDR=4.0e-4	
		Biological oxidations	R=6.1e-3	FDR=8.1e-5	DR=3.0e-3	FDR=5.8e-4	FDR=4.0e-4	
		PERk regulated gene expression Drug metabolism – other enzymes	DR=1.5e-3		=1.3e=2	DR=1.7e-3	FDR=2.5e-4	
		Diabetes pathways	DR=1.8e-3		R=7.9e-3	R=4.1e-3	FDR=7.5e-4	
)	Cytochrome P450 – arranged by substrate type	DR=2.4e-3		R=5.9e-3	R=3.9e-3	DR=2.2e-3	
Other venohiotic metabolism		Unfolded Protein Response	DR=2.4e-3		R=6.1e-3	R=4.1e-3	FDR=5.3e-4	
		Fatty acid, triacy/glycerol, and ketone body metabolism Phase 1 – Functionalization of compounds	R=3.7e-3		DR=3.0e-3	3.3e-2	DR=1.9e-3	
		Drug metabolism - cvtochrome P450	R=5.0e-3		R=5.2e-3	(=9.0e-3	R=6.7e-3	
		Ensemble of genes encoding extracellular matrix and extracellular matrix-associated proteins	t=1.1e-2		0R=4.2e-3	R=4.3e-3	FDR=1.2e-3	
		Metabolism of lipids and lipoproteins	0e-2		R=5.9e-3	. <mark>5e-2</mark>	2e-2	
		Genes encoding structural ECM glycoproteins			FDR=1.3e-3	R=4.4e-3	FDR=2.3e-4	
	(Ensemble of genes encoding core extracellular matrix including ECM glycoproteins, collagens and proteoglycans Xenobiotics			DR=2.6e-3	R=6.0e-3	FDR=3.8e-4	
		Phase II conjugation			R=8.6e-3	R=4.4e-3	0R=3.6e-3	
Metabolism, kinase signaling	\prec	HIF-1-alpha transcription factor network			=2.1e-2	4.3e-2	4. <mark>0e-2</mark>	
		Integrin Signaling Pathway			= <mark>2.3e=2</mark>	=1.5e-2	t=1.1e-2	
		Jak-STAT signaling pathway			2.7e-2	=1.6e-2	2e-2	
		insulin signaling pathway Eocal adbesion			2.9e-2	0=-2	2e-2 R=8.6a-3	
		Cell surface interactions at the vascular wall			5.1e-2	3.3e-2	3.0e-2	
Call aurface recenters DDADe	5	Porphyrin and chlorophyll metabolism	FDR=5.6e-4			R=4.1e-3	DR=2.7e-3	
Cell surface receptors, PPARa	\prec	PPARA Activates Gene Expression	R=4.9e-3		R=4.8e-3	_	R=6.5e-3	
		semble of genes encoding ECM-associated proteins including ECM-affiliated proteins, ECM regulators and secreted factors	2.5e-2			.8e-2	7e-2	
		Activation of Gones by ATEA				DR=1 3e-3	FDR=7 7e-4	-1
		Glucocorticoid receptor regulatory network				5e-2	2e-2	
		Beta1 integrin cell surface interactions			DR=1.6e-3	-	DR=1.3e-3	
		Integrin cell surface interactions			DR=3.0e-3		=1.7e-2	
		Tryptophan metabolism			R <mark>=5.9e-3</mark>	FDR=5.8e-4		
		ECM-receptor interaction			= <mark>1.7e-2</mark>		R <mark>=7.8e-3</mark>	
		FGF signaling pathway Concernated to DID2 signaling in partice prices to			2.5e-2	1.6e-2		
		Pentose and olucuronate interconversions			·····		FDR=7 7e-4	
		Ascorbate and aldarate metabolism					DR=1.5e-3	
		Starch and sucrose metabolism					R=5.3e-3	
		E2F transcription factor network					R <mark>=6.5e-3</mark>	
		Metabolism of amino acids and derivatives				1.6e-2		
		Regulation of actin cytoskeleton				7e-2		
		Beta2 integrin cell surface interactions			DR=2.9e-3			
		Cholesterol biosynthesis			DR=3.0e-3			
		Integrin alphallb beta3 signaling			DR=3.0e-3			
		Platelet Aggregation (Plug Formation)			DR=3.5e-3			
		Complement and coagulation cascades			R=4.7e-3			
		Urokinase-type plasminogen activator (uPA) and uPAR-mediated signaling- Beta3 integrin cell surface integrations			N=0.98=-3			
		FOXA2 and FOXA3 transcription factor networks			=1.2e-2			
		Glutathione metabolism			=1.2e-2			
		The citric acid (TCA) cycle and respiratory electron transport			2 <mark>.5e-2</mark>			
		Cytokine Signaling in Immune system			4. <mark>7e-2</mark>			25
		Response to elevated platelet cytosolic Ca2+			.9e-2			1
		Integrins in angiogenesis: Chamaking gigagling pathway	20-2		. <mark>(e=2</mark>			
		Oremokine signaling pathway Developmental Riology	0e-2					
		Developmental biology						-≯ 📐
				Enrichmer	t significance: _lo		5 2 7 0	1
					n aigrinicarice. – It	910(101)		

3-7 ring PAH hypothesis for Petroleum Substances

The percentage weight of 3-7 ring PAHs in the UVCB is the most active contributor to the bioactivity observed

Cell-specific Gene Expression Signature and PAH(3-7 ring)

		1.0	- 00			HEO		
Cell type	Correlation of gene expression with PAH content	on Score	75 -					Class
A375	0.24	ressi					CGO	AEFOGO
iPSC CM	0.11		50 -			HFØDAE		OXASPH
iPSC ENDO	0.18	gene					HEO	BO GAS
iPSC HEP	0.75	yte (HEC				WAXD.FUELP.LAT
MCF7	0.20		25 -	GAS RAE V	индо	HEO		
iPSC NEUR	0.09	Hep			HERAE HEO UNTO UD SRGO UNTO UATO HEROHO UATO HERO	UDAE		
All Cells	0.47			КЕК ОLBO НО НО НЕО КЕК ОLBO СОВО НРИ Р СЕВОССКО ВТ УНСО ВЦЕОССКО ВТ УНСО ВЦЕОССКИ СТАТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТ	SROO UDAE			
		0.0	- 00	0.0 0.5	PAH (3-7 ring	。 g) Score		

Relationship between Hepatocyte gene expression and PAH(3-7)

Almost all of gene expression signal in Hepatocytes correlates with PAH (3-7 ring) content

PAH (3-7 ring) Score

Spearman (rank) correlation = -0.85

Principal components (PC1-3) of the "Residual" gene expression

WP4b: Gene expression connectivity mapping based work flow

Heatmap of C-map scores for each UVCB, pairwise ordered by PAH weight

PAH weight 10.01/100 PAH weight

Best correlation between gene-expression profiles of the UVCBs occur with those that have the highest PAH weight

Heatmap of the correlation scores ordered by the log 10 PAH[(Wt% * (Ring 3-7 PAHs)+1]

Connectivity score example for HFO

Example for 034_HFO, which is the one with the highest 3-7 ring PAH content amongst the UVCBs (top right in the heatmap, previous slide)

This sample induces the highest number of differentially expressed genes

UVCB Connectivity score vs PAH content

Overall conclusions on transcriptomics data

- Gene expression data are useful for elucidating mechanisms behind biological responses
- High throughput gene expression profiling methods are needed to handle the large number of samples and experimental conditions that are needed for grouping
- In this instance, the gene expression data provide support that 3-7 ring PAH content is driving most of the bioactivity
 - Hepatocytes were most responsive (highest differential gene expression)
 - Highest expressed genes were involved in PAH metabolism related pathways
 - Other cell-types did not provide additional mechanistic information
- This was confirmed by the correlation between 3-7 ring PAH content with gene expression
- Connectivity mapping are a useful tool for comparing multiple gene expression profiles from multiple UVCBs
 - Gene expression profiles between substances with high PAH level are similar
- Gene expression data were overall not as informative as cell-based endpoint measurement
 - Generated transcriptomics data are still informative to add further support to the PAH hypothesis and adding a mechanistic component in combination with other data

18

Thank you for your attention

Shu-Dong Zhang sd.zhang@ulster.ac.uk

www.concawe.eu/cat-app

