
 

" 

Report 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Air Pollution and Lung 
Cancer: A Review of 
Issues Affecting the 
Interpretation of the 
Epidemiological 
Literature 

Report no. 15/18 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 



 report no. 15/18 
 
 

   
 
 
 
 

 I 

 

Air Pollution and Lung Cancer: 
A Review of Issues Affecting 
the Interpretation of the 
Epidemiological Literature  

 
Prepared by: 
 
J. A. Tomenson (Causation Ltd) 
D. Morgott (Pennsport Consulting) 
G. B. Copley (ExxonMobil Biomedical Sciences, Inc.) 
 
for the Concawe Health Management Group: 
 
A. Steneholm (Chair) 
M. Banton 
S. Blazquez Borras 
P. Boogaard 
W. Doig 
H. Eggers 
I. Fragkou 
P. Gostomski 
F. Guerra 
R. Hambach 
J. Lewis 
R. Marschall 
V. Moukrioti 
G. Pizzella 
M. Samuelsen 
B. Savonius 
R. Schnatter 
B. Schubert 
S. Schunder-Tatzber 
J. Urbanus 
M. Vaissiere 
C. Verge Lopez 
H. Ketelslegers (Science Executive for Health) 
M. Trantallidi (Research Associate for Health) 
 
 
Reproduction permitted with due acknowledgement 
 
 

 Concawe 
Brussels 
December 2018 



 report no. 15/18 
 
 

   
 
 
 
 

 II 

ABSTRACT 

The following report examines key issues that need to be considered when 
evaluating the attributes and implications of studies examining the association 
between ambient air pollution and lung cancer. Following a brief general discussion 
of the types of epidemiology studies that can be used to investigate the association 
between an environmental or occupational exposure and a particular health 
outcome, the report goes on to examine specific topics that need to be considered 
when evaluating the strength and weakness of any relationships that are purported 
to exist. Areas of focus include exposure estimation, confounding, quantitative risk 
assessment, heterogeneity, and plausibility. Each of these topics is explored in 
detail and information is provided showing how reported relative risk estimates may 
have been impacted by the failure to fully evaluate or consider specific 
methodological, procedural, or interpretive characteristics of the study. As such, 
the aim of the report is to highlight some generally overlooked areas of inquiry that 
need to be addressed in order to frame and draw conclusions from the results of a 
chronic health effects investigation focusing on lung cancer and air pollutant 
exposures.  
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SUMMARY 

In 2013 the authors of this report were observers at the IARC monograph meeting 
(Volume 109) to assess the carcinogenicity of outdoor air pollution. In preparation 
for the meeting, some time was spent reviewing the strengths and limitations of 
the many potentially relevant epidemiological studies, and assessing whether they 
would permit a causal interpretation. This report attempts to capture some of those 
discussions with the aim of highlighting some generally overlooked areas of inquiry 
that need to be addressed in order to frame and draw conclusions from the results 
of studies of the chronic health effects of air pollution exposures, especially studies 
of lung cancer.  

Section 2 looks generically at the different study designs that have been used to 
examine the association between lung cancer and exposure to outdoor air pollution, 
and discusses why the results of some studies are more informative than others. It 
also highlights the studies that the IARC Working Group considered to be the most 
informative and gave greatest weight to in their evaluation. These were all studies 
that possessed quantitative exposure data, primarily cohort studies within the 
general population, but also some population-based case-control studies that were 
considered sufficiently informative.  

Section 3 looks in detail at that exposure data and the methodologies used to derive 
it. Two of the most commonly used approaches involve either interpolating 
measurements from central monitoring sites or emission sources to an address using 
methods with varying degrees of sophistication, or predicting pollution at an address 
from land use characteristics, population density, and traffic patterns (land use 
regression models). It is noted that even if average pollution levels at the doorsteps 
of subjects were known exactly for the time periods of interest, it is unlikely that 
they will correlate well with personal inhalation concentration because of the use 
of only the residence location to estimate exposure (and not the workplace, school, 
or transportation environments etc.), and the differences between indoor and 
outdoor air at these locations.  

The lack of proper validation of exposure estimates and failure to estimate exposure 
during the relevant time period (at least 10-15 years previously in the case of lung 
cancer) are discussed. It is also noted that many studies make an assumption that 
the within-area contrasts in the spatial distribution defined by their exposure 
estimates may be a reasonable surrogate for the real contrasts in exposure levels, 
and hence can be used to investigate associations between cancer and air pollution. 
This may be justifiable to some degree, but the same assumption has also been used 
to give credibility to risk estimates per unit of pollution, even in the case where the 
proxy measure is an estimate of current exposure at the baseline address of 
participants. Some investigators have recognised that risk estimates based on a 
recent exposure contrast might be too high with decreasing air pollution 
concentrations and contrasts over time. Nevertheless, risk estimates from 
unsuitable studies are often used to estimate the number of deaths likely to result 
from air pollution. The potential impact of exposure misclassification error is also 
discussed, which as a recent review of the use of geographically modelled 
environmental exposure estimates in epidemiological studies correctly noted, is too 
often dismissed based on the erroneous assumption that an accurately classified 
exposure would have led to an even stronger estimate of risk (Chang et al., 2014). 

It is not difficult to see that lung cancer might appear to be due to air pollution if 
the people most exposed to air pollution are more likely to be smokers. This 
problem, known as confounding, is especially important in studies of air pollution 
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and lung cancer because of the large effect of smoking relative to that of pollution. 
However, smoking is not the only potential confounder, and even studies of lung 
cancer risk from outdoor air pollution exposure among never smokers can be biased 
by confounding from occupational exposure to lung carcinogens and other social 
class-related factors (Samet et al., 2009). Section 4 looks at how well study 
investigators have adjusted for smoking and other potential confounders with a 
focus on the reliability of the confounder measurements used, and the likelihood 
that confounding remains after adjustment (residual confounding). The majority of 
studies of particulates and lung cancer possess individual level smoking information, 
but some rely on proxy measures such as pre-existing illnesses related to smoking 
habits. Nevertheless, it is noted that residual confounding by smoking is likely in 
many studies because the smoking information may be many years out of date, and 
residual confounding by smoking is also possible in studies of never smokers because 
of misreporting of smoking status and consequent misclassification of current and 
ex-smokers as never smokers. It is also observed that many investigators claim to 
have controlled for occupational exposure to lung carcinogens, but the measures 
used are generally poor or not reported adequately. A related issue is determining 
whether the associations observed in single pollutant models are confounded by 
exposure to other pollutants found in ambient air.  

Section 5 briefly discusses exposure –response and what the animal studies indicate 
about potential mechanisms that may be operating and their implications for the 
shape of the response curve. The few studies which have considered alternatives to 
a linear exposure-response model have concluded that there is no evidence of a 
marked deviation from linearity (Hamra et al., 2014), but some had limited 
information to reach such a conclusion. 

Section 6 looks at the consistency of the evidence linking exposure to outdoor 
pollution with lung cancer. A causal interpretation is generally considered to be 
strengthened when studies of dissimilar populations, exposure characteristics or 
research methods yield similar measures of effect, and the IARC Working Group 
noted that “both cohort and case-control studies with exposures assessed in the 
population setting, involving millions of subjects and many thousands of lung cancer 
cases in different parts of the world, consistently showed an association between 
exposure to outdoor pollution and the risk of lung cancer, in both sexes and after 
adjustment for the main potential confounders”. However, considerable 
heterogeneity in study results should be expected in some circumstances because 
of heterogeneity in study populations, research methodology and the exposure of 
interest. For instance, particulate matter varies considerably in chemical make-up 
between locations and hence one might not expect to see the same effects per unit 
of particulate exposure in studies from different locations. In addition, the effect 
of exposure to PM2.5 might be expected to be more variable than exposure to PM10 
as it includes a higher proportion of mutagenic species, many of which are products 
of combustion, and the smaller particles penetrate more deeply into the lung and 
are more likely to be retained, whilst the coarser PM10 consists mainly of minerals 
and biological materials (Hamra et al., 2014). However, less heterogeneity might 
be expected to be seen in the results of studies where the same material is studied 
at different locations e.g. studies of ozone, SO2 and NO2. Consistency or the absence 
of significant heterogeneity is also important when judging how widely the results 
from a meta-analysis can be generalised to other populations. However, it is 
demonstrated that considerable heterogeneity may be present which is not 
detected by standard statistical tests. 

Section 7 asks what observable consequences would be expected if air pollution 
causes lung cancer, and examines whether they are in fact seen in the 
epidemiological studies i.e. whether the studies are coherent with the theory. This 
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is formally known as coherency and, like consistency, it is one of the nine Bradford 
Hill criteria used to establish causality (Hill, 1965). For instance, would one expect 
to observe a concentration-response relationship between estimates of exposure to 
particulates in air pollution and lung cancer for smokers when the intake of 
particulates from outdoor air pollution is tiny compared to the dose from cigarette 
smoking? Other coherence issues that are considered relate to the findings for 
adenocarcinoma (the most common cancer observed in smokers) versus those for 
squamous and small cell lung cancer, and the strength of associations observed for 
men versus women. Other aspects considered include whether the associations 
observed between non-malignant respiratory diseases including chronic obstructive 
pulmonary disease and outdoor air pollution are coherent with those for lung cancer 
and whether the results seen in occupational studies are coherent with those from 
population studies. Another question considered is whether measures of different 
pollutants are reflecting a causal agent or are merely acting as an indicator of 
pollution (Section 8). 

In conclusion, the report shows that there are many issues and attributes that need 
to be examined when assessing or designing a study evaluating the relationship 
between particulate exposures and lung cancer. It is particularly important to assess 
whether the exposure contrast defined by the exposure estimates is a reasonable and 
validated surrogate for the true exposure contrast. Further, if the study findings are to 
be used for quantitative risk assessment or global burden calculations, then it is also 
necessary that the exposure assessment provides a realistic description of the 
exposures people actually experienced during the biologically-relevant exposure 
period, and this is unlikely to be achieved if outdated proximity-based approaches are 
used. Bias and confounding also need to be ruled out with more certainty than can be 
achieved if information on key potential confounders such as smoking or occupational 
exposures is at best collected at baseline, or unavailable as is the case for one of the 
studies considered most informative by IARC. It is correct to attach weight to the 
findings of meta-analyses, especially combined results for never smokers where 
confounding by smoking is less of an issue, but implausible and unexplained 
associations of a comparable or greater magnitude observed in smokers and former 
smokers weaken this body of evidence. Finally, the epidemiological evidence is not 
sufficient to distinguish between PM2.5 and PM10, or even NO2 which is presumably 
only a surrogate for exposure, and better studies are needed to provide a more helpful 
conclusion for understanding risk than the IARC evaluation that PM is carcinogenic 
to humans. 
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1. INTRODUCTION 

Scientists and scientific panels are often called upon to evaluate the strength of an 
epidemiological study independent of establishing any basis for causality. Their goal 
is to ensure that every precaution has been taken to minimize the influence of 
extraneous errors on the salient observations emerging from the study. This is an 
especially important exercise in the air pollution arena where studies often suffer 
from a host of limitations that may compromise the findings. Whereas, it is often 
quite easy to generically identify those common sources of error or bias that 
routinely affects the quality of an epidemiological investigation, it is far more 
difficult, even for the study investigators, to examine specific sources of error in a 
fashion that is meaningful for a final risk determination. In some cases, sensitivity 
analyses may help to address the issue e.g. restricting the analysis to never smokers 
to exclude the possibility of confounding by smoking, but some assumptions are 
much more difficult to test. For example, it is often assumed that spatial patterns 
of air pollution change slowly in a city and that exposure assessment performed 
today can be a good surrogate of exposure occurring in the past or in the future 
(Cesaroni et al. 2012). To be successful, reviewers need access to the original data 
to verify the findings and ensure that adequate precautions have been taken to 
control for potential sources of bias through an in-depth consideration of the 
methodological underpinnings of the study (Peng et al., 2006). This effort requires 
a keen eye, a willingness to dig deep into the particulars of the study design, and a 
healthy dose of skepticism. Faced with this effort, many are either unwilling or 
unable to undertake such a huge task given (i) the multitude of studies that may 
exist for a single health endpoint, (ii) the need to collect and examine an extensive 
amount of often difficult to acquire raw data; and (iii) the absence of broadly 
accepted criteria for grading or evaluating the strengths and weaknesses of a 
particular study. Yet, without such an undertaking it is very difficult to guarantee 
that the findings en masse are truly indicative of a public health problem that 
requires the attention of policy makers.  

These issues are not unique to the air pollution arena and have reached dramatic 
proportions in clinical settings where there is increasing awareness of the 
limitations inherent in the design of observational studies (Grimes and Schulz, 2012) 
and the frequent inability of these studies to yield reproducible results (Ioannidis, 
2008). This has led some researchers to call for the pre-registration of study 
protocols prior to their initiation to help increase transparency and eliminate the a 
posteriori data dredging that often takes place (Dal-Re et al., 2014, Young and Karr, 
2011). Although pre-registration of study protocols would help eliminate the 
overzealous interpretation of the findings from a clinical evaluation, efforts are also 
needed to harmonize the reporting requirements as well. For instance, efforts are 
now underway to broaden the implementation of new journal reporting 
requirements such as STROBE (Strengthening the Reporting of Observational Studies 
in Epidemiology) that describes a host of factors that need to be addressed in a new 
original research publication (von Elm et al., 2007). Whereas, these innovations are 
currently confined to the clinical sciences, their implementation in the air pollution 
arena would ease the burden of evaluating the public health relevance of new 
studies purporting to show an association between an exposure and any of a wide 
array of adverse health outcomes (Rooney et al., 2014, Sheehan et al., 2016). 

The discussion that follows takes an in-depth look at some of the often over-looked 
drawbacks that can affect the risk magnitudes reported in recently published 
epidemiology studies focusing on lung cancer. The goal behind this effort was to 
reinforce the need for caution and careful scrutiny when examining the results from 
the myriad of air pollution studies addressing the relationship between exposure 
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and risk. The issues/topics described are not intended to provide an exhaustive list 
of every possible source of bias, but they do highlight many of the most important. 
The topics are presented without prejudice and are aimed at raising awareness of 
some potential problem areas that may affect ultimately impact the reliability of 
the findings, be they positive or negative. The report was prepared with the 
recognition that confounding and bias can never be entirely eliminated, merely 
contained and controlled in a manner that is transparent and objective. Increasing 
the rigor used to evaluate the findings from individual studies will give many 
scientists working outside the confines of classical epidemiology a more favourable 
impression of the methodologies employed and the conclusions attained. 

Much has been written about the bias and confounding that can plague an 
epidemiological investigation and it is not the purpose of this treatise to review and 
rehash all of these pitfalls; rather the purpose is to urge a more balanced approach 
to the evaluation of variables and issues that may be impacting the results. This is 
always a somewhat contentious and controversial subject that can cause 
consternation with those who are heavily invested in a particular set of beliefs 
(Young and Karr, 2011). However, there is now enough evidence to show that the 
best science is not always applied when honestly and objectively evaluating the 
results from air pollution studies. Whereas some believe that the results from 
observational studies are inherently flawed due to their inability to adequately 
control for confounding at all levels of design and implementation, others are more 
pragmatic and stress the need for transparency when publishing the results from a 
particular study so that results can be placed in perspective. Despite the increased 
willingness of many investigators to share their data to ensure its reproducibility, 
others are more hesitant and restrict access based on confidentiality concerns 
(Barnett et al., 2012, Tenopir et al., 2011). As is often the case in science, the 
quality of an investigation can be viewed as lying along a continuum from good to 
bad, with the exact position open to debate. Factors such as model selection bias; 
regional heterogeneity, disease and exposure misclassification, White Hat bias, 
compositional clustering, multiple comparisons, publication bias, loss to follow-up, 
inadequate latency, pollutant collinearities, and recall bias are but a few of the 
issues that need to be considered when grading the quality of an observational 
study. When these topics are ignored or overlooked, the risks of a false positive or 
false negative finding increases and the full value of the research investigation may 
not be realized. 

The challenges of studying the relationship between air pollution metrics and health 
begins with the problems associated with exposure modelling, heterogeneity, and 
bias. The following pages contain a description of these and other areas of concern 
within the context of those studies aimed at exploring the relationship between air 
pollution and lung cancer. It is the intent of the authors to show that the procedures 
and practices used to interpret the results from these studies could be made more 
rigorous through an in-depth evaluation of specific methodological, procedural, and 
expositional characteristics of a chronic health effects investigation. 
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2. STUDY METHODOLOGIES 

This section looks at the different study designs that have been used to examine 
the association between lung cancer and exposure to outdoor air pollution, and 
discusses why the results of some studies are more informative than others. Some 
of the studies include a large number of subjects in the population setting and the 
most informative have individual-level information on cancer outcomes, cancer risk 
factors and estimated exposures to outdoor air pollution. The information from 
these studies can be supplemented by investigations focusing on workers who have 
been exposed occupationally to outdoor air pollution. Another study design includes 
populations who have potentially been exposed to local sources of industrial 
emissions. In total, there are a large number of epidemiology studies that may be 
considered relevant to an examination of the association of outdoor air pollution 
with lung cancer risk. However, this report will focus on the body of literature that 
the IARC Working Group considered to be the most informative and gave greatest 
weight to in their evaluation (IARC, 2016). The last part of this section reviews and 
discusses these studies in some detail. 

2.1. OCCUPATIONAL STUDIES 

Occupational epidemiology studies contrast with environmental epidemiology 
studies by focusing on the incidence and prevalence of a disease or illness in a 
workplace setting rather than a community environment. Whereas occupational and 
environmental epidemiology studies both employ similar methodological designs, 
they differ in several fundamental respects that can be exploited to improve the 
reliability and statistical power of an investigative study looking at the relationship 
between an exposure metric and an adverse outcome (Checkoway et al., 2007). 
Perhaps the single most important difference between environmental and 
occupational epidemiology studies concerns the nature and magnitude of the 
exposures (Brunekreef et al., 2008). Since exposure levels within the workplace are 
generally higher than what is found in ambient air, health studies with a group of 
employees are inherently more sensitive than their environmental counterpart, 
which are frequently unable to accurately define the nature of the exposure-
response relationship throughout the ambient concentration range. Consequently, 
it is not uncommon for epidemiologists to use the results from workplace studies to 
describe the exposure-response functions needed for a chronic risk 
characterization. Another potential advantage of conducting epidemiology studies 
using workplace personnel is that employee exposures are restricted to a limited 
number of substances encountered at a particular work site. This becomes a benefit 
when the study population is not exposed to excessive amounts of relevant co-
pollutants while away from the jobsite. Under these conditions, the possibility of 
confounding from pollutant co-exposures is reduced and the biostatistical analysis 
of the collected data is simplified. This is often not the case in an environmental 
epidemiology study because ambient air may contain a myriad of chemical and 
physical agents that may act additively or synergistically to obscure the true nature 
of the exposure-response relationship.  

This is not to say, however, that occupational epidemiology studies are completely 
free of the bias and confounding that can plague the results from an environmental 
study. As with environmental epidemiology studies, there is a distinct possibility 
that exposure misclassification may be affecting the reliability of any findings. This 
problem arises because oftentimes insufficient personal exposure information is 
available for the employees of interest. Under these circumstances, researchers are 
faced with the option of estimating the exposure levels on either an individual or 
group basis (Loomis and Kromhout, 2004). Although estimates of individual exposure 
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are always preferred there is always the possibility of recall bias when interviews 
and questionnaires are used to obtain a semi-quantitative estimate of the exposure 
magnitude. Likewise, appreciable misclassification may occur when the exposure 
estimates are derived using expert panels or job exposure matrices to examine a 
group of individuals working under similar conditions. In fact, a comparison of 
exposure estimates obtained using an expert panel, a job exposure matrix, and self–
reports showed poor to fair agreement across the methods (Benke et al., 2001). 
Although there continues to be problems with the exposure estimation techniques 
used with occupational epidemiology studies, the resulting bias from over- or under-
estimations of inhalation exposure has been shown to be chemical specific with 
some substances showing a higher degree of concordance than others (Offermans 
et al., 2012, Teschke et al., 2002). 

In addition to these issues, occupational studies are restricted in the types of 
individuals that can be examined, since workplace employees constitute healthy 
adult men and women populations. As such, occupational studies are unable to 
examine the associations that may exist in the very young, the very old, or the 
debilitated. Examinations of individuals suffering from rare acute and chronic 
health conditions found in the general population necessarily require an 
environmental approach. In addition to restrictions in the population of individuals 
that can be studied, occupational epidemiology studies include a particular  type of 
selection bias termed the “healthy worker effect” that needs to be controlled to 
the extent possible (Pearce et al., 2007). If the healthy worker effect is not 
adequately addressed, morbidity and mortality risks will be lowered because only 
relatively healthy individuals are being examined. Likewise, a healthy worker 
survivor effect prolongs survival and reduces loss to follow-up relative to their non-
working counterparts. 

2.2. COHORT STUDY 

This type of study identifies a group of people and follows them over a period of 
time to see how their exposures affect their outcomes. Cohort studies are normally 
used to look at the effect of suspected risk factors that cannot be controlled 
experimentally, for example the effect of air pollution on lung cancer. The 
objective is to estimate the risks of various diseases among the cohort relative to 
background risks among persons not exposed to the same environmental factors. 
Investigators have noted that cohort studies, among all types of epidemiological 
study designs, are the most accepted among the scientific community for two main 
reasons; firstly cohort studies usually include everyone from the available study 
population (rather than only a sample) and secondly because they most closely 
resemble a controlled randomised experiment such as an animal toxicology 
experiment or a randomised clinical trial (Checkoway  et al., 2004).  

There are two main types of cohort studies: prospective and retrospective (or 
historical). In a prospective cohort study, a group of people is identified at the time 
the study is being conducted and they are followed over a period of time to see how 
their exposures affect their outcomes. In general, prospective designs are better 
suited for examining health outcomes that develop within a relatively short period 
of time and less commonly used for studies of cancer and other diseases that have 
long induction and latency periods. However, many of the major cohort studies of 
air pollution and lung cancer such as the European Study of Cohorts for Air Pollution 
Effects (ESCAPE) (Raaschou-Nielsen  et al., 2013), the study based on data collected 
by the American Cancer Society (ACS) as part of the Cancer Prevention Study II (CPS-
II) (Krewski et al., 2009, Pope et al., 2002, Turner et al., 2011); and the Harvard 
Six Cities (H6C) study (Laden et al., 2006b, Lepeule et al., 2012) have a prospective 
design. In a retrospective study, a group of people are identified at some time in 
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the past and the cohort is then follower over historical time to estimate disease 
rates. The basic study design features of retrospective cohort studies are the same 
as those of prospective studies. Retrospective studies rely on exposure data and/or 
outcomes that have already been collected (through medical records or as part of 
another study). Data used in this way may not be as reliable as data collected 
prospectively as it relies on the accuracy of records made at the time and on the 
recall of historical events, which can be inaccurate. Retrospective cohort studies 
are increasingly using administrative data (e.g., healthcare system data) due to the 
relatively low data acquisition costs and the convenience (i.e., no recruitment, no 
enrolment into study, no primary data collection). Perhaps the most notable 
example of administrative data being used for cohort studies is the suite of studies 
based on the US Medicare Cohort (Zeger et al., 2008). Often overlooked is the fact 
that these databases were not developed for research purposes, so data are not 
available for many candidate covariates/confounders of interest. This requires 
researchers to find or design surrogates for these covariates, often of ecological 
origin (e.g., percent home ownership in a census tract as a stand-in for 
socioeconomic status) that might not always be indicative of a particular person’s 
circumstances. Likewise, environmental pollution exposure data are often absent, 
requiring a separate effort to acquire that information. Pollutant data are typically 
acquired for a timeline that runs concurrently with the retrospective “follow-up” 
which excludes the etiologically relevant and significantly higher exposures that 
occurred prior to the period under study. Instead, observed effects are attributed 
to proximate exposure concentrations, essentially an out-of-sample extrapolation. 
This issue is covered in more detail in section 3.2.3 of this report. Other examples 
of retrospective cohort studies of air pollution include the Trucking Industry Particle 
Study (TrIPS) which examined associations between mortality and air pollution in a 
cohort that was identified using trucking industry employment records (Hart  et al., 
2011). Two others include the Clinical Practice Research Datalink (CPRD) study that 
used a national cohort of adults registered with family practitioners in England, and 
the Rome Longitudinal Study (RoLS) which identified subjects using census records 
(Carey et al., 2013, Cesaroni et al., 2013).  

2.3. CASE-CONTROL STUDY 

In this type of study, a group of individuals who have a particular condition or 
disease (cases) and a group of individuals that do not (controls) are identified 
without knowledge of prior exposure history and compared with respect to existing 
or past exposure. In contrast to a cohort study, which selects subjects who are 
initially free of disease and follows them over time to determine rates of disease in 
the absence or presence of exposure, a case-control study selects subjects on the 
basis of the presence or absence of the disease under study. However, both methods 
allow the investigator to estimate the effect of exposure on the risk of disease. 
Controls can be selected as a simple random sample or matched to cases on a group 
or individual basis with respect to one or more potential confounding factors (i.e. 
factors related to both exposure and health outcome such as smoking in studies of 
lung cancer and air pollution) (Checkoway et al., 2004). However, it should be noted 
that the aim of matching in case-control studies is not to prevent confounding (bias 
resulting from not controlling for the effect of confounders - see Section 4). It is 
usually performed to achieve a more efficient statistical design for control of 
confounding (i.e. to achieve a more precise estimate of effect) (Rothman et al., 
2008). For example, Vineis et al. performed a case-control study to estimate the 
relationship between air pollution and lung cancer and matched three controls per 
case (Vineis et al., 2006). The matching criteria were gender, age (65 years), 
smoking status, country of recruitment and the time elapsed between recruitment 
and diagnosis. The authors noted that matching was introduced to allow strict 
control of potentially confounding variables, as all the selected risk factors may 
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have been stronger in their effect than air pollution. Regardless of whether 
matching is used to select controls, it is essential that the controls are sampled 
from the entire source population that gives rise to the cases and that specific steps 
are taken to reduce or eliminate any selection bias that can distort the magnitude 
of any observed relationships (Rothman et al., 2008). A distinction is sometimes 
made between the sources from which cases and controls are selected. In 
population-based case-control studies, all cases of the study disease occurring 
within a defined area during a specified period of time are ascertained and controls 
are a sample of disease-free individuals from the same area. In hospital-based 
studies, all cases of the disease of interest in a hospital population are ascertained 
during a specified period of time, and the controls are selected from persons 
admitted to the same hospital population for conditions other than the studied 
disease. 

Case-control studies tend to be ranked below cohort studies in terms of weight of 
evidence. Ascertainment and selection bias can be a particular problem in case-
control studies and may result in misleading associations and biased estimates of 
relative risk. However, these problems are not unique to case-control studies. Bias 
in the estimation of exposure is also a problem, in particular subject recall bias and 
interviewer bias. There have been relatively few population-based case-control 
studies of lung cancer and air pollution compared to the number of cohort studies. 
However, there have been several case-control studies of populations potentially 
exposed to local sources of industrial emissions. The most informative of these 
include the Canadian National Enhanced Cancer Surveillance System (CNECSS) case-
control study and a retrospective case-control study of lung cancer in residents of 
Stockholm, Sweden (Hystad et al., 2013, Nyberg et al., 2000).  

2.4. ECOLOGICAL STUDIES 

Ecological studies are studies in which data are available for groups only, rather 
than for the individuals within the groups. Many of the early studies of air pollution 
were ecological studies because individual exposures to environmental factors, such 
as pollutants in air or water, were difficult and expensive to obtain, whereas 
pollution measures taken from monitoring sites were routinely available. For 
example, Chinn et al. looked at the relationship between routinely available 
mortality rates for 116 counties and London boroughs of England and Wales for the 
period 1969-1973 and mean winter levels in 1971 of smoke and sulphur dioxide (SO2) 
in the same boroughs collected in a national survey (Chinn  et al., 1981). Some later 
studies such as the H6C study and the ACS CPS-II used a semi-ecological design in 
which individual outcomes and confounders were available, but with an ecological 
exposure measure (Dockery et al., 1993, Pope et al., 1995). A major problem of 
ecological studies is that relationships at an ecological level cannot be assumed to 
hold for the individuals within the groups, and ecological studies usually suffer from 
the unavailability of data necessary for adequate control of confounding. Ecological 
studies in epidemiology have yielded important insights, but it is easy to draw 
incorrect conclusions from aggregate data. This problem of incorrect inference is 
known as the ecological fallacy and Greenland and Robins provide a review of the 
issues (Greenland and Robbins, 1994). One important issue is that a risk factor may 
be an ecological confounder even if it is not associated with exposure in every group 
(i.e. at an individual level, a risk factor must be associated with exposure and the 
outcome in order to be a confounder). In contrast a risk factor that is a confounder 
within groups may not be an ecological confounder. These problems mean that 
ecological studies may produce results that are of questionable validity and are 
usually only regarded as hypothesis-generating because of concern about bias 
(Rothman et al., 2008). However, there are certain situations, albeit limited, in 
which ecological studies can be particularly informative (Savitz, 2012). 
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2.5. EPIDEMIOLOGICAL STUDIES FOCUSSED ON IN THIS REPORT 

The IARC Working Group gave greatest weight to cohort studies with quantitative 
exposure data within the general population. Among the North American cohort 
studies of this nature, results from the H6C study, the never smokers analyses of 
the ACS CPS-II study, and the prospective California Teachers study (CTS) were 
judged to be the most informative (Lepeule et al., 2012, Lipsett et al., 2011, Turner 
et al., 2011). The ESCAPE and RoLS studies were judged to be among the most 
informative European cohort studies (Cesaroni et al., 2013, Raaschou-Nielsen et al., 
2013). It was also noted that the most influential European cohort studies included 
investigations from Norway, the Netherlands and Denmark (Beelen et al., 2008a, 
Naess et al., 2007, Nafstad et al., 2003, Raaschou-Nielsen et al., 2010, Raaschou-
Nielsen et al., 2011a). The most useful cohort studies from other areas of the world 
included two studies from Japan including the Three-Prefecture Cohort Study 
(TPCS), and a study from New Zealand (Hales et al., 2012, Katanoda et al., 2011, 
Yorifuji et al., 2013). Overall, the ESCAPE and ACS CPS-II were considered to be the 
most revealing cohort studies. 

The IARC Working Group categorized case-control studies according to whether the 
main type of exposure was from all sources including traffic pollution, or specific 
industrial sources. Studies examining all sources of air pollution were grouped 
according to whether the exposure methodology used was qualitative (or semi-
quantitative) or quantitative. Case-control studies conducted before 1990 were 
considered to have too many limitations to be informative and were given little 
weight. Also case-control studies of populations who have potentially been exposed 
to local sources of industrial emissions were considered to be less informative 
because of the unique nature of their exposures and because of other 
methodological limitations similar to those observed with the early case-control 
studies. However, three population-based studies conducted in Canada, Poland and 
Sweden possessed quantitative exposure measures and were considered to be 
suitably informative (Hystad et al., 2013, Jedrychowski et al., 1990, Nyberg et al., 
2000).  

The other category of studies reviewed by the IARC Working Group were 
occupational cohort and case-control studies of outdoor workers whose exposure 
was considered to be of the same nature as that of the general population. The 
occupations included professional drivers, traffic police, mail carriers, and filling 
station attendants. However, studies of workers exposed to specific sources of 
pollution such as diesel or gasoline engine emissions such as underground workers 
were not reviewed as they had been analysed in a previous IARC monograph, 
although it was noted that these sources are important contributors to urban air 
pollution (IARC, 2013). These studies were also not discussed in the evaluation of 
human carcinogenicity data made by the IARC Working Group. Ecological studies of 
lung cancer and industrial emissions were also not reviewed. This is not surprising 
given that case-control studies of industrial emissions were considered to be less 
informative than other case-control studies, although the Working Group did review 
them for other cancer endpoints.  

This report focuses on the studies listed above that the IARC Working Group 
considered to be the most informative about the relationship between the general 
air pollution mixture and lung cancer. In addition, the report will focus on studies 
included in a meta-analysis of the lung cancer risk associated with exposure to 
particulate matter (PM) in outdoor air, which has recently been published as a result 
of the IARC review (Hamra et al., 2014). It was noted by the authors that the studies 
included in this analysis were a key component of the epidemiological evidence 
reviewed by the IARC Working Group in its evaluation of the carcinogenicity of PM, 
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and that the quantitative analyses complemented the qualitative classification of 
the evidence by the IARC Working Group (Hamra et al., 2014). The study selection 
process was identical to that of the IARC review, except that one recently accepted 
paper by Puett et al. was included in the analysis because it met the criteria for 
inclusion (Puett et al., 2014). A second meta-analysis originating with the IARC 
review has also been published which was an analysis of studies examining exposure 
to measures of nitrogen oxides and other measures of traffic exposure and lung 
cancer (Hamra et al., 2015). Although the literature search was performed three 
months after the IARC review, no other relevant papers were identified. 
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3. EXPOSURE ASSESSMENT 

Exposure assessment is perhaps the single largest source of error in many 
environmental epidemiology studies focusing on the acute and chronic health 
effects of air pollutants. Estimates of outdoor pollution concentration at the 
residence location are usually used as a surrogate for pollution exposure inside the 
home, which is where most time is spent. Investigators generally use any of several 
different metrics to define the exposure magnitude. These include techniques that 
define exposure classes based on geographical location, spatial and temporal 
extrapolation approaches, and model-based procedures (e.g. land use regression) 
to derive estimates for a residence location at a particular point in time. This 
section discusses the methodologies that are used to estimate the residential 
exposure of a subject and assesses whether their predictive ability is as claimed.  

In addition, the section discusses the methods used to derive an estimate of relevant 
individual exposure with a particular focus on lung cancer. Even if average pollution 
levels at the doorsteps of subjects were known exactly for the time periods of 
interest, the measures of pollution exposure derived by the investigators of most 
studies would still be subject to error because of the reliance on self-reported 
residential histories and incomplete coverage of lifetime exposure. More 
importantly, it is unlikely that doorstep pollution levels will correlate well with 
personal inhalation concentration because of the use of only the residence location 
to estimate exposure (and not other microenvironments such as the workplace, 
school, or transportation environments etc.) and the effect of infiltration at the 
residence location (and other microenvironments where subjects spend their time).  

This section also deals with the impact of measurement error. High predictive 
ability is often claimed for the exposure surrogate, but the impact of measurement 
error is often ignored. Sheppard et al. noted that most air pollution epidemiology 
studies report estimates of health effects conditional on measured or predicted 
exposures without regard to how these exposure estimates were obtained (“plug-
in” exposures) (Sheppard et al., 2012). These issues are considered further below, 
but focus on only a small component of the measurement error.  

Finally, this section discusses how risk estimates can be interpreted and used to 
evaluate the true magnitude of a health problem. 

3.1. ESTIMATING EXPOSURE 

3.1.1. Methodologies 

Many exposure methodologies have been employed over the years to combat known 
deficiencies in available data and they continue to evolve as new geostatistical and 
biostatistical insight is brought to bear on the problem of exposure misclassification. 
As a result, exposure measurement within the context of ambient air pollution has 
developed into a separate and unique discipline.  

The increasing sophistication and complexity of the exposure models has caused 
some to question whether exposure measurement techniques are becoming too 
complex for use by anyone except a few dedicated experts (Briggs, 2007). Others, 
on the other hand, feel that the opposite is true and that exposure models can help 
reduce misclassification by explaining how ambient concentrations of a pollutant 
change over space and time (Jerrett et al., 2005). In the absence of detailed 
knowledge of an individual’s personal exposure throughout the day, modelling 
provides a useful alternative, but there are pitfalls that must be closely scrutinized 
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lest the results contain an unacceptably high degree of bias that invalidates the 
findings. This is not an easy exercise to perform since a large variety of exposure 
models are available for use in an environmental epidemiology study. For instance, 
the most recent entry into the field of exposure modelling has been the introduction 
of satellite remote sensing technologies that allow discrete measurement of 
individual pollutants at precise locations (Prud'homme et al., 2013). Although they 
have been shown to equate well with measurements taken at monitoring sites, they 
cannot, as yet, account for all of the microenvironmental inhalation exposures that 
individuals experience as they move through the day. In addition to remote sensing, 
there is a litany of methods that can be adapted for use in a study of air pollutant 
health effects; and the final selection is often dictated by the study design, the 
background of the senior investigator, and the availability of expert collaborators. 

Available air pollutant exposure models yield both continuous and categorical 
metrics depending on the focus of the investigation. Figure 1 provides a hierarchical 
breakdown of these exposure metrics moving from best to worst.  

The worst exposure metric that has repeatedly been shown to yield highly biased 
results is self-reported estimates of exposure (Kuehni et al., 2006). A slight 
improvement can be attained by using proximity metrics, but these are also highly 
suspect and subject to considerable bias (Lipfert and Wyzga, 2008). The proximity 
exposure methods typically focus on the relationship between traffic-related 
emissions and the distance to an individual’s residential location. The approach 
equates proximity to an emission source (i.e. a roadway) with exposure intensity. 
This categorical approach involves the creation of somewhat arbitrary distance and 
traffic density categories that can be assigned to the individual and the roadway, 
respectively.  

Although these simple proximity models are still employed to some degree they 
have been largely supplanted by more advanced continuous measures of exposure 
that are capable of taking into consideration topographical characteristics of the 
local landscape and meteorological factors such as wind speed and direction. These 
so called interpolation models rely heavily on geostatistical techniques including 
geographic information systems (GIS), kriging (i.e. a type of geostatistical 
regression), and inverse distance weighting (IDW) to construct a surface map that 
interpolates air measurements from central monitoring sites or emission sources 
over an entire geographical region (Cesaroni et al., 2008).  

The methods involve the assignment of precise spatial coordinates to an individual’s 
residential location and at a grid of measurement sites or emission sources. These 
allow the estimation of an exposure concentration over the entire grid with some 
degree of accuracy. Interpolation methods are relatively easy to construct and have 
the advantage of providing estimated values and standard errors (i.e. uncertainty 
determinants) at all unmeasured locations including a subject’s place of residence.  

Although interpolation methods are an improvement over proximity models, they 
do not consider the impact that topography can have on localized spatial changes 
in pollutant concentration (de Mesnard, 2013). In other words, the terrain is 
assumed to be flat and the concentration is assumed to be relatively homogeneous 
and independent of local topography. Accurate use of these interpolation 
techniques requires a fairly dense network of monitoring stations, which generally 
only exists in an urban centre. Despite these problems, kriging provides exposure 
estimates that are vastly superior to those that simply assign an exposure 
measurement that is equivalent to the value from the nearest monitoring site (Son 
et al., 2010). 
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Figure 1 Hierarchical arrangement of exposure assessment methodologies used in 
environmental epidemiology studies (Brauer et al., 2008) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Land use regression (LUR) models circumvent the problems seen with interpolation 
methods by including land use characteristics, population density, and traffic 
patterns into the mapping scheme (Ryan and LeMasters, 2007). They are 
increasingly being used because of their ability to resolve the spatial distribution of 
a pollutant on very fine scale and their acknowledged superiority over models that 
solely rely on interpolation or proximity. In addition, LUR models often depend on 
tailored sampling campaigns to obtain additional exposure monitoring data beyond 
what is available from sparsely distributed central site monitoring stations. The 
sampling campaigns typically occur during several weekly periods and the sites are 
coded using geographic information systems maps (Hoek et al., 2008a). The list of 
potential predictor variables for LUR development is very large and includes 
altitude, meteorology, land coverage, topography, population density, road 
density, road type, commercial land uses, and distance to local pollution sources. 
Dozens of these models have been developed for different regions of Europe, the 
US, and Canada; however, the models vary in quality and the degree of validation 
that has been performed. Perhaps the biggest limitation of LUR models is, however, 
their lack of transferability and the need to generate a new model for each location 
and time period of interest (Vienneau et al., 2010). 

Although LUR models are felt to perform well, it is essential that monitoring data is 
collected from a sufficient number of monitoring sites and that an adequate number 
of predictor variables are included in the model (Basagana et al., 2013, Wang et 
al., 2012). A minimum of 80 monitoring locations is necessary to achieve reasonable 
estimates that are neither biased nor highly variable (Basagana et al., 2012). The 
use of a small number of monitoring sites together with a large number of predictor 
variables has been shown to artificially increase the correlation coefficient between 
actual and predicted measurements. Some have noted that correlation coefficients 
can be inflated by 50% or more if an independent data set is not used for validation 
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(Johnson et al., 2010). Another drawback to the use of LUR models is their inability 
to account for temporal variability, which some have corrected for by constructing 
separate models for discrete time periods lasting up to several years (Cesaroni et 
al., 2012, Eeftens et al., 2012).  

Unlike LUR exposure models, dispersion models rely on emission rates to determine 
the concentration at a remote location. They accomplish this by assuming that the 
emissions are distributed in the form of plume that is affected by topography and 
meteorological conditions (Jerrett et al., 2005). Figure 2 provides a diagrammatic 
representation of how a plume is dispersed once released from an emission source. 
Dispersion models are data intensive and have not been used a great deal in air 
pollution studies. They have an advantage over LUR models because they use 
emissions inventory information rather the results from monitoring stations to 
estimate exposure. Consequently, they can consider temporal changes in pollution 
levels in a better fashion than LUR models. Studies suggest that dispersion models 
are as accurate as proximity models, but their performance against LUR models is 
still somewhat in question with one study suggesting better performance, a second 
indicating a poorer result, and a third showing no difference (Beelen et al., 2010, 
Brauer et al., 2008, Cyrys et al., 2005, de Hoogh et al., 2014).  

 

Figure 2 Plume dispersion as represented in a pollutant dispersion model 

 
 

A final type of airshed model that is finding some use in exposure estimation is 
called an Eulerian grid or chemical transport model. These are 3-dimensional 
models that divide a regional air parcel into grids that are as small as (1 km)3 in 
size. The model includes an emission module, a detailed meteorological module, 
and a photochemistry module that considers the complex chemical interactions that 
can occur as an air parcel ages. The most commonly employed Eulerian grid model 
is called CMAQ (Community Multi-scale Air Quality) and is used by the regulatory 
community to examine chemical transport and fate in a compliance setting (Bravo 
et al., 2012). These models are very sophisticated to run and take great effort to 
populate with information. The biggest advantage with CMAQ is that it allows 
exposure predictions at remote locations, far removed from any monitoring sites 
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(Wu et al., 2011). On the other hand, CMAQ is not able to provide enough spatial 
resolution to examine exposures within a neighborhood (Marshall et al., 2008). 
Given the advantages and disadvantages associated with the alternative modelling 
techniques, the current trend in exposure estimation is to develop complex hybrid 
models that merge the output from several models to reduce uncertainty (Beevers 
et al., 2013). Alternatively, the output from individual models can be melded in a 
Bayesian statistical framework (Akita et al., 2014). Exposure modelling in 
environmental epidemiology will continue to improve with the generation of 
increasingly complex approaches to offset concerns of misclassification. It is 
imperative, therefore, that future studies focus on providing some measure of 
model uncertainty through validation and sensitivity analysis in order to understand 
the amount of modelling bias that still exists.  

3.1.2. Validation of models 

LUR models have been used increasingly for describing small-scale spatial variation 
in air pollution concentrations and estimating exposures for individual participants 
in a cohort study. However, the models may not predict exposure at the residence 
location as well as suggested by the explained variance (r2) figures which are often 
reported. The ESCAPE project has looked extensively at the performance of the LUR 
estimates and Eeeftens et al. reported on the performance of LUR models 
developed for four measures of PM: the fractions of PM smaller than 2.5 μm (PM2.5) 
and smaller than 10 μm (PM10), the coarse fraction calculated as the difference 
between PM10 and PM2.5 (PMcoarse), and a measure of the blackness of PM2.5 (PM2.5 
absorbance). For PM2.5, Eeftens et al. reported that the median r2 was 71% with a 
range across 20 European study areas of 35−94% (Eeftens et al., 2012). The 
estimates were derived from models for individual study areas developed to explain 
spatial variation in annual average concentrations of PM2.5 at only 20 measurement 
sites. However, the available predictor variables included a huge number of GIS-
derived predictor variables (e.g., traffic intensity, population, and land-use) and 
regional background concentrations. When these authors used leave-one-out cross-
validation (LOOCV) to assess model fit, the median LOOCV r2 fell to 60% with a range 
of 21% to 78%. The authors noted that there was a considerable risk of over fitting 
when evaluating a large number of predictor variables to explain the concentrations 
at relatively few sites.  

Other studies have shown that LUR models based on a limited number of training 
sites perform well in internal LOOCV, but do worse in external hold-out validation 
(HOV) against independent measurements set aside for model evaluation (Basagana 
et al., 2012, Basagana et al., 2013, Wang et al., 2013). Basagana et al. reported an 
in sample r2 of 0.82 which fell to 0.02 when calculated out of sample for a LUR 
model developed for 20 measurement sites and variable selection from 100 
predictor variables (Basagana et al., 2013). In a separate publication, Basagana et 
al. noted that it was very easy to find models with very high cross-validation r2 even 
when no relationship existed; especially when there was a small number of 
measurement sites and a large number of potential predictors (Basagana et al., 
2012). HOV is preferable as it better reflects the predictive power of the model at 
locations where no measurements were taken, such as addresses of subjects in an 
epidemiological study. However, Wang et al. noted that they were not aware of 
HOV r2 being calculated for particulate matter LUR models because sampling of PM 
requires more effort and usually the number of sampling sites is not sufficient to 
allow for a separation into training and test data set (for validation purposes) of 
sufficient size. Wang et al. also evaluated LUR models for nitrogen dioxide (NO2) 
developed using training sets of 20 sampling sites and test data sets of a similar 
size, and two PM components (PM2.5 absorbance and copper in PM10). These PM 
components only had sampling site data but were highly correlated with NO2; so a 
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good indication of performance was given by calculating the correlation with NO2 
data from test sites. In the case of NO2, the median model r2 was 0.88 and the 
median LOOCV r2 was 0.83, but the median HOV r2 fell to 0.52. The training set 
correlations between LUR estimates for the two PM components and NO2 levels 
suggested similar reductions in HOV r2 for the PM components. 

Although it has not been possible to calculate HOV r2 for the PM2.5 LUR estimates in 
the ESCAPE study areas, some indication of performance can be derived from 
another ESCAPE validation study by Wang et al. (Wang et al., 2014b). In this study, 
the investigators evaluated LUR models for NO2, PM2.5 and PM2.5 absorbance by 
combining standardized measurement data from 17 PM and 23 NO2 ESCAPE study 
areas across 14 European countries to derive a global European model rather than 
models for individual study areas. Models were evaluated with LOOCV and HOV, and 
the transferability of the models was investigated by successively excluding each 
study area from model building. In the case of PM2.5, 356 PM sites were available 
for modelling from 17 study areas and HOV used 75% training and 25% test sites for 
the PM metrics. The European PM2.5 model had a high r2 of 0.86, but the regional 
background concentration explained a large fraction (71%) of variation in PM2.5. 
Between-area differences for PM2.5 were much higher than those for the traffic-
related pollutants NO2 and PM2.5 absorbance, where the regional background 
concentration explained 8% and 28% of variation, respectively. The LOOCV and HOV 
r2s were only slightly lower, 81% and 80% respectively. However, the investigators 
also reported other statistics which were more relevant for the ESCAPE study where 
cohorts were located within a city or small area, and cohort-specific 
epidemiological analyses were conducted. Wang et al (2014) reported within-area 
r2s (the within-area variation explained by the European model and described as 
Modelintra r2) which are more comparable to the r2 of individual study areas 
calculated by Eeftens et al (Eeftens et al., 2012). The median and IQR of the 
Modelintra r

2s was 0.48 and 0.16, respectively. Wang et al also reported what they 
describe as transferability r2s (TRANSintra r

2) (Wang et al., 2014b). These show the 
performance of models that used all monitoring data excluding one area at the 
time. Hence, 17 PM models were built until each of the study areas had been 
excluded once from model building and the transferred models were applied 
directly to the sites of the area that was left out. The median and IQR of the 
TRANSintra r

2s was 0.42 and 0.17, respectively. These provide a better indication of 
the performance of PM2.5 LUR estimates at the ESCAPE study areas than the r2 and 
LOOCV r2 reported by Eeftens et al., and provide some indication of what the HOV 
r2 would be if there had been sufficient PM data available to calculate them. 

Other sources of error which are often overlooked include error in the exposure 
measurements at the sites used to develop the LUR models. For instance, Eeftens 
et al. noted that the results from the three measurements at each site were 
averaged to estimate the annual average, adjusting for temporal variation using a 
centrally located background reference site, which was operated for a whole year 
(Eeftens et al., 2012). Eeftens et al. also fitted separate models in the ESCAPE study 
for PM2.5, PM10, and PMcoarse, even though PMcoarse = PM10 - PM2.5. In addition, the 
PM2.5:PM10 ratio is likely to have been fairly constant over many study areas, but the 
LUR models for PM2.5 and PM10 contained very different predictor variables in most 
study areas. In addition, PM2.5 ≤ PM10, but this may not the case for modelled values 
[see results for EPIC-Athens in Figure 2 of Raaschou-Nielson et al. (2013)]. 
Nevertheless, LUR models are better understood than some of the spatial 
interpolation techniques such as dispersion modelling (DM). De Hoogh et al. is one 
of few studies that have compared the performance of estimates of individual air 
pollution exposure derived using LUR and DM, techniques which are commonly used 
for in population studies (de Hoogh et al., 2014). De Hoogh et al. showed that for 
the ESCAPE study areas, LUR and DM estimates correlated well on average for NO2, 
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but only moderately for PM10 and PM2.5, with large variability across areas. The 
median (range) Pearson correlation coefficients between LUR and DM estimates for 
the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 
0.39 (0.23-0.66) and 0.29 (0.22-0.81) based on 13, 7 and 4 study areas, respectively. 
DM predicted a moderate to large proportion of the measured variation for NO2, but 
less for PM10 and PM2.5. Overall, there is good evidence that estimates of individual 
air pollution exposure derived using LUR and other methods may perform much 
worse than claimed by many study investigators.  

3.2. EXPOSURE METRICS 

Exposure estimation techniques are needed when personal measurements are either 
unavailable, prohibitively expensive to collect, or analytically impossible. Exposure 
estimation may either be qualitative (yes/no), semi-quantitative 
(high/medium/low), or quantitative (continuous variable) depending on the needs 
of the investigator, the methodological design, and the amount of funding available. 
Simple qualitative estimates of exposure are typically used in an occupational 
setting in conjunction with a screening level assessment of potential hazards in the 
workplace. This type of exposure estimate is typically obtained using a worker 
questionnaire, personal interview, or from work histories. Qualitative exposure 
estimates are by their very nature limited in their ability to assess the strength and 
robustness of an association with adverse health outcome. Semi-quantitative 
estimations on the other hand are capable of supplying more detailed information 
on the nature of the concentration-response function, but still lack clarity because 
of the arbitrary weighting that is present when classes are created to define each 
exposure group (Stewart and Herrick, 1991). This subjectivity reduces the utility of 
these measurements and prevents their use in a quantitative risk assessment. As 
such, the classification criteria used to define each exposure category may result 
in a large degree of misclassification and uncertainty because of the arbitrary cut-
points used to distinguish one exposure class from another (Hornung, 1991). 
Quantitative exposure estimation techniques provide the best option for assessing 
the degree of exposure at both the individual and population levels. Within the air 
pollution arena, a wide variety of exposure models have been developed to aid in 
the exposure estimation at either the individual or population level. 

Modern exposure estimation techniques in the air pollution arena are highly 
dependent on the creation and validation of air pollutant exposure models capable 
of supplying robust approximations of personal exposure (Zou et al., 2009). At their 
core, exposure models represent an indirect method of exposure assessment that 
may entail the use of any of a variety surrogate indicators as a proxy for the actual 
exposure of interest. Examples include the distance from a roadway, traffic density, 
or road density (Lipfert et al., 2006, Rose et al., 2009). These surrogate measures 
may, however, result in considerable misclassification in complex environments 
where the terrain or meteorology may affect the dispersion of pollutants from the 
emission source (Jerrett et al., 2005). Since all exposure estimation models suffer 
from some degree of bias, it is essential that the variability and uncertainty of the 
estimations are documented in some fashion using either a qualitative or 
quantitative technique. This includes an assessment of the spatial and temporal 
variability of the estimates together with an evaluation of the errors that may be 
affecting the linkage between the exposure source and the human receptor. Three 
types of uncertainty can affect the risk estimates arising from the use of exposure 
estimation models (Fryer et al., 2006). They include i) scenario uncertainty, ii) 
model uncertainty, and iii) parameter uncertainty. Scenario uncertainty can arise 
when spatial and temporal variations have not been adequately considered in an 
exposure model. Model uncertainty develops when there are inconsistencies 
between model representations of the events leading to an exposure and the 
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processes and events that actually take place. Parameter uncertainty can be easily 
investigated using Monte Carlo simulations; however, this quantitative approach is 
rarely applied in the air pollution arena. Since many of the exposure estimation 
models available for use in air pollution epidemiology studies have only seen a 
modest degree of validation via intra-model comparisons of the predictions, there 
continues to be some anxiety about the dependability of the exposure estimates 
derived from the use of air pollution models. 

3.2.1. General principles 

Accurate measures of personal exposure are vital for establishing relationships 
between environmental air pollutants and an acute or chronic disease state. These 
measurements are rarely if ever collected, however, because of the prohibitively 
high costs of monitoring hundreds or even thousands of individuals on a daily basis 
and the logistical constraints imposed by the use personal sampling devices (Zou et 
al., 2009). As such, environmental epidemiologists are often faced with using an 
indirect exposure surrogate that is representative of personal exposure. These 
surrogates fall into one of two categories depending upon whether the focus is on 
traffic-related emissions from local roadways or regional ambient air pollutants 
measured at a central air pollution monitoring station. In each case, residential 
location serves as a proxy for the individual since it is assumed that most people 
spend the majority of their time at home (Huang and Batterman, 2000). Although 
this is supported by time-activity studies showing that Americans and Europeans 
spend an average of 67% and 58% of their time indoors at home, the assumption fails 
to capture the other factors that may affect the exposure magnitude (Leech et al., 
2002, Schweizer et al., 2007). In particular, place of residence surrogates do not 
consider the time spent outdoors, home penetration factors, indoor sources of 
pollutants, commuting in heavy traffic, or secondary occupational exposures 
(Baxter et al., 2013). These factors alone can result in substantial exposure 
misclassification independent of any modelling bias. 

Residential locations can be used in conjunction with any of an array of exposure 
modelling tools to refine the estimates and provide some temporal and spatial 
resolution. Geocoding techniques are often used to precisely describe the map 
coordinates of a residence relative to an emission source or a monitoring site 
(Nuckols et al., 2004). As explained further in Section 3.2.2, geocoding of 
residential locations is subject to positional errors that need to be determined and 
conveyed in order to understand potential uncertainties. Unfortunately, the 
positional error associated with geocoding is rarely if ever conveyed in the exposure 
modelling. Most epidemiology studies focusing on traffic-related pollutants use 
proximity to the source as the most basic measure of exposure. This approach has 
largely supplanted self-reported estimates of traffic density, which is highly prone 
to bias (Kuehni et al., 2006). Alternatively, some studies will also include other 
traffic-related metrics to better describe the strength of the emission source and 
provide some additional insight on the nature of any relationships that are 
identified. Whereas, proximity models simply measure the centreline distance from 
a home to a roadway to evaluate the magnitude of an exposure, the inclusion of 
metrics such as traffic volume or traffic density help reduce the uncertainty and 
provide some refinement in the nature of the exposure. Dispersion modelling will 
also occasionally be used to relate actual traffic emission rates to pollutant levels 
at a particular residence. The value of dispersion models resides in their ability to 
factor wind speed and direction into a determination of pollutant levels at a 
receptor site that is located some distance from an emission source. Table 1 
provides additional information on the strengths and limitations of the modelling 
approaches used in traffic-related epidemiology studies (Batterman et al., 2014). 
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Table 1 Strengths and limitations of metrics used to characterise roadway emissions 

Metric Strengths Limitations 

Distance to major road 

 Simple to construct. 

 Low data needs. 

 Can potentially distinguish roads with 
varying traffic volume, vehicle mix, or other 
characteristics. 

 Distance limit used as cutoffs for classifying 
homes/receptors is arbitrary.  

 May not consider traffic volume, vehicle mix, 
and other factors.  

 Sensitive to distance calculation, e.g., using 
road edge or centerline. 

Total traffic volume on 
nearby roads 

 Relatively simple to construct.  

 Reasonably good volume estimates on 
major roads.  

 Can select period of day, e.g., rush-hour. 

 Traffic volume estimates needed.  

 Distance criterion used to determine road is 
arbitrary.  

 Does not provide metric for low traffic groups. 

Diesel or gasoline 
traffic volume on 
nearby roads 

 Relatively simple to construct.  

 May relate to PM emissions from diesel 
traffic.  

 Can select period of day. 

 Difficult to estimate diesel traffic volume 
accurately.  

 Does not account for type of diesel vehicles 
and emissions.  

 Limitations described for total traffic also 
apply. 

Local traffic density 

 Includes local traffic emissions that might 
affect receptor. 

 Traffic density expressed a vehicle 
kilometer mile traveled per day, which is 
easily interpretable and can be 
generalized.  

 Large range across sites.  

 Can be applied to irregular shaped 
sources and receptors.  

 Can select period of day.  

 Relevant to traffic analysis zones used by 
planners. 

 Moderately high data needs.  

 Computationally intensive.  

 Sensitive to distance criterion, which is 
assigned somewhat arbitrarily.  

 Uncertainty of traffic estimates on all but 
major roads.  

 Excludes smaller roads. 

Emissions on local roads 

 Incorporates vehicle emissions of 
pollutants of interest.  

 Reflects vehicle mix on roads. 

 Strengths described for local traffic density 
also apply. 

 Results depend on pollutant, to an extent.  

 High data needs.  

 Computationally intensive.  

 Difficult to estimate emissions accurately. 

Pollutant concentration 
predictions 

 Incorporates effects of emissions, 
meteorology, and location in physically-
based approach. 

 Quantifies and apportions concentrations 
due to each source, e.g., traffic.  

 Can be derived for specific periods of day, 
season or year, e.g., daily predictions at 
rush hour periods.  

 Inter-study comparisons are possible and 
meaningful. 

 Results depend on pollutant, averaging time, 
and statistic.  

 High data needs.  

 Computationally intensive. 

 Uncertainty not well characterized.  

 Results potentially sensitive to many factors, 
including home placement. 

 
Studies focusing on regional air pollutants often rely on the measurements taken at 
central site monitoring stations. These values are sometimes used directly without 
any spatial mapping of the results to a nearby residential location. This can result 
in an appreciable amount of measurement error, since topological, meteorological, 
and socioeconomic factors can modulate airborne concentrations and impact the 
levels observed at locations that are just a short distance from a central site. To 
reduce the error, investigators often rely on a suite of exposure models to obtain a 
better estimate of exposure at a particular address. Figure 3 lists many of the 
models that can be used in association with the values from monitoring sites 
(Ozkaynak et al., 2013). The models are listed according to the level of complexity 
and the types of input information needed to populate the model. In all but a single 
case, monitoring data provides the basis of exposure estimations. Land use 
regression models are complex representations of a residential area that take into 
consideration topography, traffic patterns and local geography to map out the 
exposure level that exists at any set of coordinates (Ryan and LeMasters, 2007). Air 
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shed and dispersion models are different in that they rely on emission rates to 
determine the concentration at a remote receptor location. Data blending models 
are hybrid models that use information from a variety of sources including satellite 
measurements and remote sensors in a Bayesian statistical framework that is 
capable of handling diverse types of information. The highest modelling tier 
includes several sophisticated approaches capable of considering an individual’s 
behavioural pattern as well as home penetration rates, and local meteorology. The 
approach includes the US EPA’s Stochastic Human Exposure and Simulation (SHEDS) 
and Air Pollutant Exposure (APEX) models, which are aimed at collected personal 
exposure information rather than exposures at a particular location.  

Although these modelling methods are capable of reducing spatial and temporal 
misalignment in exposure estimations, much depends on the study design and data 
availability. Ecological time-series studies of acute conditions such as 
hospitalizations or emergency department visits are adversely affected by any 
temporal misalignment in the exposure assignments at a particular location and 
care must be taken to select an exposure model that has been thoroughly evaluated 
(Sheppard et al., 2012). Although methods exist to validate an exposure model and 
provide some measure of uncertainty, oftentimes this analysis if overlooked or 
treated in a very superficial manner (Baxter et al., 2010). It is also tempting to 
assume that the suite of exposure models available for spatial and temporal 
mapping yield similar exposure metrics that are directly comparable; but, in fact, 
the results can be quite different depending on the precision inherent in the model 
and the degree of spatial variability in the pollutant. For instance, it has been shown 
that the spatial variability of nitrogen dioxide is quite high due to all of the local 
emission sources, so the results obtained with a land use regression model can differ 
from those obtained using an urban air shed or dispersion model (Gulliver et al., 
2011a). PM10, on the other hand, is regionally distributed in a more uniform fashion 
so an exposure model does not require as much spatial resolution and alternative 
modelling approaches may yield similar results (Marshall et al., 2008). Although land 
use regression models are becoming more popular because of their fine spatial 
resolution, they have one big limitation; the model cannot be extrapolated across 
time or space and is limited to a specific location and time period (Vienneau et al., 
2010). 
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Figure 3 Modelling tiers used in conjunction with measurements from 
central site monitors (Dionisio et al., 2013). 

 
 

3.2.2. Historical reconstruction of exposures  

Historical reconstruction of exposures is generally performed in conjunction with 
retrospective studies examining the association of an emission source or pollutant 
level with a chronic health effect such as lung cancer (Nuckols et al., 2004). 
Typically, these studies use residence locations as a proxy for personal exposure 
since it is assumed that most people spend the majority of their time at home. 
Although these techniques add value over what can be achieved when relating a 
health effect to a residential location at the time of enrolment or diagnosis, they 
still suffer from various forms of bias. The intent behind exposure reconstruction is 
ether the development of a cumulative exposure metric over the time span of the 
study or the temporal tracking of an individual’s proximity to an emission source 
(Rushton, 2009). As such, temporal and spatial changes in exposure are taken into 
consideration. The reconstruction techniques used in environmental epidemiology 
generally differ from those used in occupational studies, which often rely on work 
histories, job titles, questionnaires, and job exposure matrices to develop a record 
of exposure (Sahmel et al., 2010). Modern retrospective environmental studies, on 
the other hand, often rely on the use of GIS (Geographic Information System) to 
spatially map an individual’s residential location relative to nearby monitoring 
stations or emission sources. This approach has largely supplanted the use of 
questionnaires whereby participants were asked to provide estimates of their 
exposure in a qualitative (exposed or not exposed) or semi-quantitative (low, 
medium, or high) manner.  

Regardless of the study goals, a key aspect of exposure reconstruction is the 
identification of a participant’s residential history during the period of interest 
(Hughes and Pruitt, 2014). This information is typically obtained using a 
questionnaire or through personal interviews; however, this approach is labour 
intensive and subject to recall bias. Some individuals invariably fail to remember 
all of the residential locations, correct addresses, or lengths of residence at each 
location. Alternatively, the residential history can be obtained from commercial 
sources or government agencies such as a motor vehicle department, but this 
approach is often cost prohibitive (Jacquez et al., 2011). Another issue of concern 
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is the failure by most investigators to check the accuracy of their information or to 
cite the percentage of individuals who showed high residential mobility, which may 
directly impact the reliability of the residential record. 

Following the creation of a residential history, the information is geocoded to obtain 
the coordinates for each residential location (Beyea and Hatch, 1999). Geocoding 
can take place by any of a variety of techniques, which all take advantage of GIS 
maps that are available for many locations (Zandbergen, 2008). An entire area of 
science has emerged in response to the widespread interest in geocoding. As such, 
epidemiologists often collaborate with experts in geospatial science who are able 
to create the geocoded residential locations that are needed for an exposure 
determination. Geocoding essentially involves the grid mapping of a residential 
address using the information available from a GIS (Healy and Gilliland, 2012). This 
mapping is, however, prone to error since the residential location is interpolated 
from those GIS coordinates (longitude and latitude) that are known with certainty. 
In some cases, this error can be quite high especially when aerial photography is 
relied upon for geocoding (Schootman et al., 2007). A review of geocoding studies 
found a mean positional error of 58-96 m in urban areas and 129-614 m in rural 
locations where there is a greater distance between homes (Jacquez, 2012). An 
investigation of the impact of address geocoding errors found an appreciable impact 
on exposure determinations. A median positional geocoding error of 41 meters 
resulted in unacceptably high overestimates of traffic-related exposures in a study 
of children residing near busy roadways (Zandbergen, 2007). A total of 391 children 
from the study were found to actually reside within 50 m of a high traffic corridor, 
but street geocoding indicated that 1413 children were within this zone. This 
positional error resulted in a large bias in the odds ratios for children at risk from 
exposure to traffic-related pollutants. Geocoding using the parcel centroids (centre 
point within the property boundary) instead of a property address have been shown 
to be far superior, yielding positional errors that are an order of magnitude smaller 
than those found when the street address was used. This approach, however, is not 
widely used in exposure reconstruction since it requires the collection of additional 
information on the property lines for each residential location (Cayo and Talbot, 
2003). Likewise, although the use of a global positioning system (GPS) receiver for 
mapping the coordinates of a residential location provides an unambiguous 
approach to geocoding, it is rarely applied because of the extra labour required 
(Bonner et al., 2003). Since many retrospective studies relying on GIS for exposure 
reconstruction fail to include precise details regarding the geocoding methods 
employed or their positional accuracy, a high degree of exposure misclassification 
can be assumed to exist. The failure of exposure reconstruction methods to consider 
time away from the home, time spent indoors, and employment history increases 
the likelihood of an exposure misclassification beyond what the positional error can 
cause. 

An often cited example of the practical value of historical exposure reconstruction 
was performed in conjunction with a retrospective case-control study of lung cancer 
in citizens from Stockholm, Sweden (Nyberg et al., 2000). Geocoding was performed 
on residential addresses that were identified via a questionnaire sent to patients or 
the next of kin (Bellander et al., 2001). An 85 % response rate was attained after 
mail reminders and phone calls. Gaps in knowledge were filled using information 
from local parishes and tax authorities. Geocoding was also performed for a large 
number of known traffic-related emission sources as well as point (industrial areas 
and power plants) and area (merchant vessels and airplanes) sources. Dispersion 
modelling was used to relate source emissions to individual time-weighted average 
exposures over a 30-year period. An automated procedure was used for geocoding 
a majority of the emission sources and residential addresses. The average positional 
accuracy of the method was 50 m and 90 % of the coordinates were within 100 m. 
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Although the authors correctly noted that the likelihood of exposure 
misclassification was less likely than with other population-based studies of lung 
cancer that relied on an ecological design, they failed to acknowledge the 
potentially large bias that continued to exist because of respondent recall errors 
and the positional inaccuracy. The authors also failed to conduct an important, but 
often omitted, sensitivity analysis to validate the exposure determinations. The 
omission of a sensitivity analysis that showed how positional errors affected the 
exposure estimates is seen as a serious limitation in this study (Jacquez, 2012).  

There have been few in-depth evaluations of the impact of recall and geocoding 
errors on the exposure predictions resulting from reconstruction efforts. The results 
from a recent case-control study of lung cancer risks for Canadian citizens exposed 
to air pollutants suggest that exposure misclassification may be a serious problem 
with all reconstruction efforts (Hystad et al., 2012). Using proximity indicators as a 
surrogate for exposure magnitude, the study found that residential recall bias was 
especially high for residential histories more than 20 years old and that the bias was 
greater in control participants than in the cases. This caused a differential error in 
the exposure estimates that resulted in an overestimation of exposures in the cases 
relative to the controls. Another problem with this study was the geocoding of 
residential locations using postal code centroids rather than street addresses, which 
is known to be far less accurate (Goldberg et al., 1993). Although more studies are 
needed to gauge the real impact of geocoding errors on exposure and risk 
determinations, a recent study comparing the use of questionnaires versus GIS 
based residential proxies found that they yielded comparable results in a case-
control study of lung cancer (Cordioli et al., 2014). These results suggest that the 
errors associated with geocoding are as large as those found when using self-
reported estimates of exposure and that that the only advantage in using address 
geocoding is that the results are more objective. 

3.2.3. Biologically relevant exposure period 

Studies on longer-term exposure to air pollution and cancer risk generally use 
exposure estimates for some convenient time point or window, but there is often 
incomplete coverage (or no coverage) of the biologically relevant exposure period 
(BREP). For instance, many prospective studies estimate exposure at the 
recruitment/baseline address and in some cases exposure at that address at the end 
of follow-up. Few studies have acknowledged that the relevant time window for 
exposure in the case of lung cancer probably occurred before recruitment, 
especially if the follow up period is short. Proximate air pollution estimates often 
do not represent the BREP, and most studies ignore the exposures occurring before 
the follow-up begins. In the case of particulate matter, historic exposure 
concentrations may be much higher than the concentration at recruitment. For 
studies on lung cancer, exposures during the most recent 10 years are unlikely to 
be relevant given the latency for that cancer, and even exposure 10-20 years 
previously will be relatively unimportant. For example, Hutchings and Rushton used 
the latency weights shown in Figure 4 when predicting future deaths from lung 
cancer due to silica exposure. In the case of lung cancer, it is likely the BREP is 
anywhere from 15 to 50 years before death (Hutchings and Rushton, 2011). 
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Figure 4 Lognormal distribution latency weights (single year and 
estimation interval) used by Hutchings and Rushton. 

 

The degree of exposure misclassification depends on a number of factors including 
the design of the study and the exposure metric used. The most influential 
prospective studies include the H6C study, the ACS CPS-II study and the ESCAPE 
study. The exposure estimates for the H6C and ACS CPS-II studies were ecological, 
although the number of metropolitan areas with estimated exposures and the 
number of subjects differ greatly between the studies. The H6C study included six 
areas and approximately 8000 subjects and the ACS CPS-II study included 126 areas 
and approximately 540,000 subjects with a PM2.5 exposure that lasted for at least 
part of the study period (Pope et al, 2002). In contrast, the ESCAPE study of lung 
cancer included 17 cohorts from nine European countries (312,944 subjects), but 
the study pooled hazard ratios from within the cohort analyses (Raaschou-Nielsen 
et al., 2013). Subjects from 14 cohorts had individual estimates of proximate PM2.5 
exposures calculated using land use regression (LUR) models.  

All of the above studies have used Cox regression models, but the exposures have 
been treated differently both within and between studies. Some studies have 
treated exposure as a time dependent variable reflecting mean exposures within a 
time window before death. For instance, Laden et al. fit their models for mean 
exposure in the year of death, whereas Lepeule et al. fit their models for mean 
exposure in the 3 years before death (Laden et al., 2006b, Lepeule et al., 2012). 
Krewski et al. optimized their models for a 15 year time window, but also used 
estimates based on 1-5 year, 6-10 year, and 11-15 year time windows (Krewski et 
al., 2009). For many pollutants, the difference between exposures during such a 
time window and exposures in the BREP may be very large. Even if spatial 
distributions of pollutants remain constant (see below), the levels of some 
pollutants like PM2.5 have fallen considerably in recent years in many areas. 
Consequently, the risk per unit of PM2.5 will be overestimated. The problem is well 
illustrated by the latest update of the H6C study (Lepeule et al., 2012). In this 
study, PM2.5 was included in Cox regression models as an annual time-dependent 
variable and a 1- to 3-year moving average was used for lung-cancer mortality (i.e. 
a 3-year time window). The latest update studied mortality between 1982 and 2008 
and the investigators estimated annual exposure for the six cities between 1974 and 
2009. The earliest air pollution monitoring results were available from 1979 for five 
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cities and 1980 for the other city, and these estimates were assumed to be 
applicable to the years before monitoring began. Figure 1 of Lepeule et al. shows 
estimated annual mean PM2.5 levels during 1974–2009 for the six cities in the study. 
It is noticeable that although there was a huge range in 1979/1980 levels in the six 
cities when monitoring began, there was virtually no difference between levels in 
the six cities in 2009. The study reported a strong association between lung cancer 
and exposure to PM2.5 at the baseline address in the 3-year window before death. 
For lung cancer, a RR of 1.37 (95% CI 1.07-1.75 per 10 μg/m3 increase in PM2.5) was 
reported. However, in 2009, the 1- to 3-year moving average PM2.5 levels for the six 
cities ranged from about 10 to 14 μg/m3, whereas mean exposure levels for the six 
cities between 1974 and 2009 ranged from 11.4 to 23.6 μg/m3. Mean PM2.5 levels 
during the BREP for a 2009 lung cancer death (1959-1994) would have had a much 
wider range, and a range of at least 30 μg/m3 is plausible given that PM2.5 levels at 
Steubenville were approximately 40 μg/m3 and falling sharply at the start of the 
monitoring period in 1979. Consequently, the RR estimated using 1- to 3-year 
moving average PM2.5 levels will greatly overestimate the true risk per unit of PM2.5. 

Lepeule et al. reported RRs for four periods of follow up (obtained by dividing the 
follow-up period into four equally spaced time periods) (Lepeule et al., 2012). Only 
the RR for the last period of follow up (2001-2009) was significantly different from 
unity (RR 2.84; 95% CI 1.06–7.59: 10 μg/m3 increase in PM2.5). Except for the city of 
Portage, Figure 1 of Lepeule et al. indicates that mean PM2.5 level at the baseline 
address during the BREP for a subject dying during 2001-2009 will be higher than 
the 1- to 3-year moving average used in the analysis. The range of 1- to 3-year 
moving average PM2.5 levels fell from about 8 μg/m3 in 2001 to approximately 3 
μg/m3 in 2009 with a mid-period value of approximately 5 μg/m3. Hence, the range 
of 1- to 3-year moving average PM2.5 levels in 2005 is likely to be at least six times 
less than the range of mean exposures during the BREP. Although the RR for the 
period 2001-2009 appears large, it would fall to 1.19 if exposure estimates were 
scaled upwards by a factor of six. In addition, air pollution levels at the six cities 
were not very well separated throughout the period from 2001 to 2009, and had 
virtually converged by 2009. Consequently, the air pollution estimates for some of 
the six cities during the period 2001-9 had a different ordering to that based on 
their mean PM2.5 levels during the BREP. For instance, Portage almost certainly had 
the lowest mean PM2.5 level of the six cities during the BREP, but Watertown and 
Topeka had lower 1- to 3-year moving average PM2.5 levels from 2001-2009. It cannot 
be concluded that the RR for 2001-2009 would have been statistically elevated or 
even greater than unity if a measure of exposure during the BREP had been used in 
the analysis. However, the RR for this period of follow-up has a strong influence on 
the RR for the entire follow up period because of increasing rate of lung cancer 
deaths with follow-up.  

Other studies have not treated exposure as a time-dependent variable, although 
exposure during the BREP will vary over time. For instance, Turner et al. studied 
lung cancer mortality from 1982 to 2008 in never smokers included in the ACS CPS-
II study (Turner et al., 2011). Three ecological measures of particulate air pollution 
were used for subjects living in each Metropolitan Statistical Area (MSA): mean PM2.5 
levels between 1979 and 1983 (available for 61 MSA); mean PM2.5 levels between 
1999 and 2000 (available for 117 MSA); and the average of these measures (available 
for 53 MSA). It is clear from Figures 17 and 18 of Krewski et al. that the annual mean 
PM2.5 levels of many MSAs fell between 1972 and 2000, and Turner et al. reported 
mean PM2.5 levels of 21.1 μg/m3 between 1979 and 1983, 14.0 μg/m3 between 1999 
and 2000, and an averaged level over the two periods of 17.6 μg/m3 (Krewski et al., 
2009, Turner et al., 2011). The fully adjusted HRs for lung cancer mortality in 
relation to each 10 μg/m3 increase in mean PM2.5 concentrations were 1.15 (95% CI 
0.99-1.35), 1.27 (95% CI 1.03-1.56) and 1.19 (95% CI 0.97-1.47) for the three 
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exposure measures, respectively. The HRs from the three analyses are more 
consistent than they at first appear. If the HR based on 1999-2000 exposure and the 
HR based on the average exposure measure are adjusted to the mean exposure 
concentration for 1979-1983 period, then the HRs are reduced to 1.17 and 1.16, 
respectively; close to the HR of 1.15 based on 1979-1983 exposure. Mean exposure 
during 1979 and 1983 will be closer in magnitude to exposure during the BREP than 
exposure between 1999 and 2000 (which is not in the BREP for any subject). 
However, we do not know how well the two measures correlate at different time 
points during the study period and hence cannot conclude that results obtained 
using a BREP based exposure measure would be similar to those obtained using 1979-
1983 exposure measure. 

In the case of the ESCAPE study, the exposure measure was individual level 
modelled exposure during 2008-2011 at the address of the subject at recruitment 
(mainly in the 1990s) (Raaschou-Nielsen et al., 2013). The mean follow-up period 
was 12.8 years, so the BREP of most subjects occurred before recruitment. In this 
study, analyses were conducted within centres and a pooled estimate of effect 
obtained. The authors claimed that the results of recent research in Rome, the 
Netherlands, and Vancouver showed that the spatial distribution of air pollution is 
stable over 10-year periods, but only cited a study of spatial contrasts in NO2 in 
Rome which was reportedly stabile over a 12 year period (Cesaroni et al., 2012). 
Cesaroni et al. cited studies from the Netherlands and Oslo which reported stabile 
spatial contrasts in NO2 and nitrogen oxides (NOx) over shorter periods of eight years 
and three years, respectively (Eeftens et al., 2011, Madsen et al., 2011). Raaschou-
Nielsen et al. also cited a study which showed high correlations between traffic 
intensities in 1986 and 1996 on Dutch streets. Beelen et al. and Gulliver et al. 
independently reported that spatial models for black smoke provided reasonable 
predictions, even going back to the 1960s (Beelen et al., 2007, Gulliver et al., 
2011b, Raaschou-Nielsen et al., 2013). However, the PM2.5 exposure trends of the 
H6C and ACS CPS-II studies suggested that the spatial distribution of PM2.5 levels in 
2008-2011 might be considerably different to the spatial distribution during the 
BREP. Information on time trends in exposure levels at the different centres is not 
provided, but it seems likely exposure levels in 2008-2011 would be closest to those 
during the BREP for the centres which had the lowest exposure in 2008-2011. 
Subjects from the Scandinavian and UK centres had the lowest estimated exposure 
to PM2.5, and the meta-HR for these seven centres was 0.94 (95 % CI 0.64-1.38, p = 
0.74) per 5 μg/m3 PM2.5 (i.e. no evidence of an exposure effect). By contrast, the 
meta-HR for the seven centres with the highest estimated exposure in 2008-2011 
was 1.30 (95 % CI 1.01-1.67, p = 0.04) per 5 μg/m3 PM2.5. The biggest changes in 
PM2.5 levels have probably occurred for these centres, especially the Italian and 
Greek centres, and the HRs for these centres may have been much lower if exposure 
during the BREP had been used in Cox regressions instead of exposure during 2008-
2011. Morfeld et al. also noted the heterogeneity in these results and reported 
similar findings when the centres were split according to whether they were north 
of the Alps or elsewhere (Morfeld et al., 2013). The northern centres included the 
seven centres with the lowest exposure and the two Netherlands centres. 

Some studies have focussed on changes of address during the follow up period e.g. 
Raaschou-Nielsen et al. and Cesaroni et al., although their follow-up periods were 
short (i.e. an average of 12.8 years in the former study, nine years for the latter) 
(Cesaroni et al., 2013, Raaschou-Nielsen et al., 2013). The investigators 
hypothesised that they should expect to see stronger associations among subjects 
who did not change address throughout follow-up as this minimised misclassification 
of long-term exposure relevant to the development of lung cancer. However, a 
conventional lagged analysis for a cancer with a long latent period such as lung 
cancer would disregard most if not all of the exposure during the follow up period 
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of many studies, and there seems no good reason to expect to see a stronger 
relationship with lung cancer for subjects who didn't move during a short follow up 
period. Indeed, if relocation is based on preference for “cleaner air”, then stronger 
effects might be seen among subjects who change address during the follow up 
period. In a sensitivity analysis conducted within the ESCAPE study, Oudin et al. 
showed good concordance between the average exposure at all addresses during 
the follow-up period (mean = 12.7 years) and exposure at the baseline address for 
a Swedish population (Oudin et al., 2012). However, temporal changes in exposure 
were ignored, and spatial variation in exposure levels over the study area was low. 
Consequently, this finding isn’t very relevant for lung cancer incidence/mortality 
studies. 

Changes in address and exposure before the start of follow-up are likely to be much 
more relevant than those during the follow-up period for studies of lung cancer 
incidence/mortality. This is certainly true for studies with very short follow-up 
periods, (e.g. the large New Zealand cohort mortality study with a follow-up period 
of only three years) (Hales et al., 2012). With such a short follow-up period, average 
or cumulative exposure during the BREP is much more likely to differ from exposure 
at the baseline address. However, few studies have collected residential histories 
for their subjects which would allow exposure during the BREP to be estimated. One 
of these studies, the CNECSS case-control study by Hystad et al., collected 20 year 
residential histories for cases and controls to estimate annual residential exposure 
to various pollutants over a 20-year exposure period (Hystad et al., 2013). The 
investigators noted that the long latency periods associated with lung cancer make 
epidemiological analyses particularly challenging, especially for air pollution where 
spatial and temporal variation in both residential mobility and air pollution 
concentrations may produce significant exposure misclassification if not properly 
incorporated into the exposure assessment approach (Hystad et al., 2012). 
However, it may not be straightforward to estimate exposure during the BREP. In a 
separate article, these same authors noted that residential histories were available 
for an earlier exposure period for many subjects, but few air pollution 
measurements and no geographic data were available for these years (Hystad et al., 
2013). Hystad et al. reported substantial exposure misclassification if the study 
entry address was used instead of residential history (Hystad et al., 2012). When 
examining exposure misclassification based on incorrectly assigned exposure 
quintiles, 50%, 49% and 46% of individuals where classified into a different PM2.5, 
NO2 and ozone quintile, respectively. However, the correlations between ambient 
air pollution exposures derived from study entry residential addresses only, and 
exposures derived from residential histories ranged from 0.70 to 0.76. Other studies 
which have attempted to estimate long term exposure include Danish studies of the 
association between NOx (as a proxy for particulate matter exposure from traffic 
emissions) and various cancer endpoints including lung cancer by Raaschou-Nielson 
et al. and a Swedish study of the association between lung cancer and NO2 and SO2 
(Bellander et al., 2001, Nyberg et al., 2000, Raaschou-Nielsen et al., 2010, 
Raaschou-Nielsen et al., 2011a, Raaschou-Nielsen et al., 2011b).  

3.2.4. Temporality and time-dependent exposure metrics 

Temporality (i.e. exposures occurring before the health effect) is an important 
consideration when assessing causality. In most studies of air pollution and lung 
cancer, it is likely that some exposure will have occurred before lung cancer was 
diagnosed, although exposure may be estimated for the baseline address after 
death. Ostro et al. noted that most previous cohort studies had assigned the same 
exposure period to all study subjects, regardless of when deaths occurred, and 
consequently the estimated exposures for some study participants in several studies 
occurred after their deaths (Ostro et al., 2010). For some studies e.g. the ESCAPE 
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study, the estimated exposures for all study participants occurred after their 
deaths, although as noted in section 3.2.3, this may not be a problem if assumptions 
about a stable spatial distribution for air pollution are valid (Raaschou-Nielsen et 
al., 2013). In some cases, the estimated exposure may have occurred 16 to 19 years 
after the subject developed lung cancer. In the ACS CPS-II study, the earliest lung 
cancer death may have occurred in 1982 when follow-up started, but many analyses 
are based on average exposure concentrations during 1999-2000. Ostro et al. also 
noted that exposures have usually been assigned to participants based on their 
residential address at enrolment only, without taking into account exposure changes 
that may have occurred throughout the study period or when participants relocated, 
and often exposure was measured for only a subset of the years during which the 
cohort was followed. 

The analysis of the CTS study by Ostro et al. provides a good example of what can 
go wrong if the temporal nature of exposure is neglected (Ostro et al., 2010). In an 
attempt to reduce exposure misclassification, these authors estimated exposures 
beginning prior to the cohort follow-up period, continuing to the end of the study 
or until the participant died or relocated out of state, and incorporated updated 
exposure assignments when the subjects moved. Each subject was assigned a 
monthly exposure value based on the monitor nearest their geocoded residential 
address and the values for all person-months of exposure were summed and divided 
by the total months of exposure to create an average measure of overall long-term 
exposure. However, in the Cox regression analysis, exposure was not initially 
treated as a time-dependent variable and this resulted in apparently highly 
significant associations between PM2.5 exposure and the four mortality endpoints. 
This was because measured concentrations of several pollutants in California 
declined substantially during the 2002-2007 follow-up period including annual 
average PM2.5 concentrations which decreased by around 30%. This decrease in 
ambient PM2.5 concentrations resulted in lower average exposure estimates for 
cohort members who survived to the end of the study. This meant that the exposure 
assigned to a participant who died at time t in the Cox regression analysis tended 
to be greater for events occurring early in the observation period compared with 
the long-term average exposures of the participants who comprised the remainder 
of the risk set (i.e., those who were still part of the cohort study at time t and who 
subsequently experienced lower ambient pollution levels). The CTS study was 
reanalysed using time-dependent pollution metrics which meant that the exposure 
estimates for everyone remaining alive in the risk set were recalculated at the time 
of each death in order to compare their average exposures up to that time with that 
of the individual who had died. In this way, decedents and survivors comprising the 
risk set had similar periods of pollution exposure, without subsequent pollution 
trends influencing the surviving women’s exposure estimates. In the time-
dependent exposure analysis, the HRs for PM2.5 were much reduced. For example, 
the HR for all-cause mortality for a 10 μg/m3 change in PM2.5 was initially 1.84 (95% 
CI 1.66-2.05), but fell to 1.06 (95% CI 0.96-1.16) when the time-dependent exposure 
metric was used. 

It isn’t suggested that other studies have made the same error that Ostro et al. 
initially made (Ostro et al., 2010). For example, in another analysis of the CTS study 
Lipsett et al. focussed on lung cancer using the same time dependent exposure 
metric as Ostro et al (Lipsett et al., 2011). Nevertheless, the results of some studies 
involve temporal assumptions that have not been validated, including the 
assumptions made by studies such as ESCAPE and ACS CPS-II studies that results 
based on exposure distributions occurring potentially many years after the death of 
some subjects will be valid. The incorrect initial analysis of Ostro et al. is also of 
particular interest in that it demonstrates that error misclassification can result in 
much stronger associations and not the attenuation that investigators claim. 
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3.2.5. Personal concentration level versus exposure at the gatepost 

The major epidemiological studies of air pollution and cancer risk have not been 
able to estimate the personal exposure of subjects. Instead, an estimate of outdoor 
pollution at the residence of a subject is often used as a proxy for personal 
exposure, or another indicator such as proximity to major roadways. Even if 
measurements of outdoor pollution at the residence of a subject were available, 
there would still be exposure misclassification because personal exposure depends 
on factors such as time-activity patterns, infiltration of pollution indoors, and 
indoor sources of pollution. Little is known about how well land use regression (LUR) 
models predict average personal exposure, but a study by Montagne et al. showed 
that within three cities (Barcelona, Utrecht and Helsinki) there was virtually no 
correlation between personal concentration measurements of PM2.5 and LUR-
modelled estimates (see Table 2) (Hoek et al., 2008b, Montagne et al., 2013). 
Indeed, the slope of the relationship was negative in two cities. The results were 
similar for within-city correlations between personal exposure measurements of 
PM2.5 and outdoor measurements taken at the home address, although the 
correlation for Helsinki was barely statistically significant. The range in measured 
PM2.5 concentrations for each city was small, especially in Helsinki, but between-
city variation was much larger. Consequently, the correlation between personal 
exposure measurements of PM2.5 and LUR-modelled estimates was stronger when 
data were pooled across the cities. When indicator variables for city were added to 
the model, PM2.5 personal exposure did not remain significantly associated with the 
modelled concentrations (i.e. the model did not add further explanatory power than 
a single city background value from the between-city analyses). LUR-modelled 
estimates of NOx concentrations were also not a good proxy for personal exposure. 
Additionally, the NOx model did not add further explanatory power than a single 
city background value from between-city analyses. LUR-modelled soot and NO2 
estimates were a better proxy for personal exposure in within-city analyses and 
gave additional explanatory power in pooled analyses than a single city background 
value.  

Table 2 Relationship between measured average outdoor/personal concentrations 
and LUR-modelled outdoor concentrations for individual cities and pooled 
data (from Montagne et al, 2013).  

City N 

Personal vs. LUR-
modelled outdoor 

Personal vs. Measured 
outdoor 

Measured outdoor vs. LUR-
modelled outdoor 

r2 β r2 β r2 β 

Utrecht 15 0.06 -0.37 0.09 -0.34 0.43 1.09* 

Helsinki 15 0.08 1.08 0.32 0.23* 0.21 0.72 

Barcelona 15 0.00 -0.15 0.10 -0.12 0.10 0.37 

Pooled 45 0.35 1.01** - - 0.81 0.97** 

*p<0.05, ** p<0.01 

 
Montagne et al. concluded that, over larger ranges of outdoor concentrations, 
modelled or measured outdoor concentrations are good proxies for personal 
exposures of soot, NO2, NOx, and PM2.5 (Montagne et al., 2013). The pooled sample 
of LUR-modelled PM2.5 estimates from Utrecht, Helsinki and Barcelona had a range 
of 7.7 to 25.1 μg/m3 (mean = 14.6 μg/m3). This range is wider than the range of 
such estimates from all of the ESCAPE study centres, apart from EPIC-Athens 
(Raaschou-Nielsen et al., 2013). In addition, the pooled sample of Montagne et al. 
only includes 45 subjects, whereas the study groups of the ESCAPE centres range 
from 2,384 to 108,018. For a normally distributed variable, a sample of 45 
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observations would have a range which is on average 36% narrower than a sample 
of 2384 observations and 52% lower than a sample of 108,018. On that basis, the 
dispersion of LUR-modelled PM2.5 estimates from all the ESCAPE centres is much less 
than the range reported by Montagne et al. and it cannot be assumed that the 
estimates will be a good proxy for personal exposure. Furthermore, 8 of the 14 
ESCAPE study centres (SNAC-K, SALT, Sixty, SDPP, DCH, EPIC-MORGEN, EPIC-
PROSPECT, VHM&PP) had ranges with widths between 5 and 10 μg/m3, even 
narrower than the range reported for Barcelona (11.5 μg/m3) by Montagne et al., 
and less than the range for Utrecht if adjusted for sample size. The study by 
Montagne et al. suggests that there is no reason to expect an association between 
lung cancer incidence and LUR-modelled PM2.5 estimates in these eight centres with 
such low spatial variation, but the meta-HR for these eight centres is 1.22 (95% CI 
0.93-1.55) per 5 μg/m3 PM2.5, similar to the meta-HR for all 14 centres of 1.18 (95% 
CI 0.96-1.46) per 5 μg/m3 PM2.5.  

There will be a differential impact on studies that have a large between-subject 
variation in exposure (e.g. H6C and ACS CPS-II) than for those with low between-
subject variation in exposure (e.g. a single city in Northern Europe). Studies such 
as H6C and ACS CPS-II rely on between-centre variation in pollution rather than 
within-centre variation. Nevertheless, the range of exposure estimates can still be 
narrow in some analyses. For example, the latest update of the H6C study used 1- 
to 3-year moving average PM2.5 results for the six cities in a Cox regression analyses 
(Lepeule et al., 2012). There was a huge range in exposure levels between levels in 
the six cities when monitoring began in 1979/1980, but there was virtually no 
difference between levels in the six cities in 2009. One of the analyses was 
performed for the period 2001-2009 and 1- to 3-year moving average PM2.5 results 
for the six cities had a range of about 8 μg/m3 in 2001, which fell to a range of 
approximately 3 μg/m3 in 2009. However, the range was considerably wider at the 
start of follow-up in 1982. Turner et al. also reported a wide range in 1979-1983 
averaged PM2.5 levels for 61 MSA included in one set of analyses (10.3-37.8 μg/m3), 
but the range of 1999-2000 averaged PM2.5 levels for 117 MSA included in other 
analyses was narrower (5.8–22.2 μg/m3) (Turner et al., 2011). It is more reasonable 
to assume that this measure is a reasonable proxy for personal exposure, but this 
ignores other factors such as the BREP and residential history of a subject. 

3.2.6. Back extrapolation 

Back extrapolation is a historical exposure reconstruction technique that focuses 
less on residential geocoding and more on trend analysis and pollutant collinearities 
to estimate exposure levels for periods of time when sufficient monitoring data was 
either unavailable or of poor quality. As such, it can be used to reconstruct the 
exposure profile in a retrospective examination of cancer risk for a cohort of 
individuals living in an area of particular interest. The approach often relies on the 
use of statistical imputation techniques that relate the pollutant of interest to an 
emission factor or an emission source that has been more accurately tracked both 
spatially and temporally. For instance, changes in traffic density on local roadways 
can be used to estimate particulate exposures after first establishing the 
mathematical relationship that exists between the pollutant of interest and the 
proxy. The resulting equations may then be used to estimate exposures at other 
time periods when the traffic patterns were known with some certainty, but the 
pollutant of interest has not been monitored (Bellander et al., 2001). Alternatively, 
a co-pollutant may be used as a surrogate if information is available showing that 
the two vary in a regular and predictable fashion (Beyea et al., 2008). This later 
approach was employed to estimate historical PM2.5 exposures in the TPCS study 
from Japan (Katanoda et al., 2011). Although monitoring levels were not available 
for PM2.5, suspended particulate matter measurements had been taken at various 
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locations since the early 1970’s. Since the ratio of PM2.5 to suspended particulate 
matter (SPM) was shown to range from 0.6 to 0.8 at several locations and various 
time periods, a factor of 0.7 was uniformly applied to the SPM results to obtain 
measurements of PM2.5 over a twenty-year span. The main problem with this 
approach, however, is the uncertainties that result when using a single adjustment 
factor to describe the PM2.5/SPM relationship at all locations and all time periods of 
interest. A somewhat similar, but more precise, approach was used to estimate 
PM2.5 exposures in a Canadian lung cancer cohort study (Hystad et al., 2012). In this 
case, a random effects model was constructed that related PM2.5 concentrations to 
levels of total suspended particulates (TSP) in each of the cities of interest. The 
model was constructed using PM2.5 and TSP measurements available from 1984 to 
2000. The modelling results were then used with available TSP measurements to 
back extrapolate PM2.5 for a twenty-year period lasting from 1975 to 1994. An 
advantage of this approach is the ability to take regional differences in the 
PM2.5/TSP relationship into consideration. Still the veracity of the back 
extrapolation is difficult to establish with any degree of certainty. Oftentimes 
considerable uncertainty and misclassification may occur if sufficient care is not 
taken to ensure that the approach is well vetted and standardized to the extent 
possible (Sahmel et al., 2010).  

Although a variety of approaches can be used to perform a back extrapolation, the 
method of choice is more dependent upon the goals of the investigation rather than 
the availability of relevant datasets that can be used to establish how a particular 
pollutant concentration has changed over time. Although back extrapolations can 
be performed for each individual in a study or at the population level, their use in 
the air pollution arena has, up until recently, been a relatively rare occurrence 
given the abundance of historical measurements from urban monitoring stations. 
Exposure back extrapolation are, however, much more common in retrospective 
studies in the workplace where historical exposure databases can be used to 
supplement any available personal monitoring information (Hornung et al., 1996). 
In this circumstance, great care needs to be taken to ensure that the available 
historical information is truly representative of the personal exposures that have 
taken place in past years. Typical pitfalls include the use of historical measurements 
that were collected as part of a sampling campaign to ensure compliance with an 
occupational exposure limit. The measurements may not be reflective of exposures 
throughout the workplace. Other dangers include the failure to correct for any 
personal protective devices being worn such as a respirator, and the absence of any 
adjustment for changes in the sampling procedure or analytical method. These 
factors can all have a dramatic impact on the reliability of the back extrapolation. 
When the uncertainty is known to be high, an exposure assessor needs to consider 
using a semi-quantitative approach to document historical exposures and obtaining 
a relative estimate of exposure magnitude. Under these circumstances, job-
exposure matrices, expert judgment, and surrogate exposure techniques may be 
applied (Dosemeci et al., 1990). Surrogate exposure measurements, such as the 
length of time employed, the department where employed, or the type of 
machinery being used, introduce their own set of concerns and may not provide a 
dramatic improvement in reliability (Stewart and Herrick, 1991). Regardless of the 
techniques used to back extrapolate past exposures, it is imperative that variability 
and uncertainty are documented in some manner using an accepted approach 
(Tielemans et al., 2002). 

3.3. IMPACT OF ERRORS IN MEASUREMENT 

In most air pollution studies, estimates of exposure are based on available 
measurement data and models which predict exposure at a location during a 
particular time window. The models may involve spatial interpolation models based 
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on data from monitoring networks, but interpolation models also include dispersion 
models which address the inputs of the system (e.g., information about point 
sources of pollutants or environmental parameters). Alternatively, land use 
regression models which incorporate GIS-predictors of pollution concentration such 
as highways/traffic and industrial use of land are used to estimate exposure. 
Whatever approach is used, it is clear that the true measure of concentration cannot 
be accurately measured and the exposure estimates are subject to complex 
measurement error. Sheppard et al. discuss exposure measurement error in air 
pollution studies and note that inference about health effects can be incorrect when 
the measured or predicted exposure used in the analysis is different from the 
underlying true exposure (Sheppard et al., 2012). A full discussion of the 
consequences of measurement error is beyond the scope of this report, but it is a 
well-recognised problem in epidemiological research and Buzas et al. provide a 
comprehensive description of the problems that epidemiologists face when trying 
to infer disease patterns using noisy or indirect measurements of risk factors or 
covariates (Buzas et al., 2014).  

One important consideration is the impact of measurement error on exposure-
response estimates. This is difficult to assess because the exposure estimates are 
subject to complex errors that are not fully understood. However, when exposure 
estimates are included as explanatory variables in a regression model for a health 
outcome, it is likely that the variability of the estimated regression coefficients 
results will be underestimated, and the estimated coefficients will suffer from bias. 
Szpiro et al. developed a general framework for measurement error in spatial 
prediction, and demonstrated that for a fairly general class of exposure models 
there are two components to the measurement error: a Berkson-like component 
and a classical-like component (Szpiro et al., 2011a). The Berkson-like component 
of error results from smoothing the exposure surface using a model that may not 
account for all sources of variation and can be thought of as the part of the true 
exposure that is not predictable from the model. This component behaves like 
Berkson error in that it inflates the standard deviation of the health effect estimate 
and introduces little or no bias (Buzas et al., 2014). However, unlike conventional 
Berkson error, it may not be completely independent of the predicted exposures, 
and it may also be correlated in space. Another component of error comes from 
uncertainty in estimating the exposure model parameters. It is similar to classical 
measurement error in that it is a source of variability in the predicted exposures 
and can introduce bias in health effect estimates as well as change their standard 
errors. The two components are clearly apparent for a simple situation where a 
linear regression model predicts the effect of true exposure on a health outcome, 
and a LUR model based on a selected set of potential predictors is used to estimate 
the true exposure at the residential locations of study participants. Two types of 
error are introduced by using exposure estimates instead of the true exposure. One 
component is the error of prediction that will be present even if the coefficients of 
the LUR model are known exactly. This component is Berkson error and it increases 
the variance of the estimated coefficient in the health model, but does not bias it. 
The second component results from estimating the coefficients of the LUR model 
and is usually termed classical error. This component also increases the variance of 
the estimated coefficient in the health model, but can also introduce bias.  

Basagana et al. presented findings for a LUR model with five predictor variables 
fitted to measurement data from 20, 40 or 80 locations (Basagana et al., 2013). The 
random error variance was set to two different values that resulted in proportions 
of explainable variability in the true exposure of 50% and 75%. The bias in the 
estimated health regression coefficient was in the form of attenuation towards the 
null hypothesis, but fell as the number of measurement sites used to build the LUR 
model increased and the attenuation factor ranged between 0.74 and 0.99 (see 
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Tables 1 and 2 of Basagana et al.). The degree of underestimation of the standard 
error of the health regression coefficient also fell as the number of measurement 
sites used to build the LUR model increased, and ranged between 3.4 and 8.6 fold. 
However, when variable selection from 20 or 100 predictor variables was allowed 
in the development of the estimated LUR model, much greater attenuation of the 
health model coefficients occurred (the attenuation factor ranged between 0.23 
and 0.90), and the naive standard errors of the health model coefficient severely 
underestimated the true variation in all scenarios (between 14.7 and 25.3 fold). The 
strongest attenuation was found when the estimated LUR model could select among 
100 predictor variables, the model was developed with 20 measurement sites, and 
the proportion of explainable variability in the true exposure was 50%. However, 
the naive standard error of the health model coefficient underestimated the true 
variation most when the estimated LUR model could select among 20 predictor 
variables, the model was developed with 20 measurement sites, and the proportion 
of explainable variability in the true exposure was 75%. Coverage of the 95% 
confidence intervals based on naive standard errors was low in all scenarios, but 
especially when variable selection was performed. Similar analyses were performed 
for logistic regression and the results were very similar to those for linear regression 
in terms of attenuation, but naive standard errors showed much less 
underestimation, leading to higher coverage values for confidence intervals. Szpiro 
et al. also performed simulations to investigate the effect of misspecification in a 
3 predictor variable model (Szpiro et al., 2011a). Bias in the health effect estimates 
was very small, but in one situation the mean of the estimated health regression 
coefficient was higher than the true value. The main effect of exposure 
measurement error in spatial prediction was an increase in variance estimates, and 
this was also observed for another measurement error framework by Szpiro et al. 
(Szpiro et al., 2011b). The impact of measurement error is a complex issue, but it 
is clear that Sheppard et al. correctly identified that the precision of many reported 
health effect estimates may be overstated due to bias and/or incorrect standard 
errors (Sheppard et al., 2012). 

As is often the case, the use of potentially inaccurate exposure estimates is justified 
on the basis that exposure misclassification is assumed to be non-differential, 
limiting the ability to detect associations. A recent review of the use of 
geographically modelled environmental exposure estimates concluded that 
‘exposure misclassification is too often dismissed based on the erroneous 
justification that an accurately classified exposure would have led to an even 
stronger estimate of relative risk’ (Chang et al., 2014). The same review also noted 
that differential error can be postulated under a number of reasonable scenarios. 
Bias is not guaranteed to be toward the null even if the misclassification is 
approximately non-differential (Jurek et al., 2008). 

3.4. TRUE RISK PER UNIT OF EXPOSURE 

The results of epidemiological studies of air pollution are typically reported as an 
increase in the risk of an adverse health outcome such as lung cancer mortality that 
is associated with an increment of air pollution. These risk estimates are used to 
quantify the effects of current levels of air pollution i.e. the health or mortality 
burden on a population, or the effect of changes in the level of air pollution (Burnett 
et al., 2014). However, it has been shown in section 3.2.3 that estimates of some 
pollutants at the address of a subject may differ greatly from the level during the 
BREP for health endpoints with a long latent period. A good example is the latest 
update of the H6C study (Lepeule et al., 2012). For lung cancer, the investigators 
reported a RR of 1.37 (95% CI 1.07-1.75 per 10 μg/m3 increase in PM2.5). This is the 
largest of four estimates of the association between lung cancer and PM2.5 exposure 
used by Burnett et al. to calculate burden, but it almost certainly overestimates 
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the effect of exposure. The analysis using Cox regression models by Lepeule et al. 
treated exposure as an annual time-dependent variable and used a 1- to 3-year 
moving average for lung-cancer mortality analyses (a 3-year time window). As noted 
in section 3.2.3, the falling levels of PM2.5 mean that PM2.5 levels during the BREP 
(1959-94) for a lung cancer death occurring at the end of the follow-up period in 
2009 would have had a much wider range than the 1- to 3-year moving average in 
2009, most likely at least 10 times wider. The difference is not as great earlier in 
the study follow-up period (1982-2008), but more lung cancer deaths will have 
occurred towards the end of the follow-up period and the RR estimated using 1- to 
3-year moving average PM2.5 levels will almost certainly considerably overestimate 
the true risk per unit of PM2.5. One of the strongest indications of the importance of 
this effect is the very high RR of 2.84 (95% CI 1.06–7.59 per 10 μg/m3 increase in 
PM2.5) reported by Lepeule et al. for the follow-up period 2001-2009. This 
implausibly high RR is almost certainly due to the very small variation in exposure 
between cities during 2001-2009 compared to that during the BREP, assuming the 
exposure contrasts during the two periods were highly correlated. In section 3.2.3 
it is shown the RR would reduce to at least 1.19 if exposures in the analysis were 
scaled upwards by a factor of six (the range of mean PM2.5 exposures during the 
BREP for lung cancer is likely to be at least 6 times higher than the range of the 1- 
to 3-year moving average for PM2.5 in 2005).  

Few investigators acknowledge the problem, but it was recognised by Raaschou-
Nielsen et al. who stated that “with decreasing air pollution concentrations and 
contrasts over time, risk estimates based on recent contrast might be too high” 
(Raaschou-Nielsen et al., 2013). The authors investigated this by back-extrapolating 
contrasts in two cohorts with long-term PM2.5 monitoring measurements, and in 
seven cohorts with long-term PM10 monitoring measurements. However, the 
investigators only reported the effect on meta-HR when substituting original 
regression results with back-extrapolated regression results in the meta-regression. 
Unsurprisingly, the results for PM2.5 were stated to be identical as only 2 of the 14 
coefficients were changed. However, the meta-HR for PM10 fell from 1.13 to 1.09 
when using the back-extrapolated contrasts. However, the investigators only 
extrapolated back to enrolment, and the absolute difference method used for 
particulate measurements is likely to have resulted in back-extrapolated estimates 
that were highly correlated with estimates for current exposures. This is because 
the adjustments were made using routine measurements from monitoring stations, 
but these were very few in number compared to the number of subjects. Hence, 
the HR would be unlikely to change. Given the low spatial contrast in exposure at 
most centres and the short period of extrapolation, it is likely that the adjustments 
made to individual exposure estimates had low variation compared to the within-
centre variation at baseline.  
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4. CONFOUNDING 

Confounding is a distortion in the estimated exposure effect that results from 
differences in risk between the exposed and unexposed that are not due to 
exposure, and a large portion of epidemiological methodology is concerned with 
avoiding or adjusting (controlling) for confounding (Rothman et al., 2008). 
Confounding is especially important in studies of air pollution and lung cancer 
because of the large effect of smoking; but in order for smoking to be a confounder, 
it also has to be associated with exposure to air pollution in the population from 
which the subjects arise. Smoking is not the only potential confounder. Samet et 
al. discussed other potential confounders in the context of a review of causes of 
cancer among never smokers (Samet et al., 2009). The authors noted that results 
on lung cancer risk from outdoor air pollution exposure among never smokers can 
be biased by residual confounding from occupational exposure to lung carcinogens 
and other social class-related factors. This section looks at how well study 
investigators have adjusted for smoking and other potential confounders with a 
focus on the reliability of the confounder measurements used, and the likelihood of 
residual confounding. It is noted that residual confounding by smoking is likely in 
many studies because the smoking information may be many years out of date, and 
residual confounding by smoking is also possible in studies of never smokers because 
of misclassification of current and ex-smokers as never smokers. It is also noted that 
many investigators claim to have controlled for occupational exposure to lung 
carcinogens, but the measures used are poor or not reported for some of these 
cohorts.  

4.1. INDIVIDUAL VERSUS SPATIAL CONFOUNDING 

Confounding has been described as a distortion of a true relationship between two 
factors (exposure and outcome) by the action of a third variable that is associated 
with exposure in the source population and, conditional on exposure, is also an 
independent risk factor for disease (Thomas, 2009). Confounding is a common and 
significant source of bias in environmental epidemiology, and the common refrain 
that this can be ameliorated by collecting a wider array of confounder data at the 
individual level may fall short of expectations. 

When individuals with risk factors for disease or mortality are grouped together in 
certain areas, those areas will display the health effects stemming from the risk 
factors for those clustered individuals (i.e., “compositional clustering”) (Jerrett and 
Finkelstein, 2005). Contextual effects from such clustering occur when individual 
differences in health outcomes associate with the grouped variables that represent 
the social, economic, and environmental settings where the individuals live, work, 
or spend time (e.g., poverty in a neighbourhood) (Sheppard et al., 2012). Individuals 
living in the more polluted areas frequently have differing underlying health risks 
due to differences in a constellation of factors that influence health (e.g., smoking 
prevalence, diet, and socioeconomic status) compared to people living in less 
polluted areas (Dominici et al., 2014). Likewise, locational determinants of health 
(e.g., hospital or water quality) may also differ across places and are correlated 
with air pollution levels. 

Statistically controlling for this form of confounding in the analysis is vital to 
generating less-biased results, as evidence suggests that the neighbourhood 
ecological/contextual effects associated with such clustering may influence health 
beyond individual risk factors for which data may have been collected (Sheppard et 
al., 2012). But, since many of these determinants of health remain unobserved (or 
at least unrecorded in research datasets), the conventional methods that rely on 
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statistical adjustment only for observed confounders is incomplete. Moreover, 
sufficient adjustments may not have been made even for the measurable 
differences. These unresolved challenges lead to an increased likelihood of biased 
effect estimates (Dominici et al., 2014).  

The Cox proportional hazards modelling done in almost all of the major cohort 
studies of air pollution assumes that the survival experience among all subjects is 
statistically independent (Sheppard et al., 2012). Unfortunately, as discussed 
above, all but a few of those neighbourhood-level intrinsic risk factors can be 
included in any given model of any study due to data unavailability. An 
“incomplete” model may still appear to meet the independence assumption, but in 
reality it cannot. Further complicating matters is the possibility that study subjects 
living in clusters or different sub-clusters within the same cluster will share some 
lifestyle and environmental risk factors which, for individuals living in (sub)clusters 
living farther apart, are not as strongly shared. This suggests that large wide-area 
epidemiologic studies of the health effects of air pollution are inherently 
systematically biased since the mosaic of contextual correlations across a broad 
study area precludes the possibility that a single model is valid for all of the 
neighbourhood clusters within a study, and perhaps none of them. Whether or not 
these neighbourhood-level biases cancel each other out in the end is unknown. 

An excellent example of compositional clustering is the Harvard Six Cities Study, a 
prospective cohort study of particular matter pollution and mortality, a “clean city 
vs. dirty city” comparison of mortality rates on which mortality RRs were calculated 
(Dockery et al., 1993). The results indicated a positive linear concentration-
response, with the two cities with the highest RR (Steubenville, OH and Harriman, 
TN) also having the highest concentrations of particulate matter. As a result of their 
positioning on the scatterplot, those two data points significantly influenced the 
slope of the line towards positivity—that is, a statistically significant relative risk of 
1.26 for the association between mortality and fine particulates. The linear model 
inferred that PM was an important causal agent as was smoking cigarettes. In their 
analysis, the authors adjusted for sex, smoking, BMI, educational attainment, and 
occupational exposure to fumes, dusts, and gases at the individual level. While this 
statistical adjustment removed some of the confounding, the study failed to control 
for compositional confounding factors endemic to the cities being compared. Both 
Steubenville and Harriman are located in areas of the U.S. where quality of life 
indicators are low—high prevalence of chronic disease such as heart disease, high 
drop-out rates from school, and poverty—and where pollution levels are high. The 
remaining four less-polluted cities with lower mortality rates fare better on those 
indicators. One would reasonably expect that Steubenville and Harriman would 
suffer from high mortality rates from a host of contextual factors even without the 
PM contribution, as their initial levels of health were relatively poor. Nevertheless, 
the statistical correlation between PM and mortality was apparent, albeit a 
potentially spurious association due to the presence of contextual confounding. 

Finally, let us consider whether or not contextual factors are, in fact, confounders. 
Confounders must be associated with both the outcome and the exposure. 
Regarding the association with health outcomes, contextual factors acting together 
can result in “sick neighbourhoods”, and individuals within those communities are 
therefore more likely to experience the health or mortality outcomes under study 
since they have initial reduced levels of health due to contextual factors (Dominici 
et al., 2014). For low educational attainment alone--one of many candidate 
contextual confounders-- several studies have observed positive statistical 
associations with air pollutants (Dockery et al., 1993, Hoek et al., 2013, Krewski et 
al., 2000, Lipsett et al., 2011, Miller et al., 2007, Pope et al., 2002). Regarding the 
exposure criterion, the greatest density of area air pollution monitors is in areas of 
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high population density. These urbanized areas also have a large number of 
individuals clustered in low SES areas with associated lifestyle-related health risks. 
Hajat et al. found statistically significant association of neighbourhood-level SES 
(NSES) measures with predicted air pollutant (PM2.5 and NOx) concentrations using 
cohort data from the Multi-Ethnic Study of Atherosclerosis in the U.S. (Hajat et al., 
2013). NSES was measured by income, wealth, education, and occupation. A 
previous extensive review also found that, in general, ambient air pollution 
concentrations were higher in areas of lower SES. In summary, there exists a real 
potential for contextual confounding in observational epidemiologic studies of air 
pollutants, and current analytical methods (O'Neill et al., 2003).  

4.2. SMOKING 

Potential confounding by smoking is of particular importance because of the 
strength of effect. The strength of the smoking effect relative to the potential 
effect of air pollution is well illustrated by Figure 1 of Pope et al (Pope et al., 2011).  

4.2.1. Quality of individual smoking data 

The majority of studies of particulates and lung cancer possess individual level 
smoking information. Of the studies included in the meta-analysis by Hamra et al., 
only the studies by Cesaroni et al and Naess et al. did not possess individual level 
smoking information, so the results of the latter study could not be included in the 
meta-analysis (Cesaroni et al., 2013, Hamra et al., 2014, Naess et al., 2007). In 
addition, a study by Hart et al. only had individual smoking information for a small 
sample (approximately 5%), and the authors assessed the potential impact of 
unmeasured confounders using this small subset of subjects (Hart et al., 2011). 
Nevertheless, it has long been recognised that smoking history information 
collected in many epidemiological studies has reliability issues. For example, 
respondents in a U.S. national survey were questioned about their smoking habits 
in 2002 and 2003 and 11% who reported in 2002 being current or former smokers 
claimed in 2003 that they had never smoked (Soulakova et al., 2012). It is well 
known that a small proportion of subjects known to smoke currently or to have 
smoked in the past based bioassay results or repeated questionnaires will report as 
never having smoked (Wells et al., 1998). Misclassification of smokers as never 
smokers is of particular interest because of concern that the association between 
second hand tobacco smoke (SHS) and lung cancer could in whole or in part be 
ascribed to an upward bias caused by misclassification of smokers as never smokers. 
Such a bias is of less concern in air pollution studies, but it does mean that residual 
confounding by smoking may still be an issue in studies of never smokers. 

Nevertheless, the individual smoking information used in some air pollution cohort 
studies has an important limitation resulting from the fact that it is usually only 
collected at baseline and not updated. For example, individual smoking histories 
collected in 1982 were used in analyses of mortality during the period 1982-2000 in 
ACS CPS-II study in both the full study (Krewski et al., 2009) and a subgroup of 
Californian subjects (Jerrett et al., 2013). Jerrett et al. noted that no follow up 
surveys were conducted in the full ACS CPS-II study, and key lifestyle characteristics 
may have changed during the follow up period. It was also noted that smoking rates 
declined precipitously across California between 1982 and 2000, and if the declines 
in smoking rates were spatially associated with the air pollution levels, then these 
would have had the capacity to confound the air pollution risk estimates. The 
problem is acknowledged by Turner et al. in a study published after the IARC 
evaluation that assessed possible joint effects of cigarette smoking and PM2.5 
exposure on lung cancer risk in ACS CPS-II subjects (Turner et al., 2014). For this 
analysis, follow-up was truncated at the first six years in order to classify 
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participants by cigarette smoking status, because updated information on cigarette 
smoking status was not collected after enrollment. The problem is even more 
pronounced for the H6C study. In the most recent update, Lepeule et al. used 
smoking information collected at enrolment (1974 to 1977) when analysing lung 
cancer mortality over a 36 year period from 1974 to 2009 (Lepeule et al., 2012). 
Information on smoking status (never, former, current) and cumulative smoking 
(pack years included separately for current and former smokers) was collected from 
subjects at enrolment. The subjects were aged 25-74 years at enrollment and 
clearly the information on cumulative smoking, and probably smoking status, of 
subjects who were young at enrollment is unlikely to be sufficiently accurate to 
permit adjustment for the smoking habits during the most recent period of follow 
up. However, the overall risk estimate for lung cancer and PM2.5 exposure is strongly 
influenced by the risk estimate for the most recent follow-up period (2001-2009) of 
2.84 (95% CI 1.06-7.59) for a 10 μg/m3 increase in PM2.5.  

4.2.2. Value of proxy measures for smoking 

The use of smoking histories collected at baseline is clearly a problem for most air 
pollution cohort studies except for those with a very short period of follow up (Hales 
et al., 2012). Errors in confounders compromise our ability to control for their 
effect, leaving residual confounding; if smoking is not associated with air pollution 
then there is no confounding or residual confounding even if the smoking data is 
unreliable. However, the likelihood of residual confounding by smoking is rarely 
acknowledged. 

As noted in section 4.2.1, the majority of studies of particulates and lung cancer 
possess individual level smoking information. One notable exception is the large 
census-based study by Cesaroni et al. (Cesaroni et al., 2013). This is one of the most 
influential studies in the meta-analysis by Hamra et al., but the findings could be 
easily explained by the confounding effect of smoking (Hamra et al., 2014). If it is 
assumed that current smokers of 20 cigarettes per day have a 20 fold increased risk 
of lung cancer and the smoking prevalence among subjects in the lowest quintile of 
PM2.5 exposure is 30%, then smoking prevalences of 31.4%, 33.2%, 32.5%, 32.8% in 
the higher quintiles would give RRs equal to the fully adjusted HRs for lung cancer 
reported in Table 2 of Cesaroni et al. 

Cesaroni et al. adjusted for individual predictors of smoking prevalence such as 
education level and occupation, but also area-level SES factors which have been 
shown to be associated with smoking, after accounting for individual education and 
occupation (Roux et al., 2003). The area-level SES measure was a five-level small-
area (census block; average population of 500 subjects per block) socioeconomic 
position index that was derived based on a factor analysis including education, 
occupation, house ownership, family composition, crowding, and immigrant status. 
It is unclear how well adjustment for individual factors and the socioeconomic 
position index used by Cesaroni et al. compares with adjustment using individual 
smoking data. Sanmartin et al. were able to predict smoking status reasonably well 
using statistical modelling techniques and census information including education 
and employment status, but the set of socio-economic and demographic 
characteristics that were predictive of smoking status varied by age and sex 
(Sanmartin et al., 2013). 

Information on diet, alcohol consumption, and obesity were also not available in 
the RoLS and Cesaroni et al. further adjusted their models for pre-existing 
comorbidities related to smoking habits and diet [chronic obstructive pulmonary 
disease (COPD) hypertensive heart disease, and diabetes]. However, there is little 
information available to assess the value of adjusting for pre-existing comorbidities. 
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Cesaroni et al. cited a study by Gan et al. in support of their approach, although 
these authors used the same three conditions to define a pre-existing co-morbidity 
which was used as a proxy variable for common behavioural risk factors for coronary 
heart disease (Gan et al., 2011), and Gan et al. cited Pope et al. in support of their 
approach, but Pope et al. used age-standardized lung cancer and COPD death rates 
for U.S. counties as proxy indicators of cigarette smoking prevalence in a study 
which evaluated changes in life expectancy associated with differential changes in 
fine particulate air pollution (Pope et al., 2009). 

It is well known that COPD is related to smoking. A prospective study by Lokke et 
al. with a 25 year period of follow up, found that approximately 25% of smokers 
developed COPD, and continuous smokers were 6.3 times more likely to develop 
COPD than never smokers (Lokke et al., 2006). In addition, COPD appears to be an 
independent predictor of lung cancer risk after adjusting for smoking, which might 
reflect in part, a shared genetic susceptibility to chronic smoking-induced 
inflammation (Young et al., 2009). However, the increased risk of lung cancer 
among those with COPD is of much lower in magnitude than the risk of lung cancer 
among smokers. Given that the prevalence of COPD in the RoLS was only 2.0%, 
adjusting for COPD was clearly not sufficient to adjust for the possible confounding 
effect of smoking. Cesaroni et al. did not report the lung cancer risk associated with 
pre-existing COPD, so it is not possible to assess what impact adjusting for COPD 
might have had (Cesaroni et al., 2013). The authors noted that Gan et al. asserted 
that “adjustment for pre-existing conditions might have led to an underestimation 
of the effect, because the comorbidities might act as intermediate variables” (Gan 
et al., 2011). However, it is not clear that COPD is an intermediary for particulates 
exposure and lung cancer. Dimakopolou et al. reported no association between air 
pollution exposure and non-malignant respiratory mortality among ESCAPE study 
subjects (Dimakopoulou et al., 2014). However, even if COPD is an intermediary for 
particulates exposure and lung cancer, the impact of adjusting for COPD will be 
greatly outweighed by the impact of not adjusting for smoking.  

In conclusion, there is little evidence available to assess whether adjusting for 
individual predictors of smoking prevalence such as education level and occupation, 
and area-level SES factors is an adequate substitute for smoking history adjustment. 
COPD may reflect the cumulative effects of smoking, but it is clear that it is not a 
good proxy indicator for individual smoking history. However, when smoking history 
is available, there may be a good argument to adjust for COPD as well as smoking 
history. 

4.2.3. Is evidence from never smokers sufficient to rule out residual 
confounding? 

The ability to detect an effect of air pollution among never smokers would allay 
some concerns about residual confounding by smoking. However, if the same effect 
of air pollution was observed for current, former and never smokers, it could 
indicate residual confounding by other agents. Indeed, it seems unlikely that any 
association would be observed for current smokers as their intake of particulates 
from cigarettes dwarfs their intake from air pollution (see section 7.1), and the 
same is probably true for former smokers. Hamra et al. has recently conducted 
meta-analyses of 18 studies examining the relationship of exposure to PM2.5 and PM10 
with lung cancer incidence and mortality, including analyses by smoking status 
(Hamra et al., 2014). As discussed in Section 2.5, Hamra et al. noted that the meta-
analyses originated with the IARC review and complement the qualitative 
classification of the evidence by the IARC Working Group, but include results from 
the NHS study reported by Puett et al. after the IARC evaluation (Hamra et al., 
2014, Puett et al., 2014). However, only a few of the studies reported risk estimates 
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by smoking status. In the case of PM2.5, Hamra et al. included risk estimates for 
current, former and never smokers from 4 studies: ESCAPE, H6C, ACS CPS-II and 
CNECSS (Hystad et al., 2013, Lepeule et al., 2012, Pope et al., 2002, Raaschou-
Nielsen et al., 2013). Risk estimates for never smokers were also included in the 
meta-analysis from two other studies: the CTS study and the Nurse’s Health Study 
(NHS) study (Lipsett et al., 2011, Puett et al., 2014). Turner et al. also reported 
results for never smokers in the ACS CPS-II study for a longer follow-up period than 
Pope et al (Pope et al., 2002, Turner et al., 2011). Katanoda et al. reported lung 
cancer risks associated with PM2.5 for male current smokers, male former smokers 
and female never smokers included in TPCS (Katanoda et al., 2011). These were not 
included in the meta-analysis, although the results are based on 455 of the 518 lung 
cancer deaths that occurred during the follow-up period. There is even less 
information available for PM10, and only ESCAPE reported risk estimates for current, 
former and never smokers, and the CTS and NHS reported results for never smokers 
(Lipsett et al., 2011, Puett et al., 2014, Raaschou-Nielsen et al., 2013). Puett et al. 
also reported results for PM2.5 and PM10 for a group including people who had never 
smoked or had quit for at least 10 years, and a group including people who currently 
smoked or had smoked in last 10 years (Puett et al., 2014). 

Hamra et al. reported that lung cancer risk associated with 10 μg/m3 PM2.5 was 
greatest for former smokers (meta-RR 1.44; 95% CI: 1.04-2.01), followed by never-
smokers (meta-RR 1.18; 95% CI: 1.00-1.39), and then current smokers (meta-RR 
1.06; 95% CI: 0.97-1.15) (Hamra et al., 2014). Puett et al. states that many 
population studies of associations between chronic exposures to ambient 
particulate matter (PM) and/or traffic related pollutants with lung cancer “have 
observed effect modification by smoking status, providing evidence for the link 
between PM exposure and lung cancer in the absence of the strong influence of 
smoking behaviour” (Puett et al., 2014). However, none of the studies included in 
the meta-analyses by subgroups of current, former, and never-smokers reported 
statistically significant effect modification/interaction by smoking status, and a test 
for homogeneity performed by Hamra et al. suggested no evidence of difference 
between subgroups (p=0.197). The meta-analysis provides some evidence of an 
effect among never smokers, but the information available is limited and the ACS 
CPS-II study has a weighting of approximately 75% in the meta-analysis for PM2.5. Of 
the six studies included in the never smoking meta-analysis for PM2.5, four studies 
reported higher RRs for never smokers and two studies reported lower RRs for never 
smokers. However, the meta-analysis did not provide evidence that the effect of 
air pollution was different for current, former and never smokers. There is even less 
difference between the meta-RR for the smoking subgroups if the risk estimates for 
TPCS are included in the meta-analysis (see Figures 5-7) (Katanoda et al., 2011). 
The lung cancer risk associated with PM2.5 remains the highest for former smokers 
(meta-RR 1.33; 95% CI: 1.04-1.69), but the meta-RR for never-smokers (1.17; 95% 
CI: 1.05-1.30), and current smokers (1.19; 95% CI: 1.01-1.40) are now very similar. 
The meta-RR for former smokers is of a similar magnitude to the lung cancer risk 
associated with PM2.5 reported by Puett et al. among a group of never smokers and 
smokers who had quit for at least 10 years (RR 1.37; 95% CI: 1.06-1.77). This group 
is dominated by former smokers who contributed 45% of person-years, but 79% of 
the lung cancer deaths. A recently published study of Canadian women was not 
included in the meta-analysis but only reported an increased risk of lung cancer for 
ever smokers (Tomczak et al., 2016). The authors reported a significantly elevated 
adjusted HR for lung cancer of 1.34 (95% CI 1.10- 1.65) in relation to an increase of 
10 mg/m3 increase in PM2.5 exposure, but the increased risk was limited to those 
who smoked cigarettes (adjusted HR=1.40; 95% CI: 1.12-1.73) and there was no 
increased risk for never smokers (adjusted HR=1.01; 95% CI: 0.56-1.80) and 
(Tomczak et al., 2016). After the inclusion of risk estimates reported by Katanoda 
et al., only the risk estimates for never smokers show no evidence of heterogeneity 
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(I2=0%, p=0.97). There is evidence of heterogeneity for current smokers (I2=69.4%, 
p=0.011), and the test of heterogeneity for former smokers is close to statistical 
significance (I2=57.2%, p=0.053). Hamra et al. could only perform a meta-analysis 
of the lung cancer risk associated with PM10 for never smokers (meta-RR 1.11; 95% 
CI: 0.94-1.33). Raaschou-Nielsen et al. reported a significantly elevated lung cancer 
risk associated with PM10 among current smokers (RR 1.27; 95% CI: 1.06-1.77), but 
Puett et al. reported no association among nurses who were either current smokers 
or had smoked in the last 10 years (RR 0.99; 95% CI: 0.88-1.12) (Raaschou-Nielsen 
et al., 2013). Overall, the available evidence goes some way to allay concerns about 
residual confounding by smoking, but questions about residual confounding by other 
factors are raised by the associations observed among current and former smokers.  
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Figure 5 Estimates of lung cancer risk associated a 10-μg/m3 change in exposure to PM2.5 for never smokers. Weights represent the 
contribution of each study effect estimate to the overall meta-estimate. 
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Figure 6 Estimates of lung cancer risk associated a 10-μg/m3 change in exposure to PM2.5 for former smokers. Weights represent the 
contribution of each study effect estimate to the overall meta-estimate 
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Figure 7 Estimates of lung cancer risk associated a 10-μg/m3 change in exposure to PM2.5 for current smokers. Weights represent the 
contribution of each study effect estimate to the overall meta-estimate 
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4.2.4. Does restricting analysis to adenocarcinoma reduce the impact of 
residual confounding? 

Of the 3 major histological subtypes of lung cancer (squamous cell carcinoma, 
adenocarcinoma and small cell carcinoma), adenocarcinoma is the most common 
subtype in never smokers (Samet et al., 2007). Consequently, it has been suggested 
that restricting the analysis to adenocarcinoma may be useful to assess for causes 
other than smoking, compared with, for example, patients with squamous-cell 
carcinomas (Raaschou-Nielsen et al., 2013). However, residual confounding by 
smoking may still be a major problem if analyses are restricted to adenocarcinoma. 
In a pooled analysis of case-control studies which included 13,169 lung cancers, 45% 
of lung cancers occurring in never smoking men were adenocarcinomas and 56% of 
lung cancers in never smoking women (Pesch et al., 2012). However, it can also be 
deduced from Pesch et al. that the proportion of adenocarcinomas in men that 
occurred in never smokers was only 4.2% compared to 1.1% of squamous and small 
cell carcinomas, although the difference was much greater for women, and 33.9% 
of adenocarcinomas occurred in never smokers compared to 14.5% of squamous and 
small cell carcinomas. Overall, restricting the analysis to adenocarcinoma does not 
substantially increase the proportion of never smokers (13.0%) compared to analyses 
based on squamous and small cell carcinomas (2.9%), or all histology (6.3%). In 
addition, adenocarcinoma is also strongly associated with smoking. The strength of 
the association between cigarette smoking and lung cancer varies by cell type, with 
the odds ratios historically largest for squamous and small cell carcinomas and 
somewhat smaller for adenocarcinoma, but some studies suggest that the higher 
relative risk (or odds ratio) for small cell or squamous cell carcinoma simply reflects 
lower baseline risks in non-smokers of these two subtypes as compared with 
adenocarcinoma (Khuder, 2001, Yang et al., 2002). 

Raaschou-Nielson et al. noted that they were not able to rule out potential residual 
confounding from smoking (because data for smoking were obtained at enrolment, 
and they did not account for changes in smoking habits during follow-up), but they 
considered that if residual confounding was present, then squamous-cell carcinomas 
should have been associated with air pollution, but in their study the association 
was mainly with adenocarcinoma (Raaschou-Nielsen et al., 2013). However, as 
noted above, adenocarcinoma is also strongly associated with smoking. For PM10, 

Raaschou-Nielsen et al. did not observe an association with squamous cell 
carcinoma (HR=0.84 per 10 μg/m³; 95% CI 0.50-1.40), but a strong association with 
adenocarcinoma was observed (HR=1.51 per 10 μg/m³; 95% CI 1.10-2.08). However, 
for PM2.5, the associations were similar for adenocarcinoma (HR=1.55 per 5 μg/m³; 
95% CI 1.05-2.29) and squamous cell carcinoma (HR=1.46 per 5 μg/m³; 95% CI 0.43-
4.90), suggesting that residual confounding could be present (Raaschou-Nielsen et 
al., 2013). Hystad et al. reported similar associations with PM2.5 in the CNECSS study 
whether the analysis was restricted to adenocarcinoma (OR=1.27 per 10 μg/m³; 95% 
CI 0.84-1.76), or all lung cancers (OR=1.29 per 10 μg/m³; 95% CI 0.95-1.76) (Chen 
et al., 2007, Raaschou-Nielsen et al., 2013). Overall, analyses by histological 
subtype do not seem to be particularly useful to rule out the possibility of residual 
confounding by smoking. 
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4.3. CONFOUNDING BY OTHER FACTORS 

There are a number of other potential confounders other than smoking; these 
include occupational exposure, socioeconomic status (SES) factors and radon.  

4.3.1. Occupational Exposure 

One of the most important potential confounders is occupational exposure. 
Siemiatycki et al. notes that occupational exposure is an important potential 
confounder in air pollution studies because it is plausible that individuals who live 
in highly polluted areas also work in more polluted environments (Siemiatycki et 
al., 2003). It has also long been recognised that a high percentage of lung cancer 
deaths/registrations are occupationally related, and Doll and Peto attributed 15% 
of male lung cancers and 5% of female lung cancers to occupational factors (Doll 
and Peto, 1981). A large proportion of these occupational lung cancers were 
attributed to asbestos exposure. However, the population attributable fraction 
varies considerably between studies and De Matteis et al. reported figures ranging 
from zero to 40% for males from 32 Italian and international studies (De Matteis et 
al., 2008). In the UK, Rushton et al. have estimated that 21.1% of male lung cancers 
and 5.3% of female lung cancers in 2004-2005 were attributable to occupation 
(14.5% overall): the main causes were estimated to be asbestos (40.8%), silica 
(16.7%), diesel engine exhaust emissions (12.8%) and mineral oils (8.6%) (Rushton et 
al., 2012). 

Despite the potential importance of occupational confounding, few investigators 
have made adequate attempts to control for its influence. In some studies (e.g. the 
CTS study) occupational confounding is unlikely to be an important issue (Lipsett et 
al., 2011). The teachers in the CTS study share a relatively uniform occupational 
status, which precludes the need for statistical adjustment for potential exposures 
to lung carcinogens based on potentially problematic job exposure matrices; but 
there was no evidence of an association between lung cancer and particulate 
exposure in the CTS study. Some investigators such as Lepeule et al. acknowledge 
the potential for residual confounding by unmeasured factors such as occupational 
exposures if those factors co-vary with PM2.5 (Lepeule et al., 2012). Other studies 
claim to have adjusted for occupation, but the information collected on 
occupational exposure is sometimes extremely basic and certainly insufficient to 
rule out confounding due to occupational exposure to lung carcinogens. For 
example, RoLS adjusted for occupation categorised as top qualified non-manually 
employed (i.e., managers, university and high school professors, researchers), other 
non-manually employed, manual labour employed, other employed (i.e., armed 
forces and retail sales), housewife, unemployed, retired or other (Cesaroni et al., 
2013). Katanoda et al. adjusted for occupation which was the self-reported 
experience in occupations with potential exposure to gases, fumes, or dust 
(Katanoda et al., 2011). Raaschou-Nielsen et al. claim to have adjusted for 
occupation, but no information on occupational exposure to lung carcinogens was 
collected for 13 of the 17 subcohorts (Raaschou-Nielsen et al., 2013). Table S2 
indicates that information on occupation was only collected for 7 subcohorts, but 3 
of these subcohorts only have information about whether a subject was blue 
collar/manual or white collar/non-manual. In fact, information on occupational 
exposure was collected for only four of the 17 subcohorts, and this was very limited. 
Workers were categorised according to whether they had worked in an occupation 
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with a high risk of lung cancer, but three different definitions were used1 and the 

percentages of workers having an occupation with a high risk of lung cancer ranged 
from 7% to 56%. The categorisation was extremely crude and a worker could have 
been employed in a job entailing exposure to asbestos for at least a year and not 
been categorised as having had an occupation with a high risk of lung cancer. 

Considerable efforts were made to address possible confounding by occupational 
variables in a reanalysis of the ACS CPS-II and H6C studies (Krewski et al., 2000, 
Siemiatycki et al., 2003). The original ACS CPS-II study investigators only used self-
reported exposure to six occupational dusts and fumes: asbestos, chemicals/ 
acids/solvents, coal or stone dusts, coal tar/pitch/asphalt, diesel engine exhaust, 
or formaldehyde and the H6C study investigators used self-reported occupational 
exposure to dusts, gases, and fumes. However, other occupational information was 
available: ACS CPS-II study participants were questioned at baseline about their 
current or last occupation, their occupation of longest duration and the time spent 
in these occupations, and H6C study participants listed their occupation and 
industry at the baseline interview. In the reanalysis, two new variables were 
developed: an indicator of the "dirtiness" of a subject's job and an indicator of 
possible exposure to occupational lung carcinogens. Possible lung carcinogen 
exposure was based on the job titles recorded by the original investigators at 
baseline and on the judgment of experts concerning typical exposure patterns in 
different occupations. A total of 2.7% of the ACS CPS-II study cohort were 
categorised as exposed to occupational lung carcinogens (6.0% of males and 0.3% of 
females), but the proportion rose to 7.5% among those who reported exposure to 
the one of the six occupational dusts and fumes (1.6% among those who did not 
report exposure). No breakdown by PM2.5 exposure was given, but there was no 
association with sulphate particle exposure. The RR due to exposure to occupational 
lung carcinogens, as determined by the occupational lung carcinogens variable, was 
1.23 (95% CI: 1.00-1.51) in the part of the cohort for which PM2.5 exposure data were 
available. A total of 7.5% of the H6C cohort were categorised as exposed to 
occupational lung carcinogens (9.9% of males and 5.5% of females), and the 
proportion rose to 10.2% among those who reported exposure to dusts and fumes 
(5.3% among those who did not report exposure). There was some variability by 
town of residence in the prevalence of subjects exposed to occupational lung 
carcinogens, but prevalence was not clearly associated with the town’s respective 
pollution level. In addition, subjects who had ever been occupationally exposed to 
known lung carcinogens did not exhibit an elevated risk of lung cancer.  

The inclusion of the additional occupational variables did not materially change the 
results of any of the ACS CPS-II study analyses although there was no evidence of an 
association between lung cancer and PM2.5 before the reanalysis: OR=1.01 (95% CI: 

0.92-1.16) for a 10 g/m3 increase in PM2.5. Nevertheless, Krewski et al. noted that 
even after the lung carcinogen index has been applied, the possibility of some 
residual confounding by occupation for mortality from lung cancer could not be 
ruled out (Krewski et al., 2000). In the H6C study, Krewski et al. reported that they 
found a insignificant excess in lung cancer risk related to fine particle air pollution, 
but this risk was attenuated considerably when the occupational confounders were 
included. However, much greater attenuation was achieved by controlling other 
covariates including extended smoking information, education level, and alcohol 

                                                 
1  Latest or longest held job/industry was miner, rubber industry, leather tannery, shoe industry, metal 

worker, port worker, building construction worker, demolition, chimney sweeper, painting, truck- bus- 
taxi driver, china and pottery industry, butcher, car mechanic, waiter, chef, or electrician (SNACK). Same 
list but based on job/industry at enrolment (SALT). Ever employed for at least one year in the above 
job/industry list extended to include foundry, shipyard, glass industry, manufacture of asbestos or 
asbestos cement, asbestos insulation, cement article industry and welder (DCH, EPIC-San Sebastian).  
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consumption. Although, Krewski et al. made considerably more effort to address 
potential occupational confounding, they acknowledged that the occupational 
information collected from study subjects did not represent detailed lifetime work 
histories and that the validity of the occupation coding had not been established in 
relation to the actual jobs and occupations held, especially in the case of the ACS 
CPS-II study which coded job titles into only 68 categories, which indicated that the 
occupational lung carcinogens variable was relatively imprecise.  

4.3.2. Socioeconomic Status/Position 

SES/SEP has been shown to be a powerful driver of health status that could 
potentially confound environmental epidemiology studies if not adequately 
controlled. A recent study in the US demonstrated that ecological-level SES and 
behavioural factors associated with SES accounted for 74% of the variation in life 
expectancy among US counties (Dwyer-Lindgren et al., 2017). There is a large 
number of other potential confounders within the SES rubric (e.g. household 
income, educational attainment, census block GINI coefficients, income disparity, 
dirty vs clean occupations, diet/nutrition). Several of these have objectively 
confounded at least one study’s results and were subsequently controlled for in that 
study’s analysis. However, none have consistently held across all or even most 
studies. While SES may be difficult to operationalize in statistical models, it seems 
likely that some constituent of SES (or some “bundle” of factors) is consistently 
confounding the observational epidemiology studies. It is a reasonable assumption 
that every study’s attempt at capturing the effects of SES is at best a partial success 
and hence residual confounding is a constant threat to the validity of the air 
pollution studies. 

Epidemiologic studies that attempt to adjust for SES or SEP typically include 2-3 
surrogate parameters in their statistical models; however, the list of candidate 
surrogates is in fact much longer. It is beyond the scope of this report to develop 
such a list and critique each of the proxy measures. But, some of the more 
commonly used measures will be briefly discussed. 

Education is perhaps the most commonly used SES/SEP individual-lever surrogate in 
the literature despite some limitations that are often dismissed. This measure 
doesn’t work well for the ends of the age spectrum. Seldom will young post-college 
adults (labelled high SES) have reached “cruising level” income levels directly after 
graduating, thus they may be living a low SES lifestyle over the short run, or even 
beyond depending on their chosen field. At the other end of the age spectrum, 
retirees from the previous generation were less dependent on a college (or even 
high school) education for prosperity and generous benefits in a manufacturing-
based economy. On paper, they might be “low SES”, but not in terms of their 
accumulated wealth.  

Personal income is not always indicative of one’s acquired wealth which is likely a 
better choice for an SES proxy. However, obtaining data on wealth is not practical. 
Home ownership is less frequently used as a marker for relatively higher SES, but 
fails to include the property’s value or how the home was acquired (e.g., via 
inheritance).  

Several ecological-level SES variables and indices have been used. While some of 
these “neighbourhood effects” variables might be competent SES markers for some 
individuals, the ecological-individual correlation may be low for others. In short, 
capturing the full effects of SES/SEP on both levels of observation has remained 
elusive, thus one must assume that an unknown degree of residual confounding will 
be present in every study.  
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4.4. SINGLE OR MULTIPLE POLLUTANT MODELS 

Multipollutant models have the ability of factoring collinearity issues into 
consideration, and for identifying those pollutants showing the strongest 
relationship with a particular outcome (Krall et al., 2015). When properly used, 
they are capable of determining whether the associations observed in single 
pollutant models are confounded by exposure to other pollutants found in ambient 
air. Multipollutant modelling has almost become a necessity in observational studies 
relying on measurements from fixed monitoring sites because of the complex 
relationships that can exist between commonly encountered air pollutants (Dionisio 
et al., 2014). The failure of these networks to adequately account for spatial and 
temporal variability in ambient air concentration can result in a substantial amount 
of error depending on the circumstances. Pollutants emitted by local sources may 
show considerable spatial heterogeneity that cannot be captured by centrally 
located monitoring sites e.g. carbon monoxide (CO), NOx, and elemental carbon 
(EC). Oftentimes these pollutants will show a high degree of co-linearity so any 
associations observed using a single pollutant model may be confounded by the 
presence of other co-related pollutants in the ambient air. Under these 
circumstances multipollutant modelling will help disentangle the relative 
contribution of individual pollutants to the overall risk.  
 
For instance, Tolbert et al. examined the association between emergency 
department visits for cardiovascular or respiratory illness and exposures to three 
pollutants both singly and in combination (Tolbert et al., 2007). As shown in Figure 
8, statistically significant associations were observed between three-day moving 
average air exposures and the risk ratios for cardiovascular and pulmonary 
emergency department visits using a single-pollutant model. When two-pollutant or 

three pollutant models were applied using NO₂, CO, PM₂.₅ EC, ozone or PM₁₀ in some 

combination, the significant associations for NO₂ were no longer observed. Multi-
pollutant modelling is necessary when individual pollutants are treated as 
independent risk factors but their exposure concentrations are strongly correlated, 

(Kim et al., 2007). This is often the case with NO₂, whose airborne concentrations 
are often significantly correlated with other pollutants such as PM₂.₅, ultrafine 
particles (UFP), and CO. In the above example, the results of multi-pollutant 
modelling showed that the strongest associations with cardiovascular visits occurred 
with CO, whereas the respiratory visits were associated with ozone. This example 
demonstrates the importance of multi-pollutant modelling for NO₂ and highlights 
the erroneous associations that may arise when single-pollutant models are relied 
upon as the primary basis for establishing an association. Still, multi-pollutant 
modelling is not a panacea, and assumptions regarding co-linearity between 
pollutants, non-differential seasonal effects, and the absence of appreciable 
interactions with other physical or environmental factors cannot be guaranteed. 
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Figure 8 Results of selected multi-pollutant models for combined 
cardiovascular (A) and respiratory (B) diseases group, 1998–
2004, Study of Particles and Health in Atlanta (SOPHIA) (Tolbert 
et al., 2007) 

 
 

Although providing a methodological improvement, multi-pollutant models are not 
able to rule out that the pollutant with the highest adjusted risk estimate may be 
acting as a surrogate for other unmeasured exposures that are the true causative 
agent. This was well demonstrated in a study by Brook et al., who re-examined 

previous results of an association between NO₂ exposures and non-accidental 
mortality in 10 Canadian cities (Brook et al., 2007, Burnett et al., 2004). Although 

the original study indicated an NO₂-associated increase in mortality that was 

unaffected by adjustments for O₃, CO, or SO₂ in a two-pollutant model, the authors 
re-examined their results and concluded that NO₂ could be acting as a surrogate for 

a specific PM₂.₅ component or possibly even volatile organic compounds (VOCs), 
polycyclic aromatic hydrocarbons (PAHs), or other oxidized nitrogen species. The 
authors based this opinion on the fact that high correlations were observed with a 
number of other traffic-related pollutants including VOCs and PAHs and that the 
strongest associations were observed in the summer months when photochemical 
reaction products are more frequently encountered in aged urban air masses. 

4.5. CONFOUNDING INTRODUCED BY LAND USE REGRESSION MODELS 

It is also worth noting that some of the predictors used for developing air pollution 
exposures with LUR models could introduce confounding when the exposure 
estimates are applied in epidemiological studies. Hoek et al. notes that LUR models 
including population density, for example, may be problematic as population 
density may also be associated with other adverse risk factors such as low socio-
economic status or poor housing stock, which could influence some diseases of 
interest such as asthma (Hoek et al., 2008b). The authors note that one solution to 
this potential problem is the inclusion of area-level confounders that are more 
closely related to the disease of interest (e.g. percentage of low-income families in 
a neighbourhood) than the variable used in predicting air pollution (e.g. number of 
addresses in a 300 m buffer). Cefalu and Dominici note that the current literature 
treats the aspect of exposure prediction to overcome missing exposure e.g. a land 
use regression model, and the process of confounding adjustment in the health-
effects regression model, as two distinct topics (Cefalu and Dominici, 2014). That 
is, methods that account for measurement error in the predicted exposure often do 
not consider whether predicting exposure with covariates that are correlated with 
the outcome might bias the health-effect estimates, while methods designed to 
control for confounding adjustment often do not acknowledge the possibility of 
confounding, while methods designed to control for confounding often fail to 
acknowledge that the exposure has been predicted rather than measured. They use 

A B 
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theoretical arguments and simulation studies to show that the bias of a health-
effect estimate is influenced by the exposure prediction model, the type of 
confounding adjustment used in the health-effects regression model, and the 
relationship between these two. However, a full discussion of this problem is beyond 
the scope of this report, and it may not be particularly relevant to studies of lung 
cancer. 
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5. QUANTITATIVE RISK ASSESSMENT 

A quantitative health risk assessment (QHRA) traditionally involves four stages: 
hazard identification, concentration-response analysis, exposure determination, 
and risk characterization. The following section examines several key 
considerations that are applicable to defining the magnitude of any lung cancer risk 
that may be associated with air pollutant exposures. Two aspects of the QHRA are 
focused upon since they provide insight into several unique characteristics that may 
affect the overall risk determination. The first concerns the results from laboratory 
animal studies and the implications for the species differences that have been 
observed; whereas the second focuses on the shape of the concentration-response 
curve identified in epidemiology studies. 

Assuming that the concentration response function is known with some accuracy, a 
QHRA may be performed using the hazard information obtained from humans or 
laboratory animal studies. In actuality, however, the results from human 
epidemiology studies are often used in preference to the findings from chronic 
exposure studies in non-humans because of the uncertainties associated with 
extrapolating the results from animals to humans. This preference for human hazard 
data has been adopted by IARC in their carcinogen classification scheme (Hesterberg 
et al., 2005). A recent comparison of the lung cancer risk estimates obtained using 
human and rat hazard data for exposures to poorly-soluble particulates provide 
some insight into the differences that exist with the two approaches (Kuempel et 
al., 2009). Lung cancer risks were determined for employees exposed for a working 
lifetime to coal dust, carbon black, titanium dioxide, diesel exhaust particulate, or 
crystalline silica. Following adjustments for the physiological differences between 
rats and humans, the risk estimates obtained from the rat studies were generally 
lower than those obtained using the results from occupational epidemiology studies; 
however, the differences were not statistically different. The authors concluded 
that the low statistical power of the available human studies, the limited particle 
size distributions for the human exposures, and questions surrounding the animal to 
human extrapolation methods may have influenced the results.  

A more robust approach to a QHRA would combine the hazard findings from humans 
and laboratory animals. Such a technique was recently proposed for evaluating the 
lung cancer risks from human and non-human studies with diesel exhaust (Pedeli et 
al., 2011). After adjusting for biases in the three occupational studies and the 
species differences in the three rat carcinogenicity studies, risk ratios were 
calculated and the results pooled in a random effects meta-analysis. The analysis 
showed that the risk ratio for the combined data set was 1.49 (95% CI 1.21-1.78), 
whereas the results for the animal only and the human only data sets were 1.37 
(95% CI 1.08-1.65) and 1.59 (95% CI 1.09-2.10), respectively. The study also found 
that the failure to adjustment for uncertainties in the human epidemiology studies 
resulted in risk ratios that were biased higher (i.e. 1.59 95% CI 1.28-1.89). Although 
these are interesting from a methodological perspective, they need to be placed in 
context, since some organizations including the USEPA advocate against using the 
results from rat carcinogenicity studies in a QHRA because of the particle 
overloading that uniquely occurs in this species (Ris, 2007). 

 

 



 report no. 15/18 
 
 

   
 
 
 
 

  51 

5.1. LABORATORY ANIMAL STUDIES 

Studies in laboratory animals provide a separate line of evidence regarding the 
hazard potential for a substance of concern. Generally, the information from all 
animal studies is examined to generate a weight-of-evidence (WOE) evaluation that 
describes the overall harm posed a substance and its relevance for humans. This 
includes studies performed by atypical routes of administration including 
subcutaneous administration, intraperitoneal injection, and intratracheal 
installation. In contrast, a health risk determination uses concentration-response 
data generated in laboratory animals treated by the most relevant route of human 
exposure, which is typically the inhalation route. Although dozens of studies have 
been performed with different types of the particulate matter found in ambient air, 
many involved routes of exposure that are not relevant to a risk determination. 
There are, however, a large group of inhalation studies in both rats, mice, and 
hamsters exposed to either diesel exhaust or products from coal or wood 
combustion. Of these three particulate sources, studies with diesel exhaust have 
been the most extensively reported upon and they have yielded some interesting 
insights into the lung cancer hazard from particulate exposures.  

Surprising few chronic inhalation studies have been performed using the particulate 
matter collected from urban air (IARC, 2016). Two of the five identified studies 
were nearly 50 years old and failed to describe the experimental approach in 
sufficient detail. The remaining three studies were all performed in mice exposed 
to Sao Paulo air for 2-8 months after intraperitoneal treatment with urethane, 
which was used as a tumour initiator (Cury et al., 2000, Pereira et al., 2011, Reymao 
et al., 1997). Lung tumour promotion was observed under some treatment 
conditions, but not in others. The studies generally suffer from an underreporting 
of the results and a failure to include a clean air control group. Although these 
studies contain some deficiencies, others using diesel exhaust are far more robust 
and have dominated past discussions of the link between air pollution and lung 
cancer. 

A total of 16 chronic inhalation studies have been performed in rats with the diesel 
exhaust exposures lasting up to 7 days per week for 20 hours per day. Several 
thorough reviews have been published that explore both the experimental designs 
and research results from these studies (Hesterberg et al., 2005, IARC, 2014). Many 
of these studies were performed over a twenty-year span beginning in the early 
1980s. All but one of the studies involved whole body exposures to unfiltered diesel 
exhaust at concentrations ranging as high as 7-8 mg/m3. A single nose-only exposure 
has been performed at particulate concentrations of 2 and 10 mg/m3 (Stinn et al., 
2005). Tumor incidence was examined immediately following the last exposure 
session or after a post-exposure recovery period that typically lasted six months. 
All but three of the studies showed some evidence of lung tumour development that 
included the appearance of lung adenomas and squamous cell carcinomas. The 
studies with no statistically significant increase in lung cancer were generally 
performed for shorter exposure durations or included a smaller number of test 
animals.  

The positive results generally found in diesel exhaust exposed rats contrast with the 
findings from other animal species, including mice and hamsters (IARC, 2014). Five 
chronic inhalation studies have been performed in mice and three in hamsters. The 
mouse studies were performed at diesel particulate concentrations ranging from 
0.35 to 7.0 mg/m3 and lasted from 23 to 30 months. The three hamster studies 
employed particulate exposures ranging from 0.7 to 6.6 mg/m3 for a period of 24 to 
30 months. The exposure regimen in both species involved treatments that lasted 4 
to 19 hours per day for 4 to 5 days per week. The results showed that diesel exhaust 
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was not tumorigenic in 7 of the 8 studies. A statistically significant increase in lung 
adenocarcinomas was observed in a single mouse study; however, an exposure-
response relationship was not observed. These laboratory animal studies clearly 
showed that species differences existed in the susceptibility to lung cancer 
following diesel exhaust exposure with rats being far more sensitive than other 
animal species. 

The observed species differences in diesel exhaust induced lung cancer was traced 
to the inability of rats to effectively clear the particulate from their lungs when 
exposed to high concentrations (Hesterberg et al., 2012, Oberdorster, 1995). This 
particle overload phenomenon occurs when the rate of particle deposition in the 
lung exceeds the rate of mucociliary clearance that is mediate by alveolar 
macrophages. This results in excessive particle accumulation in the lung and the 
initiation of an inflammatory response that can lead to the development of chronic 
health effects. This particle overload phenomenon is unique to the rat and does not 
take place in other animal species including humans. Consequently, many risk 
assessors, including those at the USEPA and the California EPA, have stated that the 
results observed in particulate inhalation studies in rats should not be used to 
determine human lung cancer risk (CALEPA, 1998, USEPA, 2002, Warheit et al., 
2016). Surprisingly, although the recent IARC evaluation of air pollution and lung 
cancer described many of the laboratory animals studies that have been performed 
with diesel exhaust, there was no discussion of the rat lung overload observations 
and the relevance of these findings to the human hazard evaluation. 

5.2. CONCENTRATION-RESPONSE 

Concentration-response is an important issue which merits greater discussion than 
can be covered in this report. Most cohort and case-control studies have estimated 
relative risks assuming a log-linear relationship between a continuous exposure 
variable and lung cancer rates. The linear model assumption implies that there is 
no exposure level at which the risk to human health is not incrementally increased 
from zero upwards. In the case of particulates, there are a variety of mechanisms 
that may be acting and which have different implications for the shape of the 
response curve. Raaschou-Nielsen et al. noted that particulate matter with 
absorbed polycyclic aromatic hydrocarbons, transition metals, and other substances 
is capable of causing oxidative stress, inflammation, and direct and indirect 
genotoxicity (Raaschou-Nielsen et al., 2013). Pulmonary overload may also be 
important since toxicology studies of particulates have shown that adverse lung 
pathology is often displayed only after lung clearance mechanisms have been 
surpassed. Saturation of the clearance mechanism will result in appreciable lung 
inflammation as particle build-up occurs in the lungs, although the relevance of this 
mechanism is in dispute for humans (Borm et al., 2015). However, a more important 
factor may be the involvement of ultrafine particulates. The potential impact of 
nanoparticulates in the aetiology of lung cancer from environment exposures has 
not been adequately investigated and may explain many of the discrepancies that 
have been observed in competing epidemiology studies. Nevertheless, the linearity 
assumption may be realistic within the range of collected data.  

Hamra et al. lists six studies of particulates and lung cancer that have considered 
alternatives to a linear exposure–response model: ACS CPS-II, H6C, CNECSS, RoLS, 
NH, and ESCAPE (Cesaroni et al., 2013, Hamra et al., 2014, Hystad et al., 2013, 
Lepeule et al., 2012, Pope et al., 2002, Puett et al., 2014, Raaschou-Nielsen et al., 
2013, Turner et al., 2011). The methods used included categorical modelling and 
application of smoothing functions. Hamra et al. notes that all of these analyses 
concluded that there is no evidence of marked deviation from linearity. However, 
the studies that reported results of categorical modelling did not provide much 
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support for a linear concentration response, and some of the studies had limited 
power to detect a departure from linearity. The Canadian study of Hystad et al. 
reported ORs for linear models and a categorical analysis based on quintiles of the 
distribution for PM2.5. Table 3 shows ORs for the association between lung cancer 
incidence and PM2.5 exposures derived using a national spatiotemporal model. The 
categorical model results for PM2.5 do not suggest linearity with the top four 
quintiles showing flat response curve. ORs for quintiles of NO2 (not shown) also show 
a flat response across the top four quintiles (highly significant ORs between 1.49 
and 1.66). Cesaroni et al. also reported the results of a categorical analysis based 
on quintiles of the distribution for PM2.5 for their study of subjects from Rome, Italy 
(see Table 4). It is notable that the maximum PM2.5 value for the Canadian study of 
19.6 mg/m3 was only slightly higher than the lowest quartile of the Italian study 
(19.4 mg/m3). The HRs for the top 4 quintiles reported by Cesaroni et al. also do 
not suggest that log HR is linearly related to PM2.5 concentration, especially the flat 
response for the top three quintiles. Turner et al. also reported results of 
categorical modelling for non-smokers in the ACS CPS-II study. PM2.5 concentrations 
were categorised using cut-points based on the three quartiles (11.8, 14.3 and 16 
μg/m3), and the 90th percentile (17.9 μg/m3). Fully adjusted HRs for lung cancer 
mortality relative to the reference category (less than 11.8 μg/m3) were presented 
graphically in Figure 1 of Turner et al. As in the two previous studies, the response 
is relatively flat across the four categories. 

Table 3 Adjusted ORs for the association between lung cancer incidence 
and PM2.5 exposure, as derived from national spatiotemporal 
models for Canada (Hystad et al., 2013) 

Exposure Cases Controls Adjusted OR1 

All lung (per 10 μg/m3) 2,154 3,264 1.29 (0.95–1.76) 

Q1 (Hamra et al., 2014) 378 718 1.00 

Q2 [9.0–10.9] 470 598 1.26 (0.99–1.59) 

Q3 [11.0–12.8] 462 619 1.35 (1.06–1.71) 

Q4 [12.9–14.7] 445 646 1.39 (1.08–1.79) 

Q5 [>14.7] 399 683 1.19 (0.90–1.57) 

 
1 Unconditional logistic regression model with random effect for census division 

lived in the longest, adjusted for all individual variables, study province, 
ecological radon exposure, years living in the lowest quintile of neighbourhood 
median household income, percent without a high school diploma and percent of 
households greater than 30 years old dwellings. 
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Table 4 Adjusted HRs (95% CI) of lung cancer mortality according to 
PM2.5 exposure, Rome 2001–2010 (Cesaroni et al., 2013). 

Exposure Cases Adjusted HR1 

All lung (per 10 μg/m3) 12,208 1.05 (1.01, 1.10) 

Q1 [<19.4] 2,090 1.00 

Q2 [19.4–22.5] 2,268 1.04 (0.98, 1.10) 

Q3 [22.5–24.8] 2,397 1.09 (1.02, 1.15) 

Q4 [24.8–26.8] 2,611 1.07 (1.01, 1.13) 

Q5 [>26.8] 2,842 1.08 (1.02, 1.15) 

 
1 Adjusted for sex, marital status, place of birth, education, occupation, and area-

based socioeconomic position. 

The other studies used smoothing functions or splines to test for departures from 
non-linearity. In addition to categorical modelling, Cesaroni et al. also estimated 
natural splines (two degrees of freedom) concentration–response curves for non-
accidental mortality, cardiovascular, IHD, and lung-cancer mortality for PM2.5 and 
NO2 based on a 20% random sample of the study population (Cesaroni et al., 2013). 
There was little evidence of an association between lung cancer and PM2.5 for the 
20% sample and it is not surprising that the lung cancer mortality spline response 
curve for PM2.5 also showed no evidence of an association and hence was linear. 
Raaschou-Nielsen et al. also provided weak evidence that there was no marked 
deviation from linearity. The investigators tested the linear assumption in the 
relationship between each air pollutant and lung cancer in each of the 14 sub-
studies (Raaschou-Nielsen et al., 2013). The test was performed by replacing the 
linear term with a natural cubic spline with three equally spaced inner knots, and 
comparing the model fit of the linear and the spline models by the likelihood-ratio 
test. However, the ranges of PM2.5 and PM10 concentrations were very narrow for 
many centres, and the numbers of lung cancer cases were small for most centres. 
Consequently, the confidence intervals for HRs for some centres were extremely 
wide. It is not surprising that departures from linearity were not detected as tests 
for most centres probably had very limited power to detect a deviation from 
linearity. Indeed, none of the centres had sufficient power to reject the hypothesis 
that there was no association between lung cancer and PM2.5, and only one centre 
would have rejected the hypothesis that the OR was 0.67. Figure 2 of Pope et al. 
shows a nonparametric smoothed exposure response relationship between log RR 
and lung cancer mortality among ACS CPS-II subjects (Pope et al., 2002). The 
response curve did not deviate markedly from linearity, but the response curve was 
much steeper below 12-13 μg/m3. Lepeule et al. reported that model fit was better 
without the spline term for all-cause mortality and specific causes of death (p-
values between 0.24 and 0.43), indicating a linear relationship with PM2.5 (Lepeule 
et al., 2012). However, the study could not detect an interaction during the follow-
up period for lung cancer, even though the RR for a 10 μg/m3 increase in PM2.5 was 
2.84 (95% CI 1.06-7.59) for 2001-2009 compared to 1.37 (95% CI 1.07-1.75) over the 
full follow-up period from 1974-2009. Puett et al. noted that there were no 
statistically significant deviations from linearity (Puett et al., 2014). 

Concentration-response is clearly a complex issue and merits further study, 
particularly at the low concentrations now observed in industrialized Western 
European and North American countries. The Health Effects Institute has funded 
three PM studies in these areas to assess the low-level concentration-response 
relationship. The few studies have considered alternatives to a linear exposure-
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response model have concluded that there is no evidence of a marked deviation 
from linearity (Hamra et al., 2014), but some had limited information to reach such 
a conclusion. Even if the linearity assumption may be realistic within the range of 
data, it doesn’t appear to be a realistic assumption for some studies. Likewise, it 
would be wrong to conclude that the linear model can be used to extrapolate 
beyond the range of the data. However, it is not clear that “integrated exposure-
response” models, which integrate exposures to PM2.5 from different combustion 
types (ambient air pollution, SHS, household solid cooking fuel, and active smoking) 
are better for extrapolation (Burnett et al., 2014, Pope et al., 2011). In the case of 
lung cancer risk, the response curve is dominated by risk estimates from 
epidemiology studies of smokers.  
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6. CONSISTENCY AND HETEROGENEITY 

This section looks at the consistency of the evidence linking exposure to outdoor 
pollution with lung cancer. Consistency of findings from different studies is very 
important when judging causality, and the IARC Working Group noted that:  

“both cohort and case-control studies with exposures assessed in the 
population setting, involving millions of subjects and many thousands 
of lung cancer cases in different parts of the world, consistently 
showed an association between exposure to outdoor pollution and the 
risk of lung cancer, in both sexes and after adjustment for the main 
potential confounders”.  

A causal interpretation is generally considered to be strengthened when studies of 
dissimilar populations, exposure characteristics or research methods yield similar 
measures of effect. However, Phillips and Goodman noted that there are situations 
where inconsistency can make us more comfortable with a causal interpretation 
(Phillips and Goodman, 2006). They note that most investigators find it reassuring 
when the association with an exposure is stronger for histologically-confirmed 
cancers than it is for a less reliable definition of disease status. This is because we 
would expect to see a stronger association when there is less measurement error 
(independent, non-differential). In addition, there are many reasons why one would 
not expect the evidence to be consistent.  

Three characteristics of studies which are often examined in heterogeneity analyses 
are study populations, research methods and exposure characteristics (assessment 
methodology, agent and exposure contrast). These aspects of heterogeneity are 
explored in sections 6.1 to 6.3 for air pollution studies. Population air pollution 
studies are especially heterogeneous in terms of exposure characteristics, and even 
the agent may be heterogeneous. Consequently, consistency might not be expected 
even if there is causality, and explanations for consistency other than causality may 
be required such as residual confounding. Despite the many reasons for expecting 
substantial heterogeneity, meta-analyses such as that by Hamra et al. provide 
relatively little evidence of heterogeneity and section 6.4 looks at the detectability 
of heterogeneity using standard statistical tests (Hamra et al., 2014). Finally, 
section 6.5 looks in detail at the heterogeneity of response between studies in 
Europe and the U.S, and the evidence that some regions show no effect of 
particulates exposure. 

6.1. HETEROGENEITY OF STUDY POPULATION 

Heterogeneity of study population is one factor that can contribute to the variations 
in observed associations between an air pollutant and a human health effect. 
Although air pollution studies typically control for potential confounding from 
conditions such as gender, age, education, marital status, and socioeconomic status 
there are several overlooked characteristics that can dramatically influence lung 
cancer risk. Chief among these are diet, genetic polymorphisms, and physical 
activity. There has been considerable interest in the role of diets high in fruit and 
vegetable as a preventative factor in lung cancer development. In one of many 
studies, the consumption of 500 g/day of fruits and vegetables was predicted to 
decrease lung cancer incidence by 0.2% in citizens of Europe (Soerjomataram et al., 
2010). In another examination of prospective cohort studies, a meta-analysis 
revealed that the consumption of fruits and vegetables was inversely related to lung 
cancer development with the optimal portion being about 2 servings/day (Wang et 
al., 2015). The mechanism for this protective is thought to involve flavonoids found 
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in foods and beverages of plant origin. When dietary consumption to these powerful 
antioxidants was restricted, an increased risk of lung squamous cell carcinoma was 
shown to exist (Christensen et al., 2012). The relationship between diet and lung 
cancer susceptibility continues to be an area of great interest and curiosity with 
recent findings indicating that the consumption of green or black teas has a 
protective effect on lung cancer development, while the consumption of coffee 
increases the risk of lung cancer (Wang et al., 2014a, Xie et al., 2016). 

Another cause of heterogeneous responses seen in observational studies examining 
the relationship between air pollutants and lung cancer is the genetic 
polymorphisms that exist in the genes coding for key metabolic enzymes found in 
the lung. Although the relationship of these polymorphisms to lung cancer risk has 
been studied for a large number genes, several have been investigated in great 
detail (Gresner et al., 2007). These include glutathione-S-transferase (GSTM1) and 
cytochrome P450 1A1 (CYP1A1) (Hung et al., 2003). GSTM1 is responsible for 
detoxifying hydrophilic electrophiles including those derived from polycyclic 
aromatic hydrocarbon epoxides by conjugating them with glutathione. CYP1A1 is a 
microsomal phase 1 activating enzyme that is capable of converting procarcinogens 
such as polycyclic aromatic hydrocarbons into active electrophiles. Individuals 
possessing the null genotype for glutathione-S-transferase (GSTM1) have been 
associated with an increase in the incidence of lung cancer (Shi et al., 2008). The 
study however was restricted to Chinese individuals who display a higher prevalence 
of this genotype (50-60%) compared to Caucasians (10-20%) (Raimondi et al., 2006). 
Similarly, observational studies with Il2462Val polymorphism for CYP1A1 has been 
shown to increase microsomal oxidation capacity and lung cancer risk, but the 
relationship was restricted to meta-analyses performed with Asian populations 
(Wang et al., 2011). No association was observed in Caucasians, Africans or other 
ethnic groups. Together, these studies suggest that ethnicity may be an important 
contributor to response heterogeneity observed in environmental epidemiology 
studies focusing on lung cancer. 

Finally, there is relatively consistent evidence that those individuals who exercise 
on a regular basis are more resistant to lung cancer. A risk reduction was observed 
in both Canadian men and women who engaged in moderate to vigorous exercise 
over a four year period (Mao et al., 2003). The risk reduction was more profound 
among smokers and those with low and medium body masses. Other studies suggest 
that 6-8 hours/week of moderate intensity physical activity could appreciably 
decrease lung cancer incidence in males (Lee et al., 1999). These findings were 
duplicated in a meta-analysis that pooled the results from 11 observational studies 
(Tardon et al., 2005). Both men and women were advantaged by the increase in 
physical activity, with associations being somewhat higher in women. 

The preceding examples provide a glimpse at behavioural and genetic factors that 
can result in considerable heterogeneity when not properly controlled for in a 
cohort or case-control study. If left unmanaged, substantial heterogeneity and 
confounding can occur.  

6.2. HETEROGENEITY OF RESEARCH METHODS 

It was noted in section 2, that there is a wide range of study designs used in air 
pollution studies. The generic problems with the two main designs of cohort and 
case-control including bias have been discussed in section 2 and won’t be discussed 
further here. In addition, section 4 has discussed problems with confounding and 
highlighted the variation between studies in terms of how they controlled 
confounding by smoking and other potential confounders. Data analysis methods 
can further contribute to heterogeneity. 
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6.3. HETEROGENEITY IN EXPOSURE CHARACTERISTICS 

As noted in section 3, there is considerable variability in the way that exposure is 
estimated in different studies. There is variability not only in the methodology used, 
but also the time period for which the exposure contrast is estimated and its 
relevance to the BREP. In addition, there are large differences in the level of 
exposure in different populations and variability across subjects. Even the reporting 
of effect as an increase in risk per unit of exposure has a huge variation in meaning 
between studies. For instance, it might refer to exposure at start of follow up at 
the address where a subject lived then (ACS-CPII), exposure in a short window 
before lung cancer occurred at the baseline address (H6C), or exposure at the 
baseline address at end of follow up (ESCAPE). Given that particulate levels fell 
considerably over the follow up period of many studies, there is clearly a wide 
variation even in the definition of a unit of particulate exposure.  

A less appreciated factor is the variation in pollutant composition. Airborne 
particulate is composed of a heterogenous mixture of solids and liquids that are 
continually undergoing change as the air mass ages. This change chemical 
composition is the result atmospheric photochemical reactions that are mediated 
by hydroxyl radicals (Robinson et al., 2006). When exposed to sunlight, particle 
absorbed PAHs with 2 or 3 rings were shown to disappear rapidly at a bi-exponential 
rate (Kim et al., 2009). The first phase of this loss process typically had a half-life 
of less than 5 hours, whereas the half-life of second phase was generally 14–50 
hours. The degradation of PAHs with 4 to 6 rings was, in contrast, mono-exponential 
and occurred at a far slower rate. Likewise, other studies have shown that the bulk 
chemical composition of particulates can vary greatly for different urban areas 
around the world. These variations are related in part to climatic conditions, local 
emission sources, and the oxidant status of the regional atmosphere.  

Particulate matter contains varying quantities organic carbon, elemental carbon, 
sulfate, nitrate, ammonium, chloride, crustal minerals, and biological materials 
(Harrison and Yin, 2000). The sulfate content of particulate matter is directly 
impacted by local SO2 emissions, whereas the ammonium levels are more influenced 
by regional agricultural practices. PM2.5 collected from western regions of the 
United States have been shown to contain far lower sulfate levels and higher 
amounts of elemental and organic carbon than PM2.5 from eastern locales. Perhaps 
of greatest interest are variations in the trace metal content of particulate matter 
since a recent study has shown an association of PM10 and PM2.5 metal content with 
the risk of lung cancer. Using the information from 14 cohort studies performed in 
eight European countries, statistical significant associations were observed with 
PM2.5 copper (HR 1.25, 95% CI: 1.01-1.53 per 5 ng/m3), PM10 zinc (HR 1.28, 95% CI: 
1.02-1.59 per 20 ng/m3), PM10 sulfur (HR 1.58, 95% CI: 1.03-2.44 per 200 ng/m3), 
PM10 nickel (HR 1.59, 95% CI: 1.12-2.26 per 2 ng/m3), and PM10 potassium (HR 1.25, 
95% CI: 1.02-1.33 per 100 ng/m3) (Raaschou-Nielsen et al., 2016). These results 
however, were only obtained when the analysis was restricted to residents who did 
not change residence during the follow-up. When all members of the cohort were 
included in the analysis, the associations were no longer significant. Land use 
regression models were used to estimate exposure concentration at each subject’s 
residential address. Confounding because of gender, calendar year, age, smoking 
status, smoking intensity, smoking duration, environmental tobacco smoke, 
occupation, fruit intake, marital status, education level, employment status, and 
socio-economic status were all taken into consideration. 

Whereas the study by Raaschou-Nielsen et al. is the only examination of the 
associations between particle matter constituents and lung cancer development, 
other studies of the relationship to pulmonary mortality yield somewhat conflicting 
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results. For instance, Heo et al., failed to see an association between short-term 
exposure to PM-related copper, zinc, and bromine and pulmonary mortality using a 
multi-pollutant model (Heo et al., 2014). A three day lagged exposure to the lead 
in particulate matter was, however, associated with an increase in pulmonary 
mortality in a multi-pollutant model. Likewise Ostro et al. noted an association 
between the silicon from particulate matter and pulmonary and chronic pulmonary 
mortality, but the association was not significant for iron, potassium, and zinc using 
two-pollutant models (Ostro et al., 2010). Some of the heterogeneity in these study 
results is likely attributable to the variable trace metal content in particulate 
matter. A recent study of the variance in trace metal content of PM10 and PM2.5 for 
twenty study locations in Europe found that the concentration of copper, iron, 
potassium nickel, sulphur, silicon, vanadium, and zinc could vary greatly both within 
and between study locations (Tsai et al., 2015). In fact, the variance in PM10 copper, 
iron, and zinc content far exceeded the variation observed PM10, PM2.5, and NO2. 

Clearly particulate matter varies considerably in chemical speciation between 
locations and hence we might not expect to see the same effects per unit of 
particulate exposure in studies from different locations. In addition, the effect of 
exposure to PM2.5 might be expected to be more variable than exposure to PM10 as 
it includes a higher proportion of mutagenic species, many of which are products of 
combustion, and the smaller particles penetrate more deeply into the lung and are 
more likely to be retained, whilst the coarse fraction of PM10 consists mainly of 
minerals and biological materials (Hamra et al., 2014). Less heterogeneity might 
also be expected to be seen in the results of studies where speciation is not an issue 
e.g. studies of ozone, SO2 and NO2. However, there is still likely to be considerable 
variation in other factors such as the study population and exposure methodology, 
and heterogeneity may also have resulted from residual confounding from factors 
such as smoking, occupation, and SES (see section 4). In addition, NO2 is usually 
regarded as reflecting traffic and local combustion sources, while SO2 reflects 
power plant and industrial source emissions; so these pollutants are not treated as 
risk factors in their own right. Section 8 considers further whether the associations 
with lung cancer seen in air pollution studies for PM2.5, PM10 and NO2 can be 
considered as indicating a causal agent, or whether the agents are acting as a 
surrogate for the outdoor air pollution mixture. 

6.4. IS HETEROGENEITY DETECTABLE 

As noted earlier, consistency of findings from different studies is very important 
when judging causality. Consistency is one of the widely used Bradford Hill criteria 
for causation, Hill notes that consistent findings observed by different persons in 
different places circumstances, and times strengthens the likelihood of an effect 
(Hill, 1965). Consistency or the absence of significant heterogeneity is also 
important when judging how widely the results from a meta-analysis can be 
generalised to other populations. For instance, Raaschou-Nielsen et al. concluded 
that the absence of significant heterogeneity in their study (effectively a meta-
analysis of 17 sub studies) meant that the results could be generalised to all 
European populations. In addition, testing for heterogeneity is important when 
assessing an effect modification (Raaschou-Nielsen et al., 2013).  

Raaschou-Nielsen et al. and Hamra et al. used random-effects models to pool the 
results for different studies/cohorts. I² statistics and p values for the Chi-squared 
test from Cochran’s Q were calculated to investigate the heterogeneity among 
cohort-specific effect estimates (Hamra et al., 2014, Raaschou-Nielsen et al., 
2013). Inconsistencies are difficult to identify as statistically significant because 
tests of heterogeneity such as Cochran’s Q are usually insensitive (Higgins et al., 
2003, Rothman et al., 2008), and a non-significant result must not be taken as 
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evidence of no heterogeneity (Higgins and Green, 2011). For this reason, it is 
common practice to use a p value of 0.01, but the test still has low power. I2 
describes the percentage of total variation across a study that is due to 
heterogeneity rather than sampling error. It measures inconsistency (overlap of 
confidence intervals), not the amount of heterogeneity, and thresholds for the 
interpretation of I2 can be misleading since the importance of inconsistency depends 
on several factors (Higgins and Green, 2011, Rucker et al., 2008). I2 will increase 
with increasing numbers of subjects per study even if the heterogeneity variance is 
kept fixed.  

The ESCAPE study illustrates the difficulty of identifying heterogeneity when the 
risk estimates have large sampling variability (Raaschou-Nielsen et al., 2013). 
Cochran’s Q test had very low values for both PM2.5 and PM10, but especially for 
PM2.5. For PM2.5, the Q test value was 6.6 (based on the reported p value), and 
needed to exceed 13 for I2 to be non-zero and 22.36 to be statistically significant 
at a 0.05 level. The value is surprisingly low given the obvious sources of 
heterogeneity listed elsewhere in this report. A considerable amount of 
heterogeneity can be introduced without obtaining a significant test result for 
heterogeneity. Figure 9 shows a modified version of the PM2.5 results for the ESCAPE 
study but with the same meta-HR and 95% CI. However, the HRs of two centres 
(VHM&PP, SIDRIA-Rome) have been increased until they became statistically 
significant, and the HRs of three centres (SNAC-K, EPIC-MORGEN, EPIC-Oxford) have 
been reduced until they became statistically significant. The widths of the 
confidence intervals on the log scale for the HRs of the five centres i.e. the sampling 
variability, were not changed. Despite the obvious heterogeneity, the I2 value was 
only 36.9% and Cochran’s Q test had a non-significant p-value of 0.081. 
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Figure 9 Modified version of PM2.5 meta-analysis shown in Figure 3 of 
Raaschou-Nielsen et al (2013) with increased heterogeneity. 

 

+ Centres with increased HR 
- Centres with decreased HR 

6.5. WHAT EVIDENCE IS THERE OF REGIONAL HETEROGENEITY 

Hamra et al. calculated region-specific (Europe, North America, and other 
continents) meta-estimates for the association between lung cancer and PM2.5/PM10 
(Hamra et al., 2014). The PM2.5 meta-estimates for North America, Europe, and 
other continents were 1.11 (95% CI: 1.05-1.16), 1.03 (95% CI: 0.89-1.20), and 1.13 
(95% CI: 0.94-1.34) per 10 μg/m3 PM2.5, respectively. Hamra et al. noted that the 
confidence intervals were largely overlapping, and homogeneity tests suggested no 
evidence of differences across regions, but there was some evidence of 
heterogeneity across all centres (I2=53.0%, p=0.01), and across centres from Europe 
(I2=50.0%, p=0.112) and other continents (I2=91.0%, p=0.001). However, Table 2 of 
Hamra et al. reported different I2 and p values for North America (I2=6.5%, p=0.378) 
and the overall analysis (I2=56.4%, p=0.007). The meta-analysis included risk ratios 
for PM2.5 and PM10 from the ESCAPE study by Raaschou-Nielsen et al. which are 
themselves meta-HR based on risk estimates from what are effectively 14 separate 
studies (Raaschou-Nielsen et al., 2013). Consequently, it can be argued that the 
HRs from the 14 ESCAPE cohorts should have been included in the meta-analysis. 
The meta-analysis shown in Figure 1 of Hamra et al. was repeated including the 14 
separate HRs from the ESCAPE cohorts instead of the meta-HR result (giving 26 study 
results for PM2.5, and 22 results for PM10). The meta-analysis of Hamra et al. was 
also repeated as it is not possible to replicate it exactly because it is not known 
what assumptions were made to deal with non-symmetric confidence intervals when 
estimating the standard errors of risk estimates. The results of the original and 
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extended meta-analysis are shown in Figure 10. The individual ESCAPE centres have 
very little weight in the meta-analysis, but their low Cochran’s Q test result dilutes 
the test for heterogeneity among European centres reducing I2 to zero. This 
effectively turns the random effects meta-analysis for European centres into a fixed 
effects analysis and results in a much tighter confidence interval for the meta-risk 
estimate for Europe. The European analysis is dominated by Cesaroni et al., 
although this study has no information on the key confounder (i.e. smoking habits) 
(Cesaroni et al., 2013). The overall risk estimate and confidence interval were not 
changed substantially.  

Figure 10 Estimates of lung cancer risk associated with a 10 μg/m3 
change in exposure to PM2.5 including meta-HR result from 
ESCAPE study (A) or 14 individual HRs from ESCAPE study (B) 
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B. 

 
* ESCAPE cohorts (Raaschou-Nielsen et al., 2013) 

 

For PM10, Hamra et al. reported meta-estimates for Europe and North America of 
1.27 (95% CI: 0.96-1.68) and 1.02 (95% CI: 0.96-1.09) per 10 μg/m3 PM10, 
respectively. However, there was only one study result available from outside of 
Europe and North America (Hamra et al., 2014). There was evidence of 
heterogeneity across all centres (I2=74.6%, p=0.000), and across centres from 
Europe (I2=57.7%, p=0.051) and North America (I2=76.5%, p=0.014). Including all 14 
ESCAPE HRs in the analysis again considerably reduced the I2 value for Europe from 
76.8% to 10.9% and considerably tightened the confidence interval of the meta-risk 
estimate for Europe (see Figure 11). 
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Figure 11 Estimates of lung cancer risk associated with a 10 μg/m3 
change in exposure to PM10 including meta-HR result from 
ESCAPE study (A) or 14 individual HRs from ESCAPE study (B) 
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B. 

 
* ESCAPE cohorts (Raaschou-Nielsen et al., 2013) 

 

The ESCAPE study also provides other indications of heterogeneity of response 
across European centres (Raaschou-Nielsen et al., 2013). Although the formal tests 
of heterogeneity were not statistically significant for both PM2.5 and PM10, Morfeld 
et al. argued that there was only evidence of an association between lung cancer 
and particulates exposure for the five centres from the most southerly countries 
(Austria, Italy, and Greece) (Morfeld et al., 2013). For these centres, Morfeld et al. 
calculated a meta-hazard ratio (meta-HR) of 1.33 (95% CI 1.03–1.71, p=0.028) per 5 
μg/m3 PM2.5, and 1.34 (95% CI 1.08–1.65, p=0.008) per 10 μg/m3 PM10. In contrast, 
meta-HR of 0.92 (95% CI 0.63–1.33, p=0.65) per 5 μg/m3 PM2.5 and 1.06 (95% CI 0.80–
1.39, p=0.69) per 10 μg/m3 PM10 were calculated for the centres from the most 
northerly countries (Sweden, Norway, Denmark, The Netherlands, UK). A meta-
regression estimated the relative risks (north vs. south) as 0.79, p = 0.21, for PM10 
and 0.69, p=0.13, for PM2.5.  

In the US, the ACS CPS-II study provides some evidence of an east/west difference 
in response (Krewski et al., 2009). The nationwide analysis gave an HR of 1.09 (95% 
CI: 1.03-1.15) per 10 μg/m3 PM2.5 (random effects model with 44 individual 
covariates and seven ecological covariates). However, intra-urban analyses 
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performed for New York City and Los Angeles gave contrasting results. In Los Angeles 
the HR for lung cancer was 1.39 (95% CI: 0.96-2.01) per 10 μg/m3 PM2.5 (LUR 
exposure, 44 individual covariates model). In contrast, there was an almost opposite 
effect in New York City with an HR of 0.74 (95% CI: 0.30-1.79) per 10 μg/m3 PM2.5 
(LUR model for average 1999-2001 exposure with 44 individual covariates). 
However, the range of PM2.5 concentrations for New York City was very narrow with 
an interdecile range of 1.5 μg/m3. Jerrett et al. also analysed a subset of data from 
California residents in the ACS CPS-II study and reported an HR of 1.12 (95% CI: 0.92-
1.37) per 10 μg/m3 PM2.5. The interdecile range of PM2.5 concentrations for 
Californian residents was 8.97 μg/m3 (Jerrett et al., 2013). However, other regional 
studies of lung cancer and PM2.5 from the U.S. do not support this east/west 
difference in response. A non-significantly elevated risk ratio was reported by one 
Californian study, the Adventist Health Study on Smog (AHSMOG), but not by 
another Californian study, CTS, (Lipsett et al., 2011, McDonnell et al., 2000). 
Nevertheless, there is evidence of heterogeneity of response between studies in 
Europe and the U.S. and the reasons for these differences require more 
investigation as suggested by Morfeld et al. (Morfeld et al., 2013). 
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7. OBSERVABLE CONSEQUENCES AND BIOLOGICAL COHERENCE 

IARC evaluations of carcinogenic risk typically involve an examination of 
mechanistic data. This process includes a thorough inspection of any and all 
information on the physiological, functional, molecular, and kinetic changes that 
accompany the onset of an adverse health effect. This compilation of data helps 
establish biological plausibility, which is one of the nine Bradford Hill criteria used 
to establish causality. Weed and Gorelic noted over twenty years ago that 
coherence, another of Hill’s causal perspectives, was rarely considered in 
assessments of causality: most likely because reviewers may have equated it with 
biological plausibility, thus making it redundant (Hill, 1965, Weed and Gorelic, 
1996). However, Weed and Gorelic noted that Hill had distinguished these 
considerations on logical grounds with an association being plausible if it is 
consistent with current biological knowledge, and coherent if it does “not seriously 
conflict with the generally known facts of the natural history and biology of the 
disease” (Hill, 1965, Weed and Gorelic, 1996). More recently it has been noted that 
the distinction between biological plausibility and biological coherence is a fine 
one, even for the examples listed by Hill (Rothman et al., 2008) . Nevertheless, it 
is usually not difficult to distinguish between plausibility and coherence 
considerations as coherence is based on an assumption that there is causality and 
hence not dependent on biological plausibility. The distinction between plausibility 
and coherence is well illustrated by the difference in lung cancer incidence between 
men and women which is one of the examples listed by Hill in reference to the 
association between smoking and lung cancer. In this case, the consideration is if 
smoking causes lung cancer, does the pattern of lung cancer in men and women 
conflict with that theory? In a recent survey of frameworks for best practices in 
weight-of-evidence analyses, Rhomberg et al. essentially identified coherence as 
one of six key general guidelines for integrating evidence (Rhomberg et al., 2013). 
Their recommendations included asking the question, if the proposed causative 
processes and modes of action were true, what other observable consequences 
should be expected, and then checking if these other manifestations of the 
hypothesized process are in fact seen in available data and do they act as expected 
(Rhomberg et al., 2013). 

This section looks at some observable consequences that might be expected to be 
observed in studies of outdoor air pollution. For instance, would one expect to 
observe a concentration response relationship between estimates of exposure to 
particulates and lung cancer for smokers when the intake of particulates from 
outdoor air pollution is tiny compared to the dose from cigarette smoking? Other 
coherence issues that are considered relate to the findings for adenocarcinoma 
versus those for squamous and small cell lung cancer, and the strength of 
associations observed for men versus women. Another aspect considered in this 
section is whether the associations observed between chronic obstructive 
pulmonary disease (COPD) or non-malignant respiratory disease (NMRD) and air 
pollution are coherent with those for lung cancer. Finally, subsection 7.5 looks at 
whether the results seen in occupational studies are coherent with those from 
population studies. 

7.1. ARE THE EFFECTS SEEN IN CURRENT, FORMER SMOKERS AND NEVER 
SMOKERS COHERENT 

Pope et al. conducted an evaluation of the shape of the PM2.5-mortality exposure–
response relationship for lung cancer (Pope et al., 2011). The investigators derived 
estimates of adjusted relative risks (RRs) over different increments of active 
cigarette smoking for the primary analytic cohort of the ACS CPS-II study of almost 



 report no. 15/18 
 
 

   
 
 
 
 

  68 

800,000 subjects (540,000 had PM2.5 exposure estimates for at least one-time 
period). Comparative estimates of excess risk of lung cancer from long-term 
exposure to PM2.5 were taken from the ACS CPS-II and H6C studies, and comparative 
estimates of excess risk of lung cancer from SHS at home and work were also 
included. For active smoking, the average inhaled dose was assumed to be 12 mg 
PM2.5 per cigarette. Risk and dose estimates (average daily inhaled dose of PM2.5) 
for different increments of active smoking, SHS, and ambient PM2.5 were used to fit 
a simple power function of the form [RR = 1 + α(dose)β]. The active smoking and 
SHS RRs were well fitted by the model RR = 1 + 0.3195(dose)0.7433, where dose is the 
daily exposure of PM2.5 (mg). However, the exposure response curve suggests that 
among smokers, the additional exposure to particulates in air pollution would have 
a minute effect. The mean PM2.5 level at the start (1979-1983) of the ACS CPS-II 
study was 21.1 μg/m3, and had fallen to 14.0 μg/m3 by 1999-2000 (Pope et al., 
2002). However, 21.1 μg/m3 only equates to an average daily dose of inhaled PM2.5 
of 0.38 mg (assuming the same inhalation rate of 18 m3/day as used by the authors 
of the study), whereas a 20 cigarette a day smoker inhales 240 mg of particulates 
each day. The model derived by Pope et al. predicts that the lung cancer RR for 
this smoking rate will only increase from 19.78 to 19.80 when additionally exposed 
to 21.1 μg/m3 PM2.5, assuming that the particulates in air pollution have the same 
toxicity as those in cigarette smoke (Pope et al., 2011). By contrast, the RR of a 
never smoker exposed to the same level of PM2.5 is estimated by the model to be 
1.15.  

Although the model of Pope et al. predicts that the risk of lung cancer in a smoker 
will increase almost imperceptibly when exposed to particulates in air pollution, 
there is evidence of an association between lung cancer and air pollution in most 
studies (Pope et al., 2011). It was noted in Section 4.2.3 that Hamra et al. 
conducted meta-analyses of 18 studies examining the relationship of exposure to 
PM2.5 and PM10 with lung cancer incidence and mortality, including an analysis by 
smoking status (Hamra et al., 2014). Hamra et al. reported that lung cancer risk 
associated with a 10 μg/m3 change in PM2.5 was greatest for former smokers (meta-
RR 1.44; 95% CI: 1.04-2.01), followed by never-smokers (meta-RR 1.18; 95% CI: 1.00-
1.39), and then current smokers (meta-RR 1.06; 95% CI: 0.97-1.15). However, it was 
also noted in Section 4.2.3. that relevant information was also available from TPCS 
and if these results are included, then the lung cancer risk associated with PM2.5 
remains the highest for former smokers (meta-RR 1.33; 95% CI: 1.04-1.69), the 
meta-RR for never-smokers (1.17; 95% CI: 1.05-1.30) is little changed, but the meta-
RR for current smokers (1.19; 95% CI: 1.01-1.40) increases to a similar value to that 
of never-smokers. The meta-RR of 1.19 for current smokers is clearly not coherent 
with the lung cancer risk predicted by the model of Pope et al. which is only 1.005 
for a 10 μg/m3 change in PM2.5 for smokers consuming an average of 1.5 cigarettes 
a day (the lowest daily consumption rate in the study) and much lower for a typical 
daily consumption rate (Pope et al., 2011). In addition, a study of Canadian women 
published after the IARC evaluation has reported a significantly elevated risk of lung 
cancer per 10 μg/m3 change in PM2.5 for ever smokers (adjusted HR=1.40; 95% CI: 
1.12-1.73), but no increased risk for never smokers (adjusted HR=1.01; 95% CI: 0.56-
1.80) (Tomczak et al., 2016). For never smokers, the model of Pope et al. predicts 
an RR of 1.09 for a 10 μg/m3 increase in PM2.5 level, assuming that the particulates 
in air pollution have the same toxicity as those in cigarette smoke (Pope et al., 
2011). Consequently, the meta-RR of 1.17 for never smokers seems surprisingly high 
given, the many different forms of error involved in estimating exposure and the 
attenuation that would occur. The model doesn’t predict what will happen for 
former smokers and much more complex models may be needed (Vlaanderen et al., 
2014). Nevertheless, it is difficult to imagine a plausible scenario in which the 
strongest association between lung cancer and PM2.5 exposure would be observed 
for ex-smokers. 
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7.2. ARE THE EFFECTS SEEN FOR ADENOCARCINOMA AND SQUAMOUS/SMALL 
CELL CARCINOMA COHERENT 

In section 4.2.4 we have noted that adenocarcinoma is the most common lung 
cancer histological subtype in never smokers, but there is also plenty of evidence 
that adenocarcinoma is strongly linked to smoking. It has also been noted that a 
higher proportion of people with adenocarcinoma than squamous or small cell 
carcinoma will be never smokers. For example, the proportion of adenocarcinoma 
cases that were never smokers in one large case-control study was 13.0% versus 
2.9% of squamous and small cell carcinoma cases (Pesch et al., 2012). Consequently, 
some improved ability to detect an association with air pollution might be expected 
if analysis is restricted to adenocarcinoma.  

Substantial increases in the incidence rate of lung adenocarcinoma have been 
reported during the last several decades, and Devesa et al. reported that through 
1997, the incidence of lung adenocarcinoma increased in virtually all areas of the 
world, with the increases among men exceeding 50% in many parts of Europe 
(Devesa et al., 2005). The shift to low-tar filter cigarettes has been hypothesised 
as a cause of the relative increase in incidence rates of adenocarcinomas and 
decrease in squamous-cell carcinomas of the lung in the USA because the smoke has 
a lower content of polycyclic aromatic hydrocarbons, which are thought to be 
associated with squamous-cell carcinoma, and a higher content of nitrates and toxic 
agents formed from NOx such as nitrosamines, which are associated with 
adenocarcinomas. In addition, the deeper inhalation of the smoke results in the 
transport more distally toward the bronchoalveolar junction where 
adenocarcinomas often arise (Chen et al., 2007, Raaschou-Nielsen et al., 2013). Air 
pollution may also be a cause, and studies of time trends and geographical 
correlations have suggested that adenocarcinoma of the lung may be associated 
with NOx emissions (Chen et al., 2007, Chen et al., 2009). However, the evidence 
of an association with NOx is inconsistent and Raaschou-Nielsen et al. reported 
significant associations between NOx emissions and the incidence of both small cell 
carcinoma and squamous cell carcinoma, but not adenocarcinoma of the lung 
(Raaschou-Nielsen et al., 2010).  

There is little evidence in the literature to assess whether adenocarcinoma is more 
strongly associated with particulate exposure. At the time of the IARC evaluation, 
results were available from two studies. The meta-analysis by Hamra et al. also 
includes results form a later study by Puett et al., but isn’t very informative (Hamra 
et al., 2014, Puett et al., 2014). In the ESCAPE study, Raaschou-Nielsen et al. 
reported a much stronger association for adenocarcinoma (HR=1.51 per 10 μg/m³; 
95% CI 1.10-2.08) than squamous cell carcinoma (HR=0.84 per 10 μg/m³; 95% CI 
0.50-1.40) for PM10, but for PM2.5, the associations were similar for adenocarcinoma 
(HR=1.55 per 5 μg/m³; 95% CI 1.05-2.29) and squamous cell carcinoma (HR=1.46 per 
5 μg/m³; 95% CI 0.43-4.90) (Chen et al., 2007, Raaschou-Nielsen et al., 2013). 
However, Hystad et al. reported similar associations with PM2.5 in the CNECSS study 
when the analysis was restricted to adenocarcinoma (OR=1.27 per 10 μg/m³; 95% CI 
0.84-1.76) as for all lung cancers (OR=1.29 per 10 μg/m³; 95% CI 0.95-1.76) (Chen 
et al., 2007, Raaschou-Nielsen et al., 2013). More recently, Puett et al. reported 
stronger associations with both PM2.5 and PM10 in the NHS study when analysis was 
restricted to adenocarcinoma, and Tomczak et al. reported an increase in the HR 
for PM2.5 exposure when analysis was restricted to adenocarcinoma (Hamra et al., 
2014, Puett et al., 2014). Overall, the limited evidence suggests that associations 
are stronger for adenocarcinoma than for other types of lung cancer, and that the 
findings for adenocarcinoma and other types of lung cancer are coherent. 
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7.3. ARE THE EFFECTS SEEN IN MEN AND WOMEN COHERENT? 

There are a number of reasons why the association between lung cancer and 
particulates exposure might be expected to be different for men and women. 
Women are less likely to smoke than men and Pesch et al. reported that 24.2% of 
lung cancers in women occur in never smokers compared to 2.1% for men (Pesch et 
al., 2012). In addition, women are less likely to have been exposed to lung 
carcinogens or dust and fumes at work as was observed by Krewski et al. in a 
reanalysis of the H6C and ACS CPS-II studies (see section 4.3) (Krewski et al., 2000). 
The time spent by women at the address where exposure has been assessed is also 
likely to be higher, especially historically. Hence, it seems more likely that if air 
pollution causes lung cancer, then an association between lung cancer and 
particulates exposure will be observed for women rather than men.  

Hamra et al. recently conducted meta-analyses of 18 studies examining the 
relationship of exposure to PM2.5 and PM10 with lung cancer incidence and mortality, 
but did not include an analysis by gender (Hamra et al., 2014). However, risk 
estimates available from the studies identified by Hamra et al. have been used to 
derive meta-RR for men and women using the same meta-analysis methodology (see 
Figure 12). Five studies reported associations between lung cancer and PM2.5 
separately for men and women, two studies of male subjects and two studies of 
females also reported the association. The findings do not follow the pattern 
expected as the summary lung cancer risk associated with 10 μg/m3 PM2.5 is not 
significantly elevated for women (meta-RR 1.04; 95% CI: 0.99-1.09), but is higher 
and significantly elevated for males (meta-RR 1.16; 95% CI: 1.07-1.26). The risk 
estimates for women show little evidence of heterogeneity (I2 = 0%, p=0.67), but 
there is evidence of heterogeneity for men (I2 = 57.3%, p=0.029). However, the 
composition of the groups of males probably varies more due to variation in the 
prevalence of smoking: the group studied by McDonnell et al. are Seventh Day 
Adventists who would be unlikely to smoke (Katanoda et al., 2011, McDonnell et 
al., 2000). Overall, the observed lung cancer risks for men and women are not 
coherent with our understanding of exposures among men and women. 
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Figure 12 Estimates of lung cancer risk associated a 10-μg/m3 change in 
exposure to PM2.5 for women and men. Weights represent the 
contribution of each study effect estimate to the overall meta-
estimate. 

 

 

NOTE: Weights are from random effects analysis

Overall  (I-squared = 0.0%, p = 0.665)

Pope et al (2002)

Study

Hystad et al (2013)

Lipsett et al (2011)

Cesaroni et al (2013)

Raaschou-Nielsen et al (2013)

Puett et al (2014)

Katanoda et al (2011)

1.04 (0.99, 1.09)

0.99 (0.90, 1.10)

ratio (95% CI)

1.12 (0.69, 1.81)

0.95 (0.70, 1.29)

1.04 (0.96, 1.12)

1.49 (0.74, 3.01)

1.06 (0.90, 1.24)

1.17 (0.98, 1.39)

Odds

100.00

27.72

Weight

1.19

3.04

47.40

0.56

10.99

9.10

%

1.04 (0.99, 1.09)

0.99 (0.90, 1.10)

ratio (95% CI)

1.12 (0.69, 1.81)

0.95 (0.70, 1.29)

1.04 (0.96, 1.12)

1.49 (0.74, 3.01)

1.06 (0.90, 1.24)

1.17 (0.98, 1.39)

Odds

100.00

27.72

Weight

1.19

3.04

47.40

0.56

10.99

9.10

%

  
1.5 1 2 3

Women

NOTE: Weights are from random effects analysis

Overall  (I-squared = 57.3%, p = 0.029)

Hart et al (2012)

Cesaroni et al (2013)

Pope et al (2002)

McDonnell et al (2000)

Hystad et al (2013)

Raaschou-Nielsen et al (2013)

Katanoda et al (2011)

Study

1.16 (1.07, 1.26)

1.17 (0.93, 1.47)

1.06 (1.01, 1.11)

1.13 (1.04, 1.22)

1.39 (0.79, 2.45)

1.59 (1.05, 2.41)

1.32 (0.79, 2.22)

Odds

1.26 (1.14, 1.39)

ratio (95% CI)

100.00

9.71

31.70

26.79

2.05

3.68

2.46

%

23.61

Weight

1.16 (1.07, 1.26)

1.17 (0.93, 1.47)

1.06 (1.01, 1.11)

1.13 (1.04, 1.22)

1.39 (0.79, 2.45)

1.59 (1.05, 2.41)

1.32 (0.79, 2.22)

Odds

1.26 (1.14, 1.39)

ratio (95% CI)

100.00

9.71

31.70

26.79

2.05

3.68

2.46

%

23.61

Weight

  
1.5 1 2 3

Men



 report no. 15/18 
 
 

   
 
 
 
 

  72 

7.4. ARE EFFECTS COHERENT FOR DIFFERENT ENDPOINTS 

Burnett et al. developed an integrated exposure–response model to estimate the 
burden of disease attributable to long-term exposure to PM2.5 by integrating 
available relative risk information from studies of ambient air pollution, SHS, 
household solid cooking fuel, and active smoking (Burnett et al., 2014). This 
approach was adopted because direct evidence to identify the shape of the 
mortality exposure response functions was not available at the high ambient 
concentrations of PM2.5 observed in many places in the world. Burnett et al. made 
the assumption that the observed RRs from epidemiology studies of ambient air 
pollution, SHS, household solid cooking fuel, and active smoking are a function of 
PM2.5 mass inhaled concentration across all combustion particle sources. The 
toxicity of PM2.5 with respect to lung cancer, ischemic heart disease, stroke, and 
COPD was assumed to differ only with regard to inhaled mass and not with PM2.5 
composition. However, the authors acknowledged that the toxicity of emissions 
from different combustion sources may differ, but current knowledge did not allow 
definitive and quantifiable conclusions to be made regarding their relative toxicity. 
A similar approach was suggested by Pope et al. to provide insight into the shape of 
the cardiovascular and lung cancer exposure response relationship over a much 
wider range of exposures (Pope et al., 2011). Pope et al. integrated epidemiologic 
evidence from ambient air pollution, SHS, and active smoking in the absence of 
empirical epidemiologic evidence on the magnitude of the association with 
mortality at high exposures of PM2.5 in ambient environments. 

Much stronger elevations in disease risk among smokers are seen for lung cancer 
and COPD than ischaemic heart disease and stroke. Consequently, more consistency 
might be expected between effects seen for COPD and lung cancer in air pollution 
studies, especially if there is some truth in the toxicity assumption made by Burnett 
et al. (Burnett et al., 2014). Consequently, this section will focus on COPD and NMRD 
as many studies report results for NMRD but not COPD, and COPD deaths make up a 
large proportion of NMRD deaths. COPD, like lung cancer, is strongly associated with 
tobacco smoking which is recognised as the most important risk factor for the 
development and the progression of COPD. Schikowski et al. noted that although 
tobacco smoke and combustion-related air pollution emit a range of pollutants in 
common, the role of ambient air pollution on the underlying chronic disease 
processes that ultimately lead to COPD are not well investigated (Schikowski et al., 
2014a). Schikowski et al. reviewed evidence from eight morbidity and six mortality 
studies (Schikowski et al., 2014b). It was noted that neither mortality nor 
hospitalisation studies could unambiguously distinguish acute from long-term 
effects on the development of the underlying pathophysiological changes, and that 
the evidence of chronic effects of air pollution on the prevalence and incidence of 
COPD among adults was suggestive but not conclusive. Schikowski et al. also 
reported little evidence of association between PM2.5 exposure and incident and 
prevalent COPD among subjects in the ESCAPE study (Schikowski et al., 2014a). The 
CPRD study conducted in the UK reported a significant association between PM2.5 
and COPD with an HR of 1.43 (95% CI, 1.00-1.99) per 10 μg/m3 PM2.5, but limited, 
inconclusive evidence for associations between air pollution and COPD incidence 
(Atkinson et al., 2015). 

If the assumption made by Burnett et al. that the toxicity of ambient air pollution 
and tobacco smoke can be related to PM2.5, then one would expect mortality due to 
NMRD to be elevated in population studies of air pollution (Burnett et al., 2014). 
However, this evidence is also inconclusive. Hoek et al. reviewed the literature and 
reported that the random effect pooled estimate per 10 μg/m3 for PM2.5 was 1.029 
(95%CI, 0.941-1.126 (Hoek et al., 2013). The heterogeneity across studies was 
statistically significant with an I2 statistic of 59%. Studies published after this review 
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continued to be inconsistent. The CPRD study reported a highly significant 
association between PM2.5 and NMRD with an HR of 1.54 (95% CI, 1.27-1.86) per 10 
μg/m3 PM2.5, but a much weaker association with lung cancer (HR=1.11; 95% CI, 
0.85-1.43) (Carey et al., 2013). The association with NMRD was even stronger for 
never smokers (HR=1.99; 95% CI, 1.50-2.61), and significant associations with PM2.5 
exposure were also observed for current and ex-smokers. In contrast, Dimakopoulou 
et al. reported a protective effect of PM2.5 exposure for NMRD among ESCAPE study 
participants with a meta-HR of 0.79 (95%CI, 0.44-1.25) per 10 μg/m3 PM2.5, with a 
statistically significant reduction among never smokers (meta-HR=0.22; 95% CI, 
0.00-0.77) (Dimakopoulou et al., 2014). However, Raaschou-Nielsen et al. reported 
a non-significantly elevated risk of lung cancer among ESCAPE study participants 
(meta-HR=1.39; 95% CI, 0.91-2.13) (Raaschou-Nielsen et al., 2013). Clearly the 
assumption made by Burnett et al (2014) about the toxicity of particulate matter 
contained in ambient air pollution and tobacco smoke is unrealistic, as they 
themselves acknowledge. Nevertheless, much more consistency might have been 
expected between the results for lung cancer, COPD and NMRD in air pollution 
studies. In addition, making extrapolations from air pollution studies using findings 
from studies of tobacco smokers to extend the dose range does not appear to be 
supported in the case of respiratory disease. 

7.5. ARE THE EFFECTS SEEN IN POPULATION STUDIES COHERENT WITH THE 
EFFECTS SEEN IN OCCUPATIONAL STUDIES? 

Risk assessors are compelled to use the entire body of evidence when evaluating 
the strength of any arguments regarding causal associations between an air 
pollutant and particular human health effect. This includes an examination of 
environmental and occupational epidemiological evidence. In some cases, such as 
diesel exhaust, the conclusions regarding causality are derived solely from 
occupational studies because of the difficulty collecting reliable measurements in 
the ambient environment (Vermeulen et al., 2014). Since air pollutants represent a 
highly complex mixture of thousands agents that may exist as solids, liquids, or 
gases, there is always a concern that the pollutant of interest may simply be serving 
as a surrogate for the actual toxicant (Mayoralas-Alises and Diaz-Lobato, 2012). To 
partly circumvent this problem, epidemiologists often look to identify workplace 
cohorts to understand any putative relationships that may exist. Although a number 
of lung carcinogens have been identified through workplace studies, these have 
largely involved substances that are not primary air pollutants (Steenland et al., 
1996). Consequently, there is little to no concordance between the lung carcinogens 
identified in environmental studies and those identified in occupational studies. An 
exception to this statement is diesel exhaust particulate, which can be found in 
both occupational and community environments. The diesel exhaust particulates 
found in ambient air cannot, however, be effectively separated from the 
particulates released from other combustion sources. Consequently, the workplace 
provides a good surrogate environment where secondary emission sources can be 
identified and accounted for in a health effects investigation. The results from these 
occupational studies can then provide a basis for making a hazard determination for 
the general public.  

In fact, these were the circumstances surrounding IARCs recently completed 
evaluation diesel exhaust and lung cancer (IARC, 2014). This expert review used 
new and updated information from several occupational epidemiology studies to 
conclude the existence of a causal relationship that warranted the classification of 
diesel exhaust as a group I human carcinogen. Although dozens of occupational 
epidemiology studies have been performed with diesel exhaust over the years, the 
opinion was largely based on the results from three studies where the historical 
reconstruction of past exposures was purported to be vastly improved (Benbrahim-
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Tallaa et al., 2012). In their analysis, IARC acknowledged the availability of 
environmental epidemiology data on the association between lung cancer and 
particulate matter; however, the information was not included in the review 
because it did not make a material contribution to the insight gained from the 
occupational studies. The key studies that were weighed heavily in the IARC analysis 
included investigations with non-metal miners, railroad workers, and those in the 
trucking industry.  

The Diesel Exhaust in Miners Study (DEMS) attracted the most attention by the IARC 
review committee, since it included a retrospective cohort and a nested case-
control evaluation of over 12,315 workers employed at eight U.S. non-metal mines 
where the use of diesel-powered equipment was common underground (Attfield et 
al., 2012, Silverman et al., 2012). Both studies used measurements of respirable 
elemental carbon (REC) as the basis for reconstructing historical exposures to diesel 
exhaust. For those time-periods where REC measurements were not directly 
available (approx. 30-50 years), the values were estimated based on past knowledge 
of carbon monoxide (CO) levels in the mines. The trend in these measurements was 
then compared to the REC exposure levels available for a three-year period to 
determine the mathematical relationship between CO and REC. To compensate for 
the fact that CO measurements were unavailable for periods earlier than about 
1976, the authors used the total horsepower output of diesel equipment being used 
in each mine, the length of use of each piece of equipment, and the mine exhaust 
ventilation rate to devise a surrogate for the CO measurements that were 
unavailable. Both studies controlled for smoking and other confounders including 
silica, asbestos, non-diesels PAHs, radon, and respirable dust. The cohort study 
revealed that the lung cancer standardized mortality ratio (SMR) was 1.26 (95% CI 
1.09-1.44) for the complete cohort, which included both above ground and 
underground worker locations. This association was obscured when the results were 
stratified by location. The nested case-control study included 198 individuals with 
lung cancer that were matched with 582 controls on the basis of location, gender, 
ethnicity, and birth year. Exposure cut-points (quartile and tertile) were established 
using cumulative exposure, exposure intensity, and exposure duration in years. 
Confounding from smoking, mine location, and non-malignant respiratory disease 
were taken into consideration. The results for all workers above and below ground 
showed a statistically significant increase in the risk for lung cancer for cumulative 
exposures lagged for 15-years.  

Although the results from these two NIOSH-sponsored studies have been widely 
cited and used in support of listing diesel exhaust as a lung carcinogen, they 
continue to be controversial. The most commonly levelled criticism centred on the 
methods used to determine historical REC exposures on the basis of CO levels that 
were calculated rather than measured (Crump and Van Landingham, 2012, 
McClellan, 2012). Other critiques included an over adjustment for the healthy 
worker survival effect, a selection bias in the identification of matched controls, 
and discrepancies seen in above and below ground workers (Boffetta, 2012, Mohner 
and Wendt, 2017). Despite these views, an independent review of the findings from 
DEMS found that it was designed and constructed in a logical fashion with good use 
of available information for the exposure reconstructions (HEI, 2015). The panel 
concluded further that the results were valid for use in a quantitative risk 
assessment.  

The IARC review of lung cancer and diesel exhaust also examined the results from 
a retrospective cohort study of workers in the trucking industry (Garshick et al., 
2008, Garshick et al., 2012). Unionized male workers from four national trucking 
companies were recruited to participate in the study based on the availability of 
historical records. Exposure histories were established for 31,135 workers using the 
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coefficient of haze (COH) as a surrogate for elemental carbon (EC) measurement 
which were unavailable for the period from 1971 to 2000. The EC measurements 
collected from 2001 to 2006 were used to validate the COH exposure model. Monthly 
cumulative EC exposures were used to determine any associations with lung cancer 
using a proportional hazard model that included terms for race and residential 
location. After adjusting for employment duration which was inversely associated 
with lung cancer risk, the analysis with a 5-year lag found a linear exposure-
response relationship with a hazard ratio of 1.07 (95% CI 0.99-1.15) per 1000 μg/m3 
months of cumulative exposure. A major drawback of this study was the failure to 
adjust the finding for cigarette smoking, which the authors felt was not a serious 
problem since the risks were not affected when the results were adjusted for the 
smoking rates obtained in a survey of workers in the industry.  

The last occupational cohort study explicitly cited by IARC in their review of diesel 
exhaust focused on the associations observed in a group of 54,973 U.S. railroad 
workers (Garshick et al., 2004, Laden et al., 2006a). The 38-year study from 1959 
to 1996 began at a time when diesel engines began replacing coal-fired locomotives. 
Using historical records, cumulative diesel particulate exposures were estimated 
from the annual average emission adjustment factor (EAF) for each of the 
locomotives in use during the study period. This measure of exposure was used along 
with a diesel fraction metric that represented the probability of a diesel particulate 
exposure for a given year. The study did not include an adjustment for smoking or 
any other potential confounders other than age and the healthy worker effect. 
Increasing exposure-response trends were observed for lung cancer in those workers 
hired from 1959 to 1966 when the conversion from steam engines to diesel was 
complete. In contrast, regardless of the exposure level, a relative risk of 1.77 (95% 
CI 1.50-2.09) was observed. There was no evidence of an exposure-response 
relationship in those workers hired before 1995 or when exposures were measured 
as cumulative intensity years. Consequently, some have argued that the study does 
not support the existence of a causal link between diesel exhaust and lung cancer 
(Gamble et al., 2012, Mohner and Wendt, 2017).  

At first glance, the results from these recent workplace investigations with diesel 
exhaust would seem to support the belief that a causal relationship exists between 
lung cancer and outdoor air pollution and particulate matter (Loomis et al., 2013). 
In fact, despite the continued controversy regarding the suitability of these studies 
in ongoing causality discussions, the results from these three cohort studies with 
diesel exhaust provide suggestive evidence that a relationship may exist. This 
remark, however, must be tempered with the knowledge that a well-conducted 
retrospective cohort study in potash miners did not find an association between 
diesel exhaust exposures, represented as REC levels, and lung cancer (Mohner et 
al., 2013). This lack of concordance between studies, the acknowledged absence of 
objective exposure measurements, and methodological discrepancies has led some 
to conclude that sufficient information is not yet available regarding causality and 
that a clear exposure-response relationship cannot be identified for diesel exhaust 
(Moolgavkar et al., 2015, Sun et al., 2015). This ongoing debate may provide a 
reason why the aforementioned studies were not included in the IARC monograph 
on air pollution and lung cancer (IARC, 2016). Instead, the evaluation relied on 
results from occupational epidemiology studies involving professional drivers, police 
officers, mail carriers, and filling station attendants exposed to particulate matter 
from a variety of sources. But these studies are all compromised by the fact that 
indirect measures of exposure (period of employment, years of employment, type 
of driving) were used as a surrogate for the diesel exhaust levels (Tsoi and Tse, 
2012). These problem areas with the occupational epidemiology studies with diesel 
exhaust need to be resolved before they provide meaningful support for the findings 
from environmental epidemiology studies.  



 report no. 15/18 
 
 

   
 
 
 
 

  76 

8. INDICATOR OF AIR POLLUTION OR CAUSAL AGENT 

Epidemiological studies of lung cancer and air pollution typically include measures 
of regulated pollutants such as PM2.5, PM10, NO2/NOx, SO2 and ozone, and some have 
included measures of traffic intensity or distance from heavy traffic roads as 
surrogate measures of traffic-related air pollution. The most comprehensive 
information is available for PM2.5, PM10 and NO2. Particulate matter is often treated 
as both an indicator of air pollution and as a potential causal agent whereas NO2 is 
generally treated as an indicator of air pollution, although there is some evidence 
that trends in the incidence of adenocarcinoma of the lung may be explained by 
NOx emissions. If particulate matter does play a causal role, then it is more plausible 
that it is due to PM2.5 rather than the coarse component of PM10. Hamra et al. 
focuses attention on PM2.5 because it includes a higher proportion of mutagenic 
species, many of which are products of combustion (Hamra et al., 2014). In 
addition, Hamra et al. noted that smaller particles penetrate more deeply into the 
lung and are more likely to be retained whilst the coarse fraction of PM10 consists 
mainly of minerals and biological materials.  

Nitrogen dioxide is generated by some of the same sources that generate PM2.5 (e.g. 
traffic) and levels are correlated with those of PM2.5, but as an indicator of air 
pollution, NO2 does not reflect power plant emissions (as SO2 does), which are 
another source of PM2.5. In health studies, estimated PM2.5 and NO2 exposures of 
subjects are often highly correlated e.g. Cesaroni et al. reported a correlation of 
0.79 in an Italian study of over a million subjects (Cesaroni et al., 2013). However, 
the pattern of exposure is very different as NO2 arises from local sources and is 
known to vary over smaller areas in proximity to traffic, whereas PM2.5 is a mixture 
generated by primary and secondary sources that is more regionally dispersed 
(Gilliland et al., 2005). Consequently, levels of NO2 recorded at central monitoring 
stations do not reflect the fine scale on which these variations occur. The localised 
pattern for NO2 can be clearly seen in Figure 1 of Cesaroni et al. which shows maps 
of estimated concentrations of PM2.5 and NO2 levels for residents of Rome (the NO2 

pattern is described as having higher “resolution”) (Cesaroni et al., 2013). LUR 
models might be expected to estimate intra-urban NO2 better than PM2.5 and there 
is some evidence of this difference; although the disparity was fairly small in the 
ESCAPE study (Krewski et al., 2009, Wang et al., 2014b). However, Montagne et al. 
reported that correlations between modelled outdoor estimates and outdoor and 
personal measurements within three cities were much higher for NO2 than PM2.5 

(Montagne et al., 2013). 

If PM is a causal agent, then one would expect that PM2.5 would be associated more 
strongly with lung cancer than PM10, and a weaker association will be observed for 
NO2. Hamra et al. reported similar meta-estimates for the association between lung 
cancer and PM2.5 and lung cancer and PM10, although the latter meta-estimate was 
less precise (Hamra et al., 2014). At a regional level there were differences, and 
the North American meta-estimate for PM2.5 (based on eight studies) was 
significantly elevated, whereas the corresponding meta-estimate for PM10 (based on 
five studies) was not suggestive of a relationship between PM10 and lung cancer. 
However, the PM2.5 meta-estimate for North America is heavily influenced by the 
result from the ACS CPS-II study which was taken from the extended analysis by 
Krewski et al.; whereas the PM10 result for the ACS CPS-II study was taken from the 
earlier report by Pope et al. which had less refined exposure data and a slightly 
shorter follow-up period (two years fewer), and had less impact on the meta-
estimate (Krewski et al., 2009, Pope et al., 2002). In contrast, the PM10 meta-
estimate for Europe is much more suggestive of an association than that for PM2.5, 
but this is largely due to a single study in the meta-analysis for PM2.5 (Beelen et al., 
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2008b, Heinrich et al., 2013). However, risk ratios for PM2.5 and PM10 taken from the 
seven studies included in the meta-analysis of Hamra et al. are highly correlated. 
PM2.5 risk estimates were standardised to a change of 6.5 μg/m3, (i.e. assuming a 
PM2.5 to PM10 ratio of 0.65) (Hamra et al., 2014). In addition, estimates for the 
AHSMOG study were both taken from the report on lung cancer mortality by 
McDonnell et al., instead of using the PM10 estimate from the report on lung cancer 
incidence by Beeson et al. which only studied PM10 (Beeson et al., 1998, McDonnell 
et al., 2000). In addition, both estimates for the ACS CPS-II study were taken from 
Pope et al. as Krewski et al. did not report a risk estimate for PM10. The correlation 
between the risk ratios for PM2.5 and PM10 is 0.98 (see Figure 13) (Krewski et al., 
2009, Pope et al., 2002). 

In order to compare the quantitative evidence of association for PM and NO2, a 
meta-analysis was performed of the lung cancer risk associated with exposure to 
NO2. This was done in two ways in a comparable way to the meta-analyses for PM 
in section 6.4. One analysis included the meta-HR from the ESCAPE study reported 
by Raaschou-Nielsen et al. and the other included all 17 individual HRs from the 
ESCAPE centres that had estimates for NO2 (see Figure 14A and B) (Hamra et al., 
2014, Raaschou-Nielsen et al., 2013). Hamra et al. performed a similar meta-
analysis for NO2 to that shown in Figure 14A, but included a non-significant result 
from the study by Filleul et al. that its authors did not consider to be the most valid 
result (Filleul et al., 2005, Hamra et al., 2014). In addition, Hamra et al. did not 
include the result reported by Vineis et al. for the European Prospective 
Investigation into Cancer and Nutrition (EPIC) study because of overlap with the 
ESCAPE study, but less than a quarter of the lung cancer cases studied by Vineis et 
al. were included in the ESCAPE study, the exposure methodologies and designs of 
the two studies were completely different (Raaschou-Nielsen et al., 2013, Vineis et 
al., 2006). Estimates by sex for the AHSMOG study were taken from a mortality 
analysis by Abbey et al., and were combined using fixed-effects estimation in the 
analysis reported here and by Hamra et al. (Abbey et al., 1999, Hamra et al., 2015). 
The significantly elevated RR for NO2 in the AHSMOG mortality analysis was not 
confirmed in a corresponding analysis of lung cancer incidence by Beeson et al. 
which included more cases (36 versus 29), but the finding could not be included in 
the meta-analysis as the RR was not reported for women (Abbey et al., 1999, Beeson 
et al., 1998). However, the AHSMOG study has little weight in the meta-analysis. 
The meta-relative risk for lung cancer was 1.06 (95% CI: 1.02-1.14) per 10 μg/m3 
increase of NO2 (Figure 14B), compared to meta-relative risk of 1.04 (95% CI: 1.01-
1.08) reported by Hamra et al. (Hamra et al., 2015). 

The meta-analysis for NO2 is probably more convincing than that for PM2.5 when one 
takes into consideration the fact that the range of NO2 estimates for subjects in 
most studies is much larger than the range of PM2.5 estimates. For example, Cesaroni 
et al. reported an IQR for NO2 of 10.7 μg/m3 and an IQR for PM2.5 of 5.8 μg/m3, but 
the difference is much greater in most studies: the IQR for NO2 in the CNECSS study 
is six times greater than that for PM2.5;.the ratios of the SD of estimates of NO2 to 
PM2.5 for 14 centres in the ESCAPE study ranged from 1.4 to 11.7 with a median of 
5.1; and the ratios of the IQRs of estimates of NO2 to PM2.5 in the ACS-CPII study 
were 3.2 for PM2.5 results from 1979-83 and 4.7 for PM2.5 results from 1999-2000 (the 
NO2 measurements were taken in 1980) (Cesaroni et al., 2013, Hystad et al., 2013, 
Krewski et al., 2009, Raaschou-Nielsen et al., 2013). Hamra et al. reported a meta-
relative risk for lung cancer of 1.09 (95% CI: 1.04-1.14) per 10 μg/m3 increase of 
PM2.5 and 1.04 (95% CI: 1.01-1.08) per 10 μg/m3 increase of NO2 (Hamra et al., 2015). 
Even a 2-fold bigger exposure contrast for NO2 than PM2.5 would result in the relative 
risk for NO2 increasing to 1.08 (95% CI: 1.02-1.16), and this further increases to 1.12 
(95% CI: 1.02-1.16), if the results of the meta-analysis shown in Figure 14B are used.  
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Figure 13 Comparison of risk ratios for PM10 (10 μg/m3 change) and PM2.5 
(6.5 μg/m3 change) for studies which reported both estimates. 

 

1 = Raaschou-Nielsen et al (2013), 2 = Pope et al (2002), 3 = Hart et al (2011), 4 = Lipsett et al (2011), 
5 = Puett et al (2014), 6 = Carey et al (2013), 7 = McDonnell et al (2000)  
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Figure 14 Estimates of lung cancer risk associated with a 10 μg/m3 
change in exposure to NO2 including meta-HR result from 
ESCAPE study (A) or 17 individual HRs from ESCAPE study (B) 
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B.  

 
* ESCAPE cohorts (Raaschou-Nielsen et al., 2013) 

 

 

.

.

.

Overall  (I-squared = 62.7%, p = 0.000)
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9. CONCLUSIONS 

Three lines of evidence may be employed in an evaluation of health hazards and 
risks; these include traditional toxicology studies in laboratory animals, human 
experimental clinical studies, and environmental epidemiology studies. The results 
from all three need to be expertly examined and carefully scrutinized to ensure 
that all necessary precautions have been taken to guard against spurious 
conclusions. Each of these approaches also possess particular advantages and 
disadvantages that need to be understood and appreciated when compiling the 
information into a weight of evidence evaluation. Human clinical studies and 
toxicology investigations are experimental in nature and allow for the control of 
independent variables that can impact the results. Environmental epidemiology 
studies on the other hand are observational in nature, so safeguards need to be 
taken to minimize the bias and confounding that can impact the findings. 
Environmental epidemiology studies have assumed a preeminent role in hazard and 
risk determinations because they involve direct observations in humans, do not 
require extrapolation from high exposure levels, can target sensitive subgroups, can 
involve large sample sizes, and are able to focus on both acute and chronic disease 
states (Brunekreef, 2008, Paddle and Harrington, 2000). Although studies in 
laboratory animals can also be designed to evaluate short-term and long-term 
health effects, they are encumbered by potential species differences that can limit 
their relevance for humans. Human experimental clinical investigations are also 
somewhat constrained since they are restricted to investigating acute reversible 
health effects. As such, the results from expertly designed and well performed 
epidemiology studies can yield health effects information that is both directly 
relevant to humans and usable in a quantitative risk assessment. To be of value, 
however, risk assessors need to be certain that the study protocol has taken into 
consideration various pitfalls that can prejudice the final observations. 

The preceding report examines those factors and conditions that may affect the 
outcome of chronic epidemiology studies, especially those focusing on the lung 
cancer associated with exposures to ambient air particulates. The goal was to 
highlight specific issues that should be considered when designing or interpreting a 
cohort or case-control study seeking to examine the relationship between human 
exposure and carcinogenicity. Chief among these are the methods and techniques 
used to establish the cumulative exposure levels. Every attempt needs to be made 
to minimize exposure misclassification by incorporating newer models and 
estimation techniques that are capable of describing residential or personal levels 
with a high degree of spatial and temporal resolution (HEI, 2010, Smith et al., 2016). 
Since the science of exposure estimation is evolving at a very rapid rate with the 
development of new hybrid models capable of taking time-activity patterns into 
consideration, it is essential that outdated proximity-based approaches be 
abandoned in favour of those that provide a more realistic description of the 
exposures people actually experience. The increased accuracy and sophistication 
afforded by new exposure modelling techniques is accompanied by the need to 
carefully validate their performance for the time periods of interest. Ideally, this 
would include a sensitivity analysis and some measure of model performance 
relative to actual personal exposure levels. 

Another important exposure-related issue that requires careful consideration is the 
inclusion of measurements during the biologically-relevant exposure period. All too 
often, investigators begin estimating exposures at the time of recruitment and do 
not reconstruct exposures during the time period when the disease process actually 
begins. This requires the implementation of suitable back extrapolation techniques 
that can relate past exposures to an emission source or an emission factor that has 
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been accurately tracked during the time periods of interest. The application of 
these and other techniques help ensure that differential and non-differential errors 
in the exposure estimates are minimized and that any identified risks are valid for 
the population of interest.  

Confounding is a systemic problem in environmental epidemiology that needs to be 
assiduously and relentlessly tracked because of its deleterious impact on study 
quality. Although confounding can occur in many forms in a chronic health effects 
investigation, some types are particularly difficult to spot and may seem atypical. 
Examples include studies where there is only a partial adjustment for a participant’s 
smoking history. This includes investigations where an individual’s smoking history 
is determined at recruitment with no adjustment during the follow-up period as 
well as studies where the smoking history cannot be determined so surrogate 
measures such as socio-economic status are used as a substitute. Both of these 
circumstances may impact the results of a study because the impact of smoking was 
not adequately adjusted for in the hazard model. The resulting residual confounding 
may be appreciable under some circumstances and must be carefully evaluated 
when weighing the significance of any purported associations. This report has shown 
that smoking was not well controlled for in any of the population air pollution 
epidemiological studies. Indeed, no smoking information at all was available for the 
RoLS study which had considerable weight in the meta-analyses for PM2.5 and NO2 
(Cesaroni et al., 2013). Also, the individual smoking information used in some air 
pollution cohort studies has an important limitation resulting from the fact that it 
was usually only collected at baseline and not updated. The magnitude of the 
association between smoking and lung cancer is so great that even a small degree 
of residual confounding could have a large effect on risk estimates. Consequently, 
IARC was correct to attach considerable weight to results for never smokers where 
confounding by smoking is less of an issue. However, the strength of this body of 
evidence is considerably weakened by the unexplained associations of a comparable 
or greater magnitude observed in smokers and former smokers, and further studies 
are needed to understand the reasons for this discrepancy.  

Attention must also be given to other potential confounders; these include factors 
such as the compositional clustering of individuals living in the same residential 
area, secondary occupational exposures, and the collinearities that may exist with 
unmeasured or unmodelled ambient air pollutants. It is essential that these and 
other sources of confounding are appropriately addressed during the design and 
implementation stages of a study to ensure that any potential bias is kept to a 
minimum. 

The results from an environmental epidemiology study may be used to conduct a 
quantitative health risk assessment provided that the concentration-response 
relationship has been well characterized. Even when reliable data is available from 
a chronic study using laboratory animals, preference may be given to the results 
from a cohort or case-control study, because of concerns surrounding potential 
species differences, which have been shown to exist for the chronic inhalation of 
particulates. A log-linear non-threshold model has generally been assumed to exist 
for those particulates capable of causing lung cancer. Although competing response 
functions have been identified, evidence for the linear concentration-response 
relationship seems to apply to many, but not all, investigations showing an 
association between lung cancer and particulate exposures. These factors need to 
be carefully considered in a quantitative risk assessment and steps should be taken 
to evaluate how alternative concentration-response functions can impact the risk 
determination. 
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An often overlooked characteristic of environmental epidemiology studies surrounds 
the heterogeneity or inconsistency that can be seen between different studies. 
Although observed health outcome differences may be related variations in the 
composition of particulate matter at separate locales or to genetic differences in 
different study populations, other factors such as diet and physical activity should 
not be overlooked. In many cases, the heterogeneity between studies is directly 
observable but in others, where there is considerable variability across the different 
studies, the application of appropriate statistical tests is necessary. These 
statistical techniques are not a panacea however, and careful consideration needs 
to be given to the ability of these tests to reliably detect response heterogeneity 
when it exists. Their application can cause some to conclude that there is no 
evidence of heterogeneity when the situation is in fact far more complicated. 
Oftentimes the issue cannot be reasonably evaluated without a detailed analysis of 
data subsets to determine if the results remain consistent or inconsistent. 

A final consideration that is particularly relevant to those studies examining the 
relationship between air pollution and lung cancer concerns the plausibility of any 
findings showing an association. This is particularly relevant for investigations 
where comparisons can be made of the lung cancer risk for particulate exposures 
among current smokers, past smokers, and never smokers. The results from these 
different subgroups need to be carefully examined and interpreted to be certain 
that any differences are consistent with expectations. Another aspect that needs to 
be closely examined to ensure credible findings focuses on the types of tumours 
observed and their incidence in smokers and non-smokers exposed to ambient air 
particulates. Similarly, the incidence rate for pulmonary disease other than lung 
cancer needs to be examined to assess whether these health outcomes parallel the 
risk findings for lung cancer. Studies that segregate men and women should show 
the expected sex difference with higher risks tending to exist for male members of 
the cohort. A gradation in lung cancer risk would also be expected in studies 
examining the association with pollutants other than PM2.5, which would be 
expected to show the strongest relationship. Finally, confidence is increased when 
the results from environmental epidemiology agree with those from occupational 
studies focusing on same types of particulates found in ambient air. These issues 
highlight some, but not all, of the plausibility concerns that need to be investigated 
to assess the believability of the study findings. If the plausibility litmus test is 
satisfied then there will be greater confidence in the validity of the findings 
whether positive or negative.  

In October of 2013, IARC issued a statement declaring that outdoor air pollution was 
carcinogenic to humans (Group 1). This overall evaluation was based on evaluations 
of the strength of evidence arising from humans and experimental animals, and the 
strength of mechanistic evidence. In humans, IARC considered that there was 
sufficient evidence that outdoor air pollution caused cancer of the lung and 
sufficient evidence that particulate matter in outdoor air pollution caused lung 
cancer. They further concluded that a positive relationship had been observed 
between exposure and lung cancer in which chance, bias and confounding could be 
ruled out with sufficient confidence. The basis for this finding was a series of 
epidemiology studies conducted in many different parts of the world using different 
study designs and a range of approaches to quantitatively or qualitatively estimate 
exposure levels. The results consistently showed a positive exposure-response 
relationship between lung cancer and outdoor air pollution concentrations, most 
often assessed as mass concentrations of particulate matter (Loomis et al., 2014). 
The available studies were examined both individually and in a meta-analysis 
reported by Hamra et al. which was not included in the IARC monograph (Hamra et 
al., 2014). Hamra et al. noted that the meta-analysis originated with the IARC 
review, and that their quantitative analyses complemented the qualitative 
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classification of the evidence by the IARC Working Group (Hamra et al., 2014). After 
pooling the 18 available studies using a random effects model, a risk ratio of 1.09 
(95% CI 1.04-1.14) per 10 μg/m3 of PM2.5 was obtained. Further support for this 
evaluation was provided by the observation that the increased risk associated with 
outdoor air pollution was also seen in studies restricted to never smokers which 
were not subject to confounding by tobacco smoke. It was recognised by IARC that 
all the studies were subject to error in estimating exposure, but it was considered 
that the most likely effect of such error would be an attenuation of the risk 
estimates.  

The evaluation of PM as a causal agent was based on the same epidemiological 
evidence. IARC noted that most evidence for an association between outdoor air 
pollution and lung cancer came from the results for PM, hence the evidence for lung 
cancer and PM is generally similar to that for outdoor air pollution as a whole. IARC 
noted that PM could be acting as a surrogate for the outdoor air pollution mixture 
or other individual components, but concluded that there was a causal effect of PM 
exposure. However, IARC only discussed one hypothetical alternative to PM being 
the causal agent in the outdoor air pollution mixture. The alternative hypothesis 
discussed was the existence of gas-phase carcinogens highly correlated with the PM 
concentrations, but this was considered unrealistic and contradicted by the known 
presence of multiple carcinogens in airborne PM. It was also reiterated that 
associations have been observed in multiple locations with different pollution 
mixtures, and lung cancer risk increased with increasing concentrations of mass-
based PM indicators. However, such associations and exposure response 
relationships would presumably also be observed if gas-phase carcinogens existed 
that were highly correlated with the PM concentrations.  

PM as the causal agent may be the most plausible hypothesis, but the IARC 
evaluation that PM is carcinogenic to humans isn’t very helpful for understanding 
risk. Hamra et al. focused attention on PM2.5 because it included a higher proportion 
of mutagenic species, many of which are products of combustion. In addition, it was 
noted that smaller particles penetrated more deeply into the lung and were more 
likely to be retained (Hamra et al., 2014, Hamra et al., 2015). Borm et al. noted 
that combustion-derived nanoparticles, the dominant particle type by number in 
urban air, represented a key component of the particulate matter mix because they 
contained a large surface area, transition metals, and organic species (Borm et al., 
2007). In contrast, much of the coarse fraction of PM10 consisted of low-toxicity 
components such as ammonium sulphates and nitrates, sea salt (sodium chloride), 
crustal dust, and road dust (Borm et al., 2007). Nevertheless, as discussed in section 
8, the epidemiological evidence isn’t sufficient to distinguish between PM2.5 and 
PM10, or even NO2 which is presumably only a surrogate for exposure. Furthermore, 
it should be clear after reading this report that the epidemiological database is 
simply not good enough for a quantitative risk assessment. At best, the exposure 
contrast defined by the exposure estimates may be a reasonable surrogate for the 
true exposure contrast. At worst, the few studies looking at actual exposure versus 
predicted exposure at the gatepost of a subject suggest that there may be very 
little relationship with the true exposure contrast during the relevant period of 
exposure. Certainly, the estimates of risk per unit of exposure are not good enough 
to be used in global burden calculations. Hopefully, studies with better exposure 
assessment methodologies will be used in future that are better able to identify the 
agent that drives the adverse effect. Borm et al. postulated that measurement of 
the oxidant activity of particulate matter might be a better metric than mass 
concentration, and a recent study has examined whether PM2.5 oxidative burden 
(i.e. the ability of PM2.5 to cause oxidative stress) is more strongly associated with 
lung cancer mortality than PM2.5 mass concentration (Borm et al., 2007, 
Weichenthal et al., 2016).  
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There are many who advocate a more systematic approach to establishing causality 
that includes a more rigorous examination of residual confounding in any 
observational studies being evaluated (Goodman et al., 2013, Rooney et al., 2014, 
Swaen and van Amelsvoort, 2009). This includes an evaluation of study quality, 
internal validity, and consistency. The preceding evaluation shows that there are 
many issues and attributes that need to be examined when assessing the validity of 
a study evaluating the relationship between particulate exposures and lung cancer, 
or in designing and analysing future studies. These include but are not limited to 
those summarized in Table 5 below. 

Table 5 Issues and safeguards affecting the strength of observed 
relationships between air pollutant exposures and lung cancer 

Source of Error Safeguard 

exposure  

misclassification 

use of advanced exposure 
estimation models along with 
some measure of validation 

measurements during the 
biologically-relevant exposure 

period  

implementation of suitable back 
extrapolation techniques 

confounding  

from tobacco use 

avoid the use of surrogate 
measures and verify full 

adjustment during the follow-up 
period 

compositional 

clustering from contextual 
variables  

implement suitable statistical 
controls using datasets that are 
appropriate for this source of 

confounding  

pollutant  

collinearities 

use of multi-pollutant  

models 

heterogeneity 

 across studies 

careful analysis of the results 
from the compiled studies and 
the application of appropriate 

statistical tests 

implausible  

outcomes 

detailed evaluation of the 
consistency in the findings for 
different sexes, tumour types, 

and tobacco use habits  

 

A thorough and complete investigation of these areas of concern will help ensure 
that the findings from a particular group of investigations are valid and relevant for 
use in a risk assessment.  
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10. GLOSSARY 

Acronym Definition 
ACS American Cancer Society 

AHSMOG Adventist Health Study on Smog 

APEX Air Pollutant Exposure model 

BREP biologically relevant exposure period 

CMAQ Community Multi-scale Air Quality 

CPRD Clinical Practice Research Datalink 

CNECSS Canadian National Enhanced Cancer Surveillance System 

CO carbon monoxide 

COPD chronic obstructive pulmonary disease 

CPS-II US Cancer Prevention Study II 

CTS California Teachers Study 

DM dispersion modelling 

EC elemental carbon 

ESCAPE European Study of Cohorts for Air Pollution Effects 

GIS geographic information systems 

GPS global positioning system 

H6C Harvard Six Cities  

HOV hold-out validation 

IDW inverse distance weighting 

LOOCV leave-one-out cross-validation 

LUR land use regression 

NHS Nurses Health Study 

NMRD non-malignant respiratory disease 

NO2 nitrogen dioxide 

NOx nitrogen oxides 

PAHs polycyclic aromatic hydrocarbons 

PM particulate matter 

PM2.5 particulate matter with diameter of 2.5 μm or less 

PM2.5 absorbance  measurement of the blackness of PM2.5 

PM10 particulate matter with diameter of 10 μm or less 

PMcoarse coarse particulate matter = PM10 – PM2.5 

QHRA quantitative health risk assessment 

r2 percentage of variance explained 

RoLS Rome Longitudinal Study 

RR relative risk 

SHS second hand tobacco smoke 

SO2 sulphur dioxide 

TPCS Three-Prefecture Cohort Study 

SHEDS Stochastic Human Exposure and Simulation 

SPM suspended particulate matter 

TSP total suspended particulates 

TrIPS Trucking Industry Particle Study 

TSP total suspended particles 

UFP ultrafine particles 

VOCs volatile organic compounds 

WOE weight-of-evidence 
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