Advanced emission controls and renewable fuels for low pollutants and lifecycle CO₂ emissions

Dr. Joachim Demuynck

Sustainable Internal Combustion Engine Virtual 'Live' • 3-4 Feb 2021

Association for Emissions Control by Catalyst (AECC AISBL)

AECC members : European Emissions Control companies

Exhaust emissions control technologies for original equipment, retrofit and aftermarket for all new cars, commercial vehicles, motorcycles, and non-road mobile machinery

AECC is # 78711786419-61 in EU Transparency Register and has consultative status with the UN Economic and Social Council (ECOSOC)

Acknowledgements

Project partners of ultra-low emissions diesel demonstrator

S Additional partner for follow-up work on renewable fuels and Well-to-Wheel analysis

Roland Dauphin, Science Executive, Fuels Quality and Emissions at Concawe will join Q&A session Concawe is the scientific body of the European refining industry

Requirements for a sustainable ICE

- Low pollutant emissions
 - Significant steps taken with introduction of RDE towards Euro 6d
 - Further steps expected from Euro 7/VII

			20)16		2017			2018			2019				2020			2021			2022				2023				
		Q1	Q2	Q3	Q4	Q1 (22 Q3	3 Q4	Q1	Q	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4 (01	Q2 Q3	Q4	Q1	Q2	Q3	Q4	Q1 (22 Q	3 Q4
Euro 6	RDE monitoring phase		VT	-	-										Ш		Ш													
	NOx requirements		\frown											All	NOx CF = 1.0 + 0.43 error margin															
	PN requirements										AI	PN CF = 1.			= 1.0	+ 0.5 error margin				n										
Euro 7	/VII															(CLOV	/E st	udy				2~	S EC	C prop	osa	I			
Low greenhouse gas emissions												1	ſoday						T: Ne		ypes									

- ♦ Increase in efficiency and level of electrification for new vehicles
- ♦ Wider usage of renewable fuels to reduce Well-to-Wheel and lifecycle emissions
 - Immediate reductions for the existing fleet
 - New vehicles

All: All Types

Advanced emission control systems towards Euro 6d

Gasoline – introduction of GPF

Diesel – combination of deNOx technologies

Pollutant emissions significantly reduced towards Euro 6d

Sasoline PN emissions

Diesel NOx emissions

Sources: - ACEA/JAMA Euro 6d(-TEMP) PEMS data consulted 17 July 2020

- pre-RDE PN emissions factors from B. Giechaskiel, Int. J. Environ. Res. Public Health, 2018

Ultra-low emissions diesel demonstrator

- Objective is to demonstrate ultra-low NOx emissions over wide range of driving conditions for various fuels
- Emission control system based on combination of available components LNT + dual-SCR supported by 48V mild-hybrid system

 J. Demuynck, et al.; "Integrated Diesel System Achieving Ultra-Low Urban and Motorway NOx Emissions on the Road", 40th Vienna Motor Symposium, 2019 <u>https://www.aecc.eu/wp-content/uploads/2019/04/190516-AECC-IAV-IPA-Integrated-Diesel-System-achieving-Ultra-Low-NOx-on-the-road-Vienna-Symposium.pdf</u>
Joint MTZ publication with Bosch, Vitesco, FEV and IAV <u>https://www.aecc.eu/wp-content/uploads/2020/09/200901-modern-diesel-MTZ.pdf</u>
Videos of instantaneous conversion performance available at <u>www.youtube.com/channel/UCbPS9op5ztLgrv6zIMH_ICQ</u>

Ultra-low emissions diesel demonstrator

Low urban NOx emissions for different tests over range of ambient temperature

Significant improvement achieved due to LNT regeneration stabilisation and thermal management

Low pollutant emissions confirmed for low carbon fuels

- Reference tests on B7 market diesel (7% fatty-acid-methyl-ester content)
- > Tests on renewable fuels without modification to vehicle hardware or software
 - 100% HVO (Hydrotreated Vegetable Oil)
 - B30 diesel

Well-to-Wheel calculations to investigate CO₂ impact

- Methodology of JEC WtW report v5 used <u>http://dx.doi.org/10.2760/100379</u>
- Several representative production pathways studied
 - ♦ Paraffinic fuels (associated with 100% HVO tests)
 - HVO: palm oil, waste cooking oil, EU mix
 - BTL (biomass-to-liquid): waste wood
 - Hydrothermal liquefaction
 - Fischer-Tropsch route with CCS (carbon capture and storage)
 - e-diesel: Fischer-Tropsch route with SOEC (solid oxide) electrolyser
 - ♦ FAME (associated with B7 and B30 tests)
 - Rapeseed oil
 - Palm oil
 - Waste cooking oil

Well-to-Wheel calculations to investigate CO₂ impact

- Tank-to-Wheel (tailpipe) measurements show similar results for the different fuels
- Well-to-Wheel evaluation versus B7 reference depending on production pathway

Conclusion and outlook

- Low pollutant emissions over wide range of driving conditions shown with the use of advanced emission control systems
- Significant WtW CO_2 reductions possible with the use of renewable fuels
- Part of this reduction is already possible for the existing fleet as most paraffinic compounds are drop-in for market diesel fuel, i.e. compatible with existing vehicles and infrastructure
- Internal Combustion Engine is part of the solutions to contribute to EU Green Deal climate-neutral and zero-emission goals along with electrification
- Further investigations for LD gasoline and HD diesel are under consideration
- AECC is providing input to the ongoing Euro 7 process reflecting the further developments and innovation needed for future engine systems
- Concawe is assessing the scalability of carbon-neutral fuel production

THANK YOU !

<u>www.aecc.eu</u> <u>dieselinformation.aecc.eu</u>

AECC (Association for Emissions Control by Catalyst)

AECC eu

@AECC_eu