

Industry Perspective on BAT and BREF

Georges De Caluwé, ExxonMobil Chairman of CONCAWE Task Force on the Revision of the Refining BREF

9th CONCAWE Symposium

14-15th March 2011

conservation of clean air and water in europe

- **1. CONCAWE comments on draft version Chapter 1 to 4**
- 2. The total refinery bubble concept as proposed by CONCAWE
- 3. Further planned activities in 2011

Draft Chapters 1 to 4 of Refining BREF Revision commented by CONCAWE.

- ~1400 comments received by EIPPCB
 - ~700 comments from CONCAWE and Member Companies

Key CONCAWE comments reflect :

- Content which does not fit the purpose of Chapter 3 –'Current Emissions and Consumption levels' or Chapter 4 – 'Techniques to consider in the determination of BAT'
 - Bubble ranges based on BREF questionnaire statistics don't reflect performance of individual abatement techniques
 - Suggestion to use a combination of all techniques (sniffing, camera, DIAL, SOF) for VOC Monitoring not appropriate for Chapter 3.
 - Ranges for Waste Water Treatment based on 50 percentile BREF questionnaire data not appropriate for Chapter 4

Scope of Chapters 3 and 4

- Inclusion of PM and CO in bubble concept
- Include wording that not all RFG is amine treated.

Chapter 4 performance ranges

- Increase upper SO₂ range for amine treated RFG to 50 mg/Nm3 to account for effect of fuel gas composition on emission concentration in the flue gas.
- Low NOx Burner performance to be expressed as concentration ranges instead of % NOx removal
- > Align performance ranges for existing Vapor Recovery Unit to Stage 1 Directive.

Technical description and editing

- **Proposal submitted to EIPPCB and discussed in TWG subgroup** meeting May 2010
- **CONCAWE** proposes a two-step approach:
 - **1. Establish an AEL range for the combustion bubble based on the** variability of fuel firing and fuel composition in European Refineries
 - 2. Combine the combustion bubble range derived in step 1 with AELs for the contributing processes (e.g. FCCU, SRU) to derive a *site-specific* total refinery bubble.
 - The proposal recognises:
 - There are large variations in refinery configuration across Europe.
 - The continued use of liquid fuels is a technical/economical necessity for a significant part of the European refining sector.

Total Refinery Bubble Concentration Range =

FL_{comb}* [Comb] + FL_{FCC}*[FCC] + FL_{SRU}*[SRU]

- Whereby:
 - [Comb] = the refinery combustion bubble AEL range.
 - [FCC] = the FCC stack concentration AEL range
 - [SRU] = the SRU stack concentration AEL range
 - **FL**_{comb} = the fraction of combustion flue gas to total flue gas volume
 - FL_{FCC} = the fraction of FCC flue gas to total flue gas volume
 - FL_{SRU} = the fraction of SRU flue gas to total flue gas volume

Notes:

- **Bubble concentration in mg/Nm3 @ 3% O₂ on a dry flue gas basis**
- Additional process units would extend the equation

Reproduction permitted with due acknowledgement

9th CONCAWE Symposium 14th & 15th March 2011

- The flue gas rates for the process units and the flue gas rates from combustion need to be known and expressed on a common basis.
- Use an equal energy basis of IEA standard fuel oil equivalent (foe) of 41.868 MJ/kg for fuels using lower heating value (LHV)
 - Convert fuel quantity to foe = (fuel quantity) * LHV/41.868
 - Industry values:

Flue gas volume combustion and FCC Coke	Nm3/kg foe
RFO	12.2
Natural Gas	11.7
RFG	11.4
FCC Coke	12.0

- **Specific Rules for special fuels**
 - **5.3** Nm³/kg for dry sour water stripper gas
 - Explicit calculation for low Joule Gas,
 - ▶ Define (w/w basis) : a = CO, b = H₂, c = C₁, d = C₂, e = C₃, f = C₄, g = C₅, h = inerts.
 - Flue gas Volume (Nm3/kg foe) = (a*2.47+b*24.57+c*13.92+d*13.23+e*12.95+f*12.81+g*12.7+h*0.93) *41.868/LHV
- Sulphur Recovery Unit
 - > 1.5 Nm³/ kg of dry acid gas.

Reproduction permitted with due acknowledgement

9th CONCAWE Symposium 14th & 15th March 2011

Data collection:

- Cost of amine treatment of fuel gas
- NOx emission from existing turbines

> 2011 Update of Sulphur Survey:

Include FCC NOx emission data.