

Vehicle Electrification: You'll Get a Charge Out of This!

Simon Wrigley Ricardo UK Ltd

CONCAWE Symposium Brussels, 15th March 2011

Interest in vehicle electrification is being driven by governments and markets alike

Governments

CO₂
 reduction
 to support
 national
 targets

Energy security

Urban air quality

Manufacturers

- Regulated fleet CO₂
- Attractive products
- Technology expertise

Consumers

Environmental awareness & 'green' fashion

Technology appeal

Fuel costs

Incentives

March 2011 RD.11/119701.1 © Ricardo plc 2011

Broad consensus exists on the path of evolution that low CO₂ powertrains must follow – electrification and EVs are a key element

- NAIGT roadmap for future automotive powertrain
- Represents **UK OEM** consensus

The future of the automotive powertrain is largely driven by legislation rather than consumers or even technology

There is unlikely to be a single revolutionary winning technology

Source: http://www.berr.gov.uk/files/file51139.pdf

OEMs are already implementing powertrain and vehicle level changes to reduce CO₂ of conventional products...

OEM Approaches to CO₂ Reduction

Base Engine Updates Combustion + Air System Match Minor Friction Improvements

Thermal Management e.g. Map Controlled Coolant Temp Switchable Piston Cooling Switchable Water Pump

Calibration for CO₂ Often with some compromise to NVH

Downspeeding Longer Final Drive Ratio

Modest Downsizing e.g new VW 1.6L Golf

Reduced Rolling Resistance Tyres

Energy Management e.g. Smart Alternator, Adaptive PAS

Aero Improvements e.g ride height, reduced/active grill

March 2011

Vehicle Weight Reduction

Source: Ricardo Research

... as seen in many of the eco-products launched by OEMs over the last few years

Most OEMs are now producing "eco labels" or vehicles offering more ecovariants of engine/vehicle ranges to highlight their fuel-efficient technologies

BMW EfficientDynamics

Fiat EcoDrive

5-Series EfficientDynamics

C3 AIRDREAM+: 99 g/km CO₂

Integrated software to analyse driving pattern and efficiency

Ford ECOnetic

GM Ecotec

Mercedes-Benz

Fiesta ECOnetic: 98 g/km CO₂

Chevrolet Malibu: 33 mpg (US) hwy

Ceed EcoDynamics: 110 g/km CO₂

C-Class: 127 g/km CO₂

Renault eco2

Label certifies manufacture, in-use emissions and recycling

Seat Ecomotive

Ibiza Ecomotive: 92 g/km CO₂

Toyota Optimal Drive

Auris with Optimal Drive: 136 g/km CO₂ (reduction of 17% on standard)

Volkswagen BlueMotion

Golf BlueMotion: 99 g/km CO₂

What is a plug-in vehicle (PIV)?

The "electrification spectrum"

1 Hybrid Electric Vehicle (HEV)

Plug in Hybrids

Range Extended HEV

Range Extended EV

Electric
Vehicle (EV)

Increasing electric power & battery size

- Parallel hybrid as in Toyota Prius
 - Increasing electric capacity
 - Electricitygenerated onboard by ICengine
- RE-HEV batteries can be directly charged from the grid, allowing significant electric range (e.g. 9-40 miles)
- However IC engine is primary power unit, required for full vehicle performance
- EV mode is primary mode – electric motor sized for full power
- IC engine power pack has no mechanical connection to wheels, is used as generator to maintain battery charge once depleted
- No IC engine or power pack
- On the fly charging or energy replacement for long journeys

Batteries not currently cost-competitive with other fuels – greatest challenge is to reduce cost whilst retaining life and reliability

Onboard Fuel Tank System Cost (550 km range)

Assumes:

- 300 mile range Li-ion battery (60 kW.hr)
- Assuming €500/kW.hr & 80% DoD
- Full range electric vehicle unlikely in short-medium term

- Other key battery challenges:
 - Low energy density adds significant weight to each vehicle
 - Limited life currently below the levels that consumers are likely to demand
 - Limited charge acceptance rate for many chemistries insufficient for fast charging
- Current battery limitations are driving creative mitigation approaches
 - Alternative business models
- Range extended HEVs & EVs

- Battery second life
- Subsidies

Other challenges

- Consumer acceptance
 - Real-world energy consumption of EVs strongly influenced by driving style and ancillary loads
 - Actual range vs. "range anxiety" what are the real infrastructure requirements?

- Materials availability
 - Concern being expressed over cost and dependability of supply of key materials
 - May limit growth rate

- Grid capacity
 - Capacity of local distribution networks emerging as critical issue for large scale PIV deployment
 - Need for "smart charging"

Source of electricity has significant impact on PIV emissions – "greening" of electricity grid essential to ensure significant benefits

- Electric vehicles do not (necessarily) have zero CO₂ impact!
- Valid comparison with conventional vehicles only possible on a "well-towheels" basis
 - Results depend on generation source
 - Wide variation across Europe
- Marginal emissions for coal generation plant similar to diesel

Well-to-wheels CO₂ emissions of conventional vehicles and PIV by electricity source

- European average CO₂ intensity similar to highly efficient CCGT plant
- Targetted improvements in grid CO₂ intensity will improve PIV g/km towards 2020-2030
 - However limited improvement in benefit vs. (improving) conventional cars
- For some fuels note that global NOx, SOx and PM10 emissions levels "per km" can be several times higher than local emissions from conventional cars...

If PIVs can achieve market success, they have the potential to bring significant benefits – what must happen to enable this?

Battery technology

Consumer acceptance

Distribution network capability

Grid 'greening'

- Continued improvement in costs, energy density & life
- Mitigation measures
- Transitional incentives
- Charging infrastructure deployment
- Better systems to manage range
- Psychological research, incl. "range anxiety"
- User familiarity...
- Identification of critical infrastructure issues
- Smart grid to manage demand
- Increasing renewables in power generation
- Common assessment methodologies

Thank you for your attention

ource: March 2011 RD.11/119701.1 @ Ricardo plc 2011 11