

Session III: Measurement & Monitoring

Laboratory and Field Procedures

CONCAWE-Workshop, Brussels, 16th March 2011

Dr. R. Weyandt, SGS BioServices

Content

- Hydrocarbon-oxidizing Microbes
- Microbial Calamities
- Quantification Methods based on Case Studies
 - -Microscopy
 - -Gene Probes
 - -Culture Techniques
 - -Activity Measurement via ATP
 - -Immunological, Species-specific Detection
- Summary & Perspectives

CONCAWE-Workshop, Brussels, 16th March 2011

Species Distribution

- Hydrocarbons are excellent energy- and carbon sources
- Hydrocarbons are widespread in nature, similar substances are vegetable and animal waxes, lipids, oils and fats

Microbial peculiarities

- induction of cell specific changes
- efficient uptake of hydrocarbons by cell membrane receptors, and/or (bio-)tensides
- special enzymes (oxygenases) which introduce molecular oxygen into the hydrocarbon molecule
- the production of metabolites enable to enter common catabolic pathways
- special survival strategies: individual adaptations (eg. higher phospholipid content)
- often, catabolic plasmids (eg. alk (C5 to C12 n-alkanes*1)) are responsible for special pathways.
- Plasmids can sometimes be exchanged between different species.
- gene-based detoxification program

^{*1} Sayler, G. S., et al: Microbiol. Ecol. **19:**1–20 (1990)

Conclusion

- "Everything is everywhere, but the environment selects" (Baas Becking/Beijerinck)
- Several hundreds of species are described (e.g. Zobell 1973, Atlas 1981, Beerstecher 1954, Gaylarde 1999, → DGMK 2010)
- Jones and Edington (1968): 1% to 10% of isolates out of non-contaminated soils are able to grow on hydrocarbons

Identification of Isolates

Ludzay, J., Weyandt, R.: Diesel fuels with 5% (V/V) FAME and micro-organisms

DGMK Research Report 695 (2010), 139p.

Gaylarde et al	DGMK	
Stored liquid fuels	only B5	Comparison
28 bacteria	9 bacteria	→ No identical species
12 yeasts	5 yeasts	→ No identical species
83 moulds	19 moulds	$\rightarrow 6$ identical species

Conclusion (Questions)

- B5 is a "new fuel", there is no comparability given to other fuels ?
- The amount of species involved is sometimes much higher than expected ?
- The detection techniques & principles differ ?

Selection & Growth Limitation

Working Assumption

The fact, that there are so many species involved, but that there are only sporadic calamities instead of a general, permanent & obvious contamination problem, is a signal for the existence of circumstances which restrict microbial growth.

Conclusion — Growth limiting factors (early & far reaching)

- oxygen, free water, major & minor bio-elements like N, S, P, Fe, pH, osmolarity...
- toxic substances or substance concentrations
- competitors and predators

As a consequence

- the introduction of new compounds (eg. FAME, ethanol)
- · application of a new additive
- the change of milieu

can and will influence the microbial growth

Detection

Primacy

There is a clear primacy for the *quantification* of different microbial groups before/instead of naming the species involved, but the knowledge of their ecological niches and their population dynamics can be very helpful for prevention.

Microbial groups and species of relevance

- · aerobic bacteria
- · anaerobic bacteria
- · yeasts
- moulds (hyphae-forming~)
- algae

Microbial Calamities

We can distinguish between different calamities/inducements which are correlated to microbial growth

- blocked filters and valves
- fluid turbidity
- material corrosion
- · high water content
- reduced performance
- formation of local depositions and sludge
- inconvenient odour
- routine check on-site

Conclusion

There can not exist a single & simple quantification (detection) method for all purposes

General overview & Case studies

Methods / Tools to detect & to quantify microbes

Direct approach

Microscopy

- total counts, live / dead
- gene probes, eg. FISH

Culture techniques

- membrane filter method
- most probable number
- spread plate method
- pour plate method

Biomarkers

- ATP (Adenosin triphosphate)
- cell wall / membrane components
- proteins
- nucleic acids

Enzymatic activities

- dehydrogenases
- catalase

Molecular Probes

PCR-based techniques

Petrol pump blocked

- Causes (microbial) supposed
 - bacteria / yeasts / moulds ?
 - viable / dead ?

Methods

- on-site: ATP for living microbes
- lab: →Microscopy; bacteria and/or fungi
- further investigations

Remarks

- no quantification possible
- identification possible only for predominant species
- no differentiation between cause and effect
- in rare cases: specific-species detection possible (cannot be recommended as stand alone solution due to specific risks)

CONCAWE-Workshop, Brussels, 16th March 2011

Dr. R. Weyandt, SGS BioServices

(Bio-) Corrosion (metal, plastics, paints..)

Causes (microbial) supposed

- aerobic bacteria (production of acids...)
- anaerobic bacteria (SRB, Clostridia...)

Methods

- $\bullet \rightarrow \text{ATP}$
- only laboratory:
 - special cultural techniques for quantification (special media, special techniques ("Hungate"), MPN)
 - gene probes
- simulation tests
- further investigations

Case Study 3

Routine check: Fluid sample

Quantification of microbes

aerobic bacteria + yeasts + moulds

Methods

- in the field: ATP
- in the lab:
 - → Cultural Techniques for quantification
 - microbial activity (eg. ATP)
 - biomass (eg. Bio-markers)
- further investigations (eg identification)
- in well known systems: specific detection of eg *Hormoconis resinae* → Immuno-Assay

Summary & Perspectives

- The sampling as well as the handling and the preparation before testing belongs to the general problems to quantify microbes.
- It could be shown, that there are many different methods applicable to detect microbes & biomass in fuels.
- The methods differ regarding their practicalness and their diagnostic validity. There is no single method available to satisfy all the needs.
- The fixation on guide or threshold values for microbial quantities is therefore critical.
- Most often, a combination of different diagnostic tools would be the best approach.
- The introduction of new fluids (eg. *B5)* can cause microbial damages. If the microbial growing process itself can not be deduced from an ecological insight, the generation of data turns out to be precise and helpful.
- There is still a great necessity to better understand the behaviour and the specific ecological coherence of microbes in technical habitats/biotopes.
- Promising methods and techniques actually wait to be adopted to the fuel surveillance and can help closing the gap.
 Author's Contact Address:

Author's Contact Address: Dr. R. Weyandt BioServices, R&D SGS INSTITUT FRESENIUS GmbH D-65232 Taunusstein Im Maisel 14 ralph.weyandt@sgs.com

CONCAWE-Workshop, Brussels, 16th March 2011

- live / dead via special dyes
- · total counts independent from culture
- complexicity of biofilms, debris, deposits, precipitations
- structure of complexe particles
- quantification / identification ---> FISH

FISH = Fluorescence In Situ Hybridisation

- species-specific gene marker
- -15.000 Ribosomes / Cell
- 65 % RNA, 35 % Protein
- Diameter 18 nm

Brock/Biology of Microorganisms

Cultural Techniques 1

IP 385: 99

Determination of the viable aerobic microbial content of fuels & fuel components boiling below 390°C, Filtration & Culture method

ASTM 6974-03

Enumeration of viable bacteria and fungi in liquid fuels -Filtration & Culture procedure

```
Sample

Membrane Filtration

(0.45\mu m/50ml)

Removing of fuel

(10 \text{ ml detergent solution})

Washing with Ringer solution

(3x10ml)

Placing the membrane on agar growth media

TSA --> bacteria

MEA --> yeasts \& fungi

Incubation

(3-5d, 25 °C)

Calculation/Quantification
```


DIN 51441:2007 Testing of mineral products - Determinat

Testing of mineral products - Determination of the microbial colony number in petroleum products with a boiling range below 400°C.

90 ml Sample + 10 ml Ringer solution Shaking period (30 sec.) Separation phase (10 min.) Aliquotes of the water phase \rightarrow spread on TSA --> bacteria MEA --> yeasts & fungi Incubation 3-5d, 25 °C Calculation/Quantification

Cultural Techniques 3

[•] ECHA Microbiology Limited

MicrobMonitor² *

1-Step-Quantification Tool for Aerobes (Bacteria + yeasts + moulds) based on growth-dependent, respiratory DH-activity (— red colour of colonies)

Sample --> growth medium / Gel (0.5 ml fuel resp. 0.1 ml water) Shaking period (30 sec vigorously) Incubation (3-7d, 25° to 30°C) Calculation/Quantification

Remarks

- sample Material itself is carbon- & energy source
- · ~ comparable to the standards cited
- suitable for small labs
- no possibility for further investigations on cultured microbes
- · decontamination and disposal ?

Cultural Techniques 4

Possible Weak Points

More complex alternatives

Influence of carbon sources

Normally the growth media used do not contain any hydrocarbon source. There is a strong selection towards protein- and sugar-consuming microbes. No differentiation between autochthonous and allochthonous organisms

Detection of Aerobes

There is a complete neglect of anaerobes (eg. SRB)

- Numbers of cultured organisms
 The generated CFUs do not allow to project the total
 amount of living microbes
- Detection of viable organisms
 Sometimes dead biomass is a cause for calamitic
 - Sometimes <u>dead</u> biomass is a cause for calamities
- Quantification Findings
 Validity is given only for the sample itself; no deduction possible from fluid results to surfaces etc.
- Recommendation of Methods

It is not clear which method is qualified under certain conditions

Quantification of hydrocarbon oxidizing microbes

selective nutrient media

- liquid media ---> MPN-Method
- agar plates emulsification of hydrocarbons
- agar plates silica gel technique (BARUAH et al 1967)
- →
- detection of co-metabilization analyses of the behaviour of pure and mixed
- → cultures
- effects of additives
- Iong-time assays

•••

110033859

Detection of Microbial Activity in Fuels

Adenosine-5'-triphosphate (ATP) is well known as the intracellular energy conducter molecule of each living organism. The ATP-concentration depends eg. on species & activity status.

Collection of 1000 ml fuel sample
Addition of 5 ml capture solution
<i>(water based; contains tensides, salts, dye)</i> Shakin <mark>g</mark> Period
(10 sec.) Stand Still Phase
<i>(10 min.)</i> Retrieve of capture solution
Loading the detection pen
Starting of the biochemical reaction
Measurement of bioluminescence
Calculation/Quantification

Conclusions

- no correlation to CFUs, no detection of dead biomass
- very fast detection and independent from lab equipment → on-site

CONCAWE-Workshop, Brussels, 16th March 2011

HY-LITE 2

Species-specific Detection

Detection of Hormoconis resinae via immuno-assay

Colle	ection of eg. 50ml fuel sample
- .	
Extra	action solution is within the vessel
	(water based; contains salts, dye)
Sha	king Period
	(5 sec.)
Tran	sfer of some droplets of the blue watery aliquote to the sample paddle
Incul	bation period (antigen-antibody-reaction, kind of chromatography)
	(10 min.)
Dete	ction / Read-out
Calc	ulation

Remarks

- · adopted to water, fuel, and mixtures of both
- only detects H. resinae
 - → *H. resinae* is known to be an indicator for microbial contamination of aviation fuels
- great risk for miss-interpretation / oversight of other severe microbial contaminants