

JEC Well-to-Tank (WTT) Study: Early Results from Version 4

David Rickeard Representing CONCAWE and JRC Team Members

25 February, 2013

conservation of clean air and water in europe

Reproduction permitted with due acknowledgement

- WTT data significantly updated and strengthened
 - Input from stakeholders, new studies from JRC
- The time horizon is 2010 to 2020+
- More attention to electricity as BEV and PHEV gain interest.
 Revised EU electricity mix
- Improved biofuel calculations, for N₂O, fertilisers
- This presentation will cover
 - Improved transparency in detailed data presentation
 - Seven Excel results workbooks covering:
 - Oil and gas Biogas Ethanol Biodiesel
 - Synfuels Electricity Heat and Power
- Differences in Version 4 WTT results compared to Version 3c

Version 4 covers energy and GHG emissions

JEC WTT Study: Early Results from Version 4 David Rickeard, CONCAWE Consultant

Reproduction permitted with due acknowledgement

Workbook Pathways: Ethanol Example

JEC WTW study Version		4.0					
WTT pathways							
Ethanol							
Summary		Summary results and graphs					
General notes		General information relevant to all or most pathways in this section					
Code	Final fuel	Description					
<u>SBET1</u>	Ethanol	EU sugar beet to ethanol. Pulp to animal feed (a/b). Pulp to fuel (c) Slops not used (a) or used as feed for biogas (b/c).					
WTET1a/b		EU wheat to ethanol. Production energy provided by as heat from NG-fired boiler and grid electricity. DDGS to animal feed (a) or to electricity production (b).					
WTET2a/b		EU wheat to ethanol. Production energy provided by a NG-fired CHP plant. DDGS to animal feed (a) or to electricity production (b).					
WTET3a/b		EU wheat to ethanol. Production energy provided by a lignite-fired CHP plant. DDGS to animal feed (a) or to electricity production (b).					
WTET4a/b		EU wheat to ethanol. Production energy provided by a wood-fired CHP plant. DDGS to animal feed (a) or to electricity production (b).					
WTET5		EU wheat to ethanol. DDGS used as internal fuel to produce electricity via biogas.					
BRET2		EU mix barley/rye grain 50/50 ethanol. Production energy provided by a NG-fired CHP plant. DDGS to animal feed.					
WW/WFET1		EU farmed (WF) or waste (WW) wood to ethanol.					
<u>SCET1a/b</u>		Brazilian sugar cane to ethanol. Excess bagasse used for heat (a), electricity (b) production					
STET1		EU wheat straw to ethanol.					
CRET2		Corn (maize) (average used in EU) to ethanol. Production energy provided by a NG-fired CHP plant. DDGS to animal feed.					
<u>CRETus</u>		Corn (maize) (average used in EU) to ethanol. Production energy provided by a NG-fired CHP plant. DDGS to animal feed.					

Agri inputs

Reproduction permitted Process chemicals with due acknowledgement

Data relative to the production and provision of agricultural inputs such as fertilisers, pesticides etc Data relative to the production and provision of process chemicals

10th CONCAWE Symposium 25th & 26th February 2013

JEC WTW study Version 4.0

WTT pathway		Back to menu					
Code	WTET1a/b	Description					
Final fuel	Ethanol	EU wheat to ethanol. Production energy provided by as heat from NG-fired boiler and grid electricity. DDGS to animal feed (a) or to electricity production (b).					
Results							
JEC methodology			Energy expended	GHG emissions g CO _{2eq} /MJ _{EtOH}			
			IVIJ/IVIJ _{EtOH}	i otai	as CO_2	as $C\Pi_4$	as N_2O
Standard steps	Actual steps			WTET1a			
Production & conditioning at source	Croip drying	lion	0.29	49.6	19.72	0.78	29.08
Transformation at source	Grain drying, sto		0.03	1.5	1.40	0.00	0.02
Transportation to market	Wheat grain t	ransport	0.03	1.0	1.03	0.01	0.01
Transformation near market	Ethanol produ	ction	1.35	15.9	25.17	2.20	-11.45
	Of which cred	it for DDGS	-0.15	-22.4	-10.33	-0.36	-11.72
	Of which cred	it for surplus electricity from DDGS					
Conditioning & distribution	Distribution		0.02	1.1	1.11	0.02	0.01
	Dispensing at	retail site	0.01	0.5	0.48	0.03	0.01
Total WTT	Total WTT						
Min	Min						
Max			1.76	72.0			
of Which Fossil							
Complution CO, emissions				71 /			
Combustion CO_2 emissions				71.4			
of which Renewable (shown as negative)				-/1.4			
I otal non-renewable emissions including combustion				69.7			
¹ % GHG savings relative to gasoline (pathway COG1)				21%	l		

Reproduction permitted with due acknowledgement

പ് 🗞 🄌

Input data

Physical properties of products and intermediates relevant to this pathway

		Wheat	Ethanol	DDGS
Density	kg/m ³		794	
Typical moisture content	% m	16.0%		10.0%
LHV (dry matter)	MJ/kg	17.1	26.8	18.7
Carbon content	% m		52.2%	
CO ₂ emission factor	g CO ₂ /MJ		71.4	
(assuming total combustion)	kg CO ₂ /kg		1.91	

The figures below generally refer to the output of each step rather than to the final product. Energy and emissions terms cannot therefore simply be added up to estimate the overall pathway figures.

Process	Step	Common		Input	Range	Dist.	Source	
Code	Production & conditioning a	t source						
WT1a	Wheat cultivation Agricultural inputs Fertilizers		g/MJ _{grain}					
1.1	N (as N) P (as P_2O_5)	<u>FN</u> <u>FP</u>	g g.u	1.34 0.28			[Edwards 2012] [EFMA 2005/2006]	
	K (as K_2O)	<u>FP</u>		0.21			[EFMA 2005/2006]	
	CaO Pesticides	<u>CA</u> PE	g/MJ _{arain}	1.44 0.07			[Edwards 2012] [CAPRI 2012]	
	Seeding material	<u>SWH</u>	g/MJ _{grain}	1.57			[EDSU 1996]	
	Data relative to the provision of agricultural inputs are shown in sheet "Agri inputs"							
	Diesel	Z1	MJ/MJ _{grain}	0.0390			[CAPRI 2012]	
2.	CH ₄ emissions		g/MJ _{grain}	0.0011				
	CO ₂ from soil neutralisation		g/MJ _{grain}	3.58				
	N ₂ O field emissions		g/MJ _{grain}	0.042	0.038	0.046 Normal	[Edwards 2012]	
WT2	Wheat grain drying, storage and h Electricity (EU-mix, MV)	andling Z7c	MJ/MJ _{grain}	0.0053			[Kaltschmitt 1997], [CAPRI 2012]	

Reproduction permitted with due acknowledgement

Detailed description of individual processes

WT1a

Wheat cultivation

Wheat is the highest-yielding cereal crop, but it also takes the highest inputs. This process represents conventional wheat grain farming for 'soft wheat', which accounts for most of EU production, gives the highest yield, and has the highest fermentable content. Straw use is discussed in the main WTT report. Fertiliser inputs are based on [EFMA 2008], converted from tonnes/ha to tonnes/MJ of grain using the average EU yield of 5.2 tonnes grain per ha at 13.5% moisture, provided by EFMA. Diesel use per ha was averaged between [Crop Energies 2008] and [ADEME 2002] (which gave similar numbers) and converted to MJ/MJ grain using the same yield. Pesticides/herbicides data are from [Crop Energies 2008], amount of seeding material from [ETSU 1996]. The N₂O emissions are calculated by the updated JRC soils emissions model (**WTT report**, section 3.4). There is no "reference crop" (see main WTT report).

Wheat grain drying, storage and handling WT2

A small amount of energy is consumed to handle and store grain mainly in the form of electricity. We account for it at this point in the pathway although in practice storage may occur after transportation.

WT3a Wheat grain transport (road)

Grain is typically transported by road over a short distance. We assumed a standard truck as described in common process Z2.

WT41 Ethanol plant (NG-fired boiler and grid electricity)

Heat is supplied by a conventional natural gas fired boiler and electricity is imported from the grid. This can be considered as representative of a some of the earlier existing installations and is also by far the cheapest solution. The boiler consumes a small amount of electricity and emits small quantities of CH₄ and N₂O.

The residual material after fermentation is known as DGS ("Distiller's Grain and solubles") or DDGS after drying. This co-product is assumed to be used in one of two ways:

In alternative *a* DDGS is used as animal feed and is assumed to substitute a mixture of wheat grain and soya meal representing a similar level of protein and digestible energy. The level of credit is based on production figures for these alternative materials. For wheat the figures are the same as in process WT1a. The calculation is more complex for sova meal as it is itself a co-product of sova oil production.

The detailed principles and mechanisms of animal feed credit calculations are discuss in the main WTT report chapter 3.4.4.

In alternative **b** DDGS is used on site as fuel for the production of electricity. For such a biomass product, efficiency is assume to be fairly low at 30%. This is assumed to be exported to he grid thereby generating a credit corresponding to the EU-mix electricity (MV level).

Ethanol transport ET1

Ethanol has to be transported from the production plant to a conventional fuel depot. Road transport is assumed by a standard road truck according to process Z2.

Reproduction permitted with due acknowledgement

10th CONCAWE Symposium 25th & 26th February 2013

Workbook Pathways: Common Charts

Reproduction permitted with due acknowledgement

JEC WTT Study: Early Results from Version 4 David Rickeard, CONCAWE Consultant

- Some pathways have been deleted or will not be carried forward from the WTT to the WTW report
 - Some pathways are unlikely: e.g. a GTL plant in Europe
 - Alternatives are already described in other pathways
 - e.g. options explained for rapeseed not repeated
- And some new pathways have been added
 - Biodiesel from waste cooking oil and tallow
 - European shale gas pathway (preliminary data)
 - Ethanol pathway from mixed cereals (barley/rye) and maize
 - Methane/diesel from renewable electricity (speculative)
- Some pathways are still being reviewed and will appear later:
 - Hydrogen pathways,
 - More speculative pathways where it is difficult to find data
 - ▶ For example, 'sugar to diesel', algae products, biobutanol

Reproduction permitted with due acknowledgement

concawe Comparing V3c and V4: Gasoline and Diesel

Combustion GHG, 73.2gCO₂eq/MJ

Combustion GHG, 73.4gCO₂eq/MJ

- ▶ No significant change from v3c; minor impact of revised EU-mix electricity
- Reproduction permitted with due acknowledgement
- Flaring and ventilation figures are being updated from 2005 to 2011

JEC WTT Study: Early Results from Version 4 David Rickeard, CONCAWE Consultant

concawe

Comparing V3c and V4: CNG

Combustion GHG, 56.2gCO₂eq/MJ

Higher GHG emissions from NG extraction and processing (CO₂ venting)
 Better pipeline transport estimates

Reproduction permitted with due acknowledgement

JEC WTT Study: Early Results from Version 4 David Rickeard, CONCAWE Consultant

Comparing V3c and V4: Ethanol

Significant changes in agriculture (N fertiliser, N₂O emissions)

Improved ethanol plant modelling

JEC WTT Study: Early Results from Version 4 David Rickeard, CONCAWE Consultant

Reproduction permitted with due acknowledgement

Comparing V3c and V4: Biodiesel & HVO

Significant changes in agriculture (N fertiliser, N₂O emissions)

Reproduction permitted with due acknowledgement

concawe

Crop transportation distances harmonised, minor changes to processing

Comparing V3c and V4: Synthetic Fuels

Virtually unchanged

Reproduction permitted with due acknowledgement

concawe

JEC WTT Study: Early Results from Version 4 David Rickeard, CONCAWE Consultant

- Growing plants need nitrogen from the soil and from fertilisers
- Some of this nitrogen escapes directly to the atmosphere as N₂O
 The amounts are small, but N₂O is a potent Greenhouse Gas
- N₂O emissions depend of soil, climate, cultivation techniques, fertiliser rates and crop, so estimating them is difficult
 - And there is a large uncertainty
- New work by JRC has produced a method that can be applied globally and is easily replicable

Reproduction permitted with due acknowledgement

Target for WTT (and TTW) publication is June, 2013

- Updated Version 4 report based on Version 3c structure
 Work in progress will be added in the autumn
- Seven workbooks in XLS format
- Report will include information on:
 - European crude oil appetite, including flaring & venting
 - More information on WTT refining contributions
 - Accounting for N₂O emissions
 - Description of land use change effects
- Graphing tool to visualise data hopefully!

Reproduction permitted with due acknowledgement

Backup Slides

Reproduction permitted with due acknowledgement

JEC WTT Study: Early Results from Version 4 David Rickeard, CONCAWE Consultant 10th CONCAWE Symposium 25th & 26th February 2013

hr 🐜 🤌

concawe

Reproduction permitted with due acknowledgement