

Spark versus Compression Ignition in a New Energy Environment

Khurram Gaba

ExxonMobil

Heather Hamje CONCAWE, Brussels, Belgium

Global Progress Drives Demand

The Middle Class Continues to Grow

Electricity Generation Leads Growth

Electricity Generation Leads Growth

Transportation Demand

Transportation Fuel Mix by Region

Light Duty Vehicles

CO₂ Emissions Plateau

Background to Advanced Diesel Studies

- Europe's diesel/gasoline demand ratio is continuing to increase:
 - Continuing consumer demand for personal mobility
 - More dieselization of the light-duty (LD) fleet
 - More heavy-duty demand for freight transport
 - Europe is importing diesel and jet fuel/kerosene and exporting gasoline
- Euro 6 (2014) emissions limits will lower NOx and PM emissions with new requirements anticipated for 'real-world driving' performance
 - Adding cost and complexity to LD diesel vehicles
- ▶ EU mandates will require better fuel consumption from LD vehicles
 - 130g CO₂/km from 2012; 95g CO₂/km by 2020
 - 43 to 47 MPG_{US} from 2012; 58 to 65 MPG_{US} by 2020
 - 'Systems' approach needed to capture improvements from entire engine/vehicle
- ▶ Renewables mandated to achieve 10% energy content in road fuels by 2020
 - Vehicle technology must be robust to a diverse fuel and biofuel mix

CONCAWE/FEV/RWTH Work on Advanced CI

- Extensive studies previously completed on bench engine and demo vehicle
 - Diesel engine optimised for low temperature combustion (LTC)
 - Closed Loop Combustion Control (CLCC) important
 - Bench engine operated successfully on diesel, diesel /gasoline, naphthas, gasoline
 Primary Reference Fuels having low cetane numbers (DCN 30)
 - Demonstrator vehicle achieved CO₂, NOx/PM, and combustion noise targets over the New European Driving Cycle on various fuels
 - Advanced diesel engines found to tolerate a wide range of fuels
- Concawe publications related to advanced combustion studies:
 - Literature review: Advanced combustion for low emissions and high efficiency (Report 4/08)
 - Part 1: Impact of engine hardware on HCCI combustion (SAE 2008-01-2405 and Report 9/10
 - Part 2: Impact of <u>fuel properties</u> on HCCI combustion (SAE 2008-01-2404 and Report 10/10)
 - Part 3: Advanced combustion in a <u>demonstrator vehicle</u> (SAE 2010-01-0334)
 - Exploring a Gasoline Compression Ignition (GCI) Engine Concept (SAE 2013-01-0911)
 - Modelling a Gasoline Compression Ignition (GCI) Engine Concept (SAE 2014-01-1305)
 - Modelling the Low-Load Performance of an Advanced Compression Ignition Engine Running on European Market Gasoline (TRA 2014:20165)
 - Exploring a Gasoline Compression Ignition (GCI) Engine Concept (Report 13/14)

Reproduction permitted with due acknowledgement

For CONCAWE reports, see www.concawe.org

What Fuel for Advanced CI Engines?

	Will work in advanced CI engines?	Already available at retail stations?	Helps rebalance diesel/gasoline demand ratio?
Diesel (EN590)	✓	✓	×
Kerosene	✓	×	×
Blends of diesel and gasoline	Evaporative emissions and flashpoint?	? New mixing dispensers at retail stations?	? Depends on performance and market uptake?
New lower cetane fuel	✓	×	?
Gasoline (EN228)	? Evaporative emissions?	✓	✓

Challenge with pump gasoline is its resistance to ignite

Reproduction parmitte an Variable Valve Timing and combustion assistance aid low load operation?

Advanced Diesel Bench Engine Specifications

	Units	Bench Engine
Benchmark	[-]	Euro 6
Displacement	[cm³]	390
Stroke	[mm]	88.3
Bore diameter	[mm]	75
Compression Ratio (CR)	[-]	19:1
Valves per cylinder	[-]	4
Maximum peak pressure	[bar]	220
Fuel injection system specifications	[-]	Bosch Piezo Common Rail System
Maximum injection pressure	[bar]	2000
Hydraulic Flow Rate (HFR)	[cm ³ /30s at 100bar]	310
Nozzle hole diameter	[µm]	109
Number of spray holes	[-]	8
Spray Cone Angle	[°]	153
Charging	[-]	Max. 3.8 bar absolute

> 19:1 CR and pilot injection enabled gives better combustion at full load Reproduction per Success criterial low NOx, lowest posible PM/HC/CO, FC/noise similar to diesel

Stable Operation Achieved over Wide Range

- Stable operation was achieved over a large part of the operating range with good fuel consumption and acceptable CSL (noise)
- NOx emissions were higher than desired with limits on EGR rate
- > Fuel's ignition resistance (low CN) prevented more improvement

Fuel Consumption Better than Gasoline Engines

Lower load operation: What else can be done?

- With the objective of using market gasoline as the primary fuel:
 - More complex cam profile allowing a more flexible variable valve timing (VVT) arrangement
 - Use of a supercharger as well as a turbocharger to increase the boost pressure at low load
 - Use of an advanced ignition source (glow plug, spark plug, or laser) to initiate combustion and assist at lower loads
 - Use of Variable Compression Ratio (VCR)
 - Dual-fuelling operation
- ➤ All these options add complexity and cost → benchmarking of potential improvements against the cost and efficiency of aggressively downsized and boosted SI engines would be needed
- Additional cost would also be incurred in adding an evaporative emissions control system to a Gasoline CI (GCI) concept

Modelling Methodology

- Gas exchange and turbulent non-reacting flow
 - Modelled using STAR-CD
 - 1x 10⁶ grid mesh containing inlet/outlet ports, piston, cylinder head and walls
 - 1D simulation (GT-Power) provided T + P boundary conditions for CFD model.
- Combustion
 - Modelled using KIVA 3V with Engine Research Center (ERC) model extensions
 - Segment of the ω -shaped piston bowl of approximately 50 000 cells

VVT Strategies Simulated

VVT can increase gas temperature by 100K

KIVA Results – Effect of realistic boost pressure

(1500rpm, 4.3 bar IMEP, Nozzle cone angle = 153°)

In most promising VVT configuration, combustion assistance needed (glow plug)

Simulating spark plug assist

(1500rpm, 4.3 bar IMEP, Nozzle cone angle = 160°)

• Nozzle Cone Angle of 160° and nozzle protrusion > 1.5 mm found to be optimal to ensure ignitable mixture around spark location.

Summary

- Increasing dieselization of the market due to increased commercial transportation amongst other factors is increasing pressure on the diesel/gasoline demand from refineries
- Running a higher volatility fuel such as gasoline in a diesel engine has been shown to give some emissions and fuel economy benefits
- Previous Concawe work has shown that running market gasoline in a compression ignition engine is achievable over a large part of the speed/load range by applying common optimization techniques
- Modelling work shows that advanced VVT strategies can increase in-cylinder gas temperature, enhancing gasoline's ignitability at low loads especially in the presence of advanced boosting
- The most promising VVT strategy and nozzle configurations give an ignitable mixture in the vicinity of the glow
 - ▶ Spark plug ignition also possible with wider nozzle cone angle and nozzle protrusion>1.5mm
- Increasing interest in GCI as a viable technology which could help solve future supply issues as well as meet future regulation needs

Acknowledgements

- ▶ K. Deppenkemper, B. Graziano, (RWTH Aachen Univ.)
- ▶ K. A. Heufer, H. Rohs (FEV GmbH)

