

JEC Well-to-Wheels: considerations on methodology choices

<u>Session</u>: Well-to-Wheels/life-cycle analysis of fuels and vehicles comparing methodologies 11th CONCAWE Symposium, Brussels 23-24 February 2015

Laura Lonza

Scientific Officer European Commission, Joint Research Centre Institute for Energy and Transport

Overview

- Background of JEC activities
- Objectives
- Setting the boundaries of JEC WTW analysis
 - Scope
 - Time horizon (established vs. promising technologies)
- Methodological choices
 - Marginal approach
 - Co-product treatment
- Wrap-up: key messages

Background

- JRC: Joint Research Centre of the European Commission
- EUCAR: European Council for Automotive R&D
- CONCAWE: the oil companies' European association for environment, health and safety in refining and distribution

2000-2014: Projects Completed

- Well-to-Wheels (WTW) Studies:
 - Version 1 (2004)
 - Version 2a and 2b (2007)
 - Version 3c (2011)
 - Version 4 (2013): WTT and TTW Reports and Appendices
 - Version 4a (2014) full set of reports: WTT/TTW/WTW and appendices
- Impact of ethanol on vehicle evaporative emissions (SAE 2007-01-1928)
- Impact of oxygenates in gasoline on fuel consumption and emissions (2014)
- JEC Biofuels Study for a 2020 time horizon (2011); revised analysis (2014)

2015-17: Projects in Progress

- WTW Version 5
- •Alternative Transportation Fuels: regulatory development (+) scenario analysis

Objective

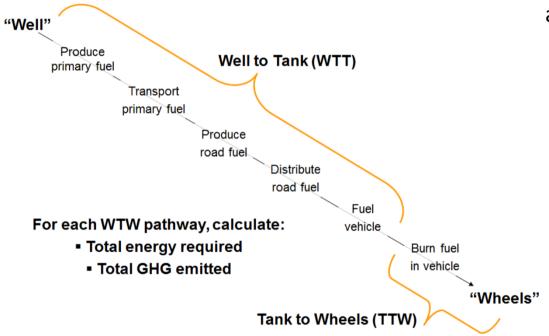
Establish in a transparent and robust manner a consensual well-to-wheels analysis of

energy use

and

GHG emissions assessment

of a wide range of


automotive fuels and powertrains

relevant to Europe

at

a given time horizon

[V4a (=) 2020+]

System Boundaries

Implicit assumption:

Impacts are the same impact wherever they occur.
☑ True for GHG emissions acting at global scale

effects heavily dependent on local conditions

False for other metrics (air pollution or water use):

Scope:

JEC WTW pathways are representative of an average or typical* EU situation:

<u>Time horizon</u>: [V4a (=) 2020+]

Emerging technologies → <u>uncertainty</u> accounted for via:

- (1) Performance figures (=) Variability (min-max) ranges
- (2) Alternative options (=) distinct/additional pathways

WTT

- Input data are generally European:
 - Biofuels come mostly from EU crops
 - Typical transport distances and modes
 - Oil supply (crude mix) and refining (refinery configuration)
 - EU emissions used for fertilizers and chemicals applied also abroad
- Some pathways involve a different geographic scope

TTW

- Set of market <u>requirements</u> assumed for <u>all</u> vehicle technologies/configurations:
 - Vehicle performance criteria and qualitative characteristics (comfort, driveability, interior space)
 - EU regulatory framework on pollutant emissions
 - Drive cycle for vehicle type-approval in the EU

Methodology choices

Marginal/incremental approach:

Aim: to assess the marginal impact of extra (or less of) any given fuel.

The marginal/incremental approach is instrumental to:

- Guide judgements on the potential benefits of substituting conventional fuels/vehicles by alternatives;
- For future fuels: understand where the additional energy resource would come from (if demand for a new fuel were to increase).
- Marginal refining emissions (Concawe EU refinery model)

 Marginal natural gas

 Marginal processing of biofuel (new bio-refinery)
- Average emissions as proxy:

 EU electricity emissions

 Crops cultivation: marginal emissions for extra crop:

 from yield intensification

 expansion onto marginal cropland

Methodology choices

Co-product treatment:

Accounting for co-products: wherever possible substitution (displacement or system expansion) method should be used [ISO 14044].

A given (fuel) production process may produce multiple products besides fuel.

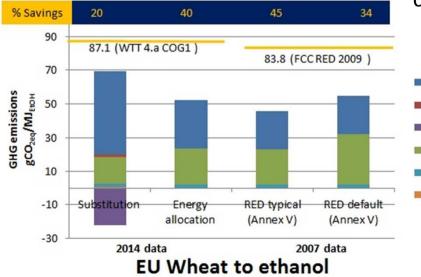
- Substitution approach: products displaced by non-fuel products are determined
- ← Energy use and emissions burdens of producing the otherwise displaced products are estimated.
- □ Estimated energy use and emissions burdens are credits subtracted from the total energy use and emission burdens of a fuel production cycle
- \hookrightarrow Net GHG emissions are attributed to the produced fuel considered.
- ☑ Closer representation of "real-life": economic choices of stakeholders
- Uncertainty: outcomes dependent on fate of co-products

Example

Methodology choices

Substitution vs. allocation by energy content

Choice of co-product treatment method <u>dependent</u> on purpose of exercise:


JEC WTW: scientific advice on transportation fuel options

- impacts of co-products depend on
- what the coproduct substitutes
 - Substitution method

EU RED*: mandatory target/reporting

- clear cut assignment of emissions between economic sectors (+)
- ease of implementation (+)
- no "perverse" incentives (=)
 - ← GHG emissions allocation to

co-products by energy content

Cultivation
 wheat drying, storage, handling
 of which credit for DDGS
 Processing: ethanol production
 Transport
 dispensing at retail site

^{*} Directive 2009/28/EC of 23 April 2009

Key messages

System boundaries

Methodology choices

- Comparability between pathways at regional
 Marginal scale (Europe)
- Time comparability: robustness check as/if Co-product treatment: fit for the purpose of technologies become established
- approach: reflecting rational choices of economic operators
 - the exercise

Additional considerations

- Land Use changes are not included:
 - Direct Land Use Change can be estimated (IF the field/area from which any "new" batch of biofuel comes is known)
 - → dLUC emissions can be evaluated separately and added.
 - If crops or cropland are diverted from other production to biofuels, then Indirect Land Use Change emissions result: iLUC occurs outside the product system assessed.
 - → iLUC is projected/assessed with economic models (commodity prices across economic sectors are affected by biofuel production).
 - ← The WTW methodology
- ☑ Transport applications may not maximise GHG reduction potential of alternative/renewable. energy sources (limited availability/capacity to exploit)
 - ☐ The WTW methodology is adaptable to estimate alternative uses of primary energy sources (e.g. road fuels and "what if we produced electricity instead"...)

Thank you for your attention ©

All reports available at: http://iet.jrc.ec.europa.eu/about-jec

infoJEC@jrc.ec.europa.eu